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Abstract: Rodentia is the most speciose mammalian order, found across the globe, with some species
occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of
zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute
respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across
the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures.
Under experimental conditions, some rodent species including several cricetid species are susceptible
to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate
whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically
tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis,
n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and
Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to
2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA
based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common
vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not
be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test.
These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations
in Germany.

Keywords: coronavirus; COVID-19; reservoir; intermediate host; Cricetidae; Muridae

1. Introduction

The order Rodentia is a highly diverse group, encompassing more than 2000 species
worldwide. Rodents, and representatives of the families Muridae and Cricetidae in par-
ticular, are well-known hosts for a variety of zoonotic pathogens [1]. Because of their
global distribution and high abundance of some species in close proximity to humans in
urban and suburban settings, rodents pose a considerable risk for the back-transmissions
of human pathogens once established in these rodent populations. Given that two (OC43
and HKU1) of the seven currently known human coronaviruses have related ancestors in
rodent species [2] and that additional rodent-specific coronaviruses have been described [3],
it stands to reason that rodents also come into focus when investigating potential reservoir
hosts for the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). SARS-
CoV-2 was initially detected in late 2019 in Wuhan, China, where it caused an outbreak of
an acute respiratory disease in humans [4]. The outbreak of the novel disease, now named
COVID-19 (coronavirus disease 2019), very rapidly evolved into a global pandemic [5],
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resulting in millions of cases worldwide [6]. At the beginning of the pandemic, when
vaccines and treatment options were not yet available, suitable animal models that reflect
different aspects of the SARS-CoV-2 pathogenesis were urgently needed to assist in the
development of countermeasures. Some rodent species, such as Norway or brown rats
(Rattus norvegicus), house mice (Mus musculus) and golden hamsters (Mesocricetus auratus),
are the most widely used laboratory animals in biomedical research and were investi-
gated regarding their susceptibility to SARS-CoV-2 early into the pandemic (reviewed
in [7]). Although house mice could be excluded, through experimental infection studies, as
amplifying hosts for the wild-type virus [8], they are susceptible to some of the recently
emerging variants of concern (VOCs) of SARS-CoV-2, in particular the beta (B.1.351) and
gamma (P1) VOCs [9,10]. Furthermore, SARS-CoV-2 replication is supported in some
Cricetidae species. Though the course of disease and the outcome of infection vary between
the different hamster species investigated so far, all species tested are susceptible [11–16].
Alarmingly, recent reports show the first natural zooanthroponotic infections of humans
by pet hamsters [17,18]. In addition to hamster, other Cricetidae species such as the bushy
tailed woodrats (Neotoma cinerea), North American deer mice (Peromyscus maniculatus),
white-footed mice (P. leucopus) and the Eurasian bank vole (Myodes glareolus) can be exper-
imentally infected with SARS-CoV-2 [8,19–21]. Again, the exact course of infection may
differ between these species, potentially dependent on the virus variant, but in general, the
infectious virus is shed for several days, in some cases leading to infection of naïve animals
through direct contact [8,20]. Hence, there is a potential for SARS-CoV-2 transmission to
humans from infected rodents when the virus occurs at high prevalences in wild rodent
populations. To characterize the risk for SARS-CoV-2 presence in free-ranging rodents in
Germany, we serologically investigated samples collected in 2020, 2021 and 2022, with
a special focus on the cricetid species bank vole. In total, 694 samples taken from bank
voles in four German federal states, two samples from common voles (Microtus arvalis),
27 samples from house mice, 97 Norway rats and eight individuals of Apodemus species
were tested.

2. Results

All but one of the 828 samples scored negative in a multispecies ELISA based on
the receptor binding domain (RBD) of SARS-CoV-2, regardless of whether the wild-type
virus or VOCs have been circulating in the human population during the sampling period
(Figure 1). The remaining sample (lavage of a common vole collected in 2021 in Baden-
Wuerttemberg) resulted in an inconclusive value within the measuring range of the RBD-
ELISA; however, the result could not be confirmed since the sample tested clearly negative
by a SARS-CoV-2 surrogate virus neutralization test (5.6% inhibition, cut-off for positivity
at ≥30% inhibition).
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Figure 1. Results of the RBD-based SARS-CoV-2 ELISA. The cut-offs for negativity (≤0.2) and posi-
tivity (≥0.3) are indicated by horizontal dashed lines. The results of the samples collected until Feb-
ruary 2021 are shown in black, while the results of all samples collected from March 2021 onwards, 
when different VOCs were circulating in the human population in Germany, are shown in red. For 
a few rat samples, the exact trapping date could not be identified; the results of these samples are 
depicted in grey. For comparison, the values obtained from blood samples collected on day 8 (two 
animals), 12 (one animal) or 21 (three animals) after experimental SARS-CoV-2 infection of bank 
voles [19] are included (shown in blue). 

3. Discussion 
The human SARS-CoV-2 pandemic, which has now been going on for more than 2.5 

years and incurred hundreds of millions of infected individuals worldwide during that 
time [6], is presently driven by direct human-to-human virus transmission via aerosolized 
particles. However, ever since the beginning of the pandemic the role of animals as po-
tential intermediate or reservoir hosts has been discussed. When the virus was introduced 
into mink (Neovison vison) farms and caused local epidemics in these highly susceptible 
animal species [22–25], evidence for mink-to-human spillback infections was reported 
[26], resulting in concerns about viral maintenance and evolution/adaptation in animals. 
Aside from these mink-to-human and the likely initial animal-to-human transmissions, 
suspicions of zooanthroponotic SARS-CoV-2 transmissions were reported from a cat (Felis 
catus) and pet hamsters [17,18,27], expanding the species potentially representing a risk 
for infections of humans to companion animals and rodents in particular. 

Here, we focused mainly on bank voles as they are widely distributed and can occur 
in high densities in nature, are well-known reservoir hosts for zoonotic agents and belong, 
like hamster, to the Cricetidae family within the order Rodentia. Under experimental con-
ditions, intranasal inoculation of bank voles with wild-type SARS-CoV-2 led to viral rep-
lication in the respiratory tract, without inducing any obvious clinical signs, followed by 
seroconversion [19]. In addition, low amounts of viral RNA could be detected in the cen-
tral nervous and lymphatic systems [19]. Intra-species transmission to direct contact ani-
mals, which would be needed to establish effective transmission cycles in nature, was not 

Figure 1. Results of the RBD-based SARS-CoV-2 ELISA. The cut-offs for negativity (≤0.2) and
positivity (≥0.3) are indicated by horizontal dashed lines. The results of the samples collected until
February 2021 are shown in black, while the results of all samples collected from March 2021 onwards,
when different VOCs were circulating in the human population in Germany, are shown in red. For
a few rat samples, the exact trapping date could not be identified; the results of these samples
are depicted in grey. For comparison, the values obtained from blood samples collected on day 8
(two animals), 12 (one animal) or 21 (three animals) after experimental SARS-CoV-2 infection of bank
voles [19] are included (shown in blue).

3. Discussion

The human SARS-CoV-2 pandemic, which has now been going on for more than
2.5 years and incurred hundreds of millions of infected individuals worldwide during that
time [6], is presently driven by direct human-to-human virus transmission via aerosolized
particles. However, ever since the beginning of the pandemic the role of animals as poten-
tial intermediate or reservoir hosts has been discussed. When the virus was introduced
into mink (Neovison vison) farms and caused local epidemics in these highly susceptible
animal species [22–25], evidence for mink-to-human spillback infections was reported [26],
resulting in concerns about viral maintenance and evolution/adaptation in animals. Aside
from these mink-to-human and the likely initial animal-to-human transmissions, suspicions
of zooanthroponotic SARS-CoV-2 transmissions were reported from a cat (Felis catus) and
pet hamsters [17,18,27], expanding the species potentially representing a risk for infections
of humans to companion animals and rodents in particular.

Here, we focused mainly on bank voles as they are widely distributed and can occur
in high densities in nature, are well-known reservoir hosts for zoonotic agents and belong,
like hamster, to the Cricetidae family within the order Rodentia. Under experimental
conditions, intranasal inoculation of bank voles with wild-type SARS-CoV-2 led to viral
replication in the respiratory tract, without inducing any obvious clinical signs, followed
by seroconversion [19]. In addition, low amounts of viral RNA could be detected in the
central nervous and lymphatic systems [19]. Intra-species transmission to direct contact
animals, which would be needed to establish effective transmission cycles in nature, was
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not observed [19], but information about the effect of SARS-CoV-2 VOCs on bank voles
and any potential alteration of the infection characteristics are currently missing. For house
mice, precisely those alterations could be seen as wild-type house mice are not susceptible
to the wild-type virus, but can be infected with some of the recently emerging VOCs of
SARS-CoV-2 [9,10]. However, the VOCs for which a higher susceptibility of rodents was
seen, i.e., the beta and gamma variants, never exceeded a proportion of 4% (beta and
gamma combined) in the human population in Germany [28]. In humans, the wild-type
virus was dominant in Germany until the end of February 2021, when a shift to alpha
(B.1.1.7) as the dominant variant occurred, followed by delta (B.1.617.2) that took over the
dominance in calendar weeks 24/25 of 2021. Since the turn of the year, from 2021 to 2022,
omicron (B.1.1.529) and its diverse sub-variants was the predominant variant detected in
human patients [28]. Hence, in the sampling period of our study, mainly virus variants for
which rodents show a lower susceptibility were present in the human population, which
might have influenced the transmission potential to wild rodents and, as a consequence, the
lack of SARS-CoV-2 in the surveilled populations. Nevertheless, despite the consistently
negative serological results in our study, it is recommended to include rodents also in
further monitoring efforts.

Other rodent species that live in high-density settings in close proximity to humans
and that are known hosts of other (non-SARS-CoV-2) coronaviruses are Norway rats and
house mice [29–31]. Both species can be efficiently infected by, e.g., the beta variant of
SARS-CoV-2 [32]. In addition, the virus can be transmitted from infected Norway rats, with
moderate efficiency, to conspecifics through direct contact [32], making the establishment of
effective infection chains in nature likely. During a recent study, Norway rats inhabiting the
sewer system of Antwerp, Belgium, were investigated for SARS-CoV-2 RNA or antibodies
against the virus and all tested negative [33]. That sampling location was selected because
SARS-CoV-2 was repeatedly detected in wastewater [34], thereby representing a possible
route of exposure for rats. Though only a limited number of rats (<40) were tested by
serology or PCR methods [33], the consistently negative results suggest a low probability
of virus introduction into the surveilled urban rat population. In our study, 97 rat samples,
collected in a different country in the context of pest control, were tested and all of them
were likewise seronegative, confirming the low probability of virus spread in free-ranging
Norway rats, at least for the SARS-CoV-2 variants circulating in humans during the
study period.

In conclusion, we found no evidence for the presence of SARS-CoV-2 in the surveilled
wild rodent populations using serological test systems that have been demonstrated to
detect antibodies against diverse VOCs of SARS-CoV-2 [35,36]. Nevertheless, rodents
should be included in future monitoring studies, especially in regions with high human
population densities and where the beta and gamma variants are more prevalent, and when
new virus variants emerge during the continued evolution of SARS-CoV-2 and when the
potential of the variants to break cross-species barriers and the capability to expand species
tropism to animals is unknown.

4. Materials and Methods

A total of 694 samples collected from bank voles in 2020 and 2021 in four German fed-
eral states (Baden-Wuerttemberg, Brandenburg, Lower Saxony, North Rhine-Westphalia)
were tested (Table 1). The human population density in these federal states ranges
from 86 (Brandenburg) to 525 (North Rhine-Westphalia) inhabitants per square kilome-
tre (https://de.statista.com/statistik/daten/studie/1242/umfrage/bevoelkerungsdichte-
in-deutschland-nach-bundeslaendern/, accessed on 19 September 2022). The samples
that were collected in 2020 for a bank vole monitoring study are described in [37]. The
sample matrices comprised blood (n = 614) collected during live-trapping and chest cavity
lavage fluid from animal carcasses from snap trapping (n = 80). The latter was collected
by rinsing the chest cavity with 1 mL phosphate-buffered saline (PBS) during necropsy.
Additional rodents were collected during pest control in different zoological gardens and

https://de.statista.com/statistik/daten/studie/1242/umfrage/bevoelkerungsdichte-in-deutschland-nach-bundeslaendern/
https://de.statista.com/statistik/daten/studie/1242/umfrage/bevoelkerungsdichte-in-deutschland-nach-bundeslaendern/
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an agricultural company. Lavages of 27 house mice, 97 Norway rats, two common voles
and eight individuals of the genus Apodemus were included, the origin of the samples is
given in Table 1.

Table 1. Rodent samples that were tested for the presence of antibodies against SARS-CoV-2.

Rodent Species Sample Material Federal State Year Number of Samples

Myodes glareolus blood NW 2021 614
Myodes glareolus chest cavity lavage BB, BW, NI 2020/21 80
Microtus arvalis chest cavity lavage BW 2021 2
Mus musculus chest cavity lavage HE, SH 2021/22 27

Rattus norvegicus chest cavity lavage BB, BW, MV, SH 2020/21/22 97
Apodemus flavicollis chest cavity lavage BW, SH 2021/22 6
Apodemus sylvaticus chest cavity lavage BW, HE 2021 2

NW—North Rhine-Westphalia, BB—Brandenburg, BW—Baden-Wuerttemberg, NI—Lower Saxony, HE—Hesse,
SH—Schleswig-Holstein, MV—Mecklenburg-Western Pomerania.

All samples were tested by a SARS-CoV-2 RBD-based multispecies ELISA carried
out as described previously [38]. Blood samples were pre-diluted 1/100 as described
and lavage samples were tested in a 1/10 dilution. During the initial test validation, a
cut-off of ≤0.2 was set for negativity and ≥0.3 for positivity, with the intermediate zone
between 0.2 and 0.3 being inconclusive [38]. The suitability of the indirect ELISA for the
investigation of rodent sera was validated by testing samples of experimentally SARS-CoV-
2 infected animals (bank voles and house mice) [19,39] or of vaccinated animals (Norway
rats, unpublished). As positive controls, blood samples collected on day 8 (two animals),
12 (one animal) or 21 (three animals) after experimental SARS-CoV-2 inoculation of bank
voles [19] have been tested, the results are shown in Figure 1. The suitability of the ELISA
to detect antibodies directed against diverse VOCs has been shown during experimental
infection studies [35,36].

Samples that tested positive or inconclusive in the RBD-ELISA were subsequently
tested by a surrogate virus neutralization test (cPass SARS-CoV-2 Surrogate Virus Neutral-
ization Test (sVNT) Kit, GenScript, Rijswijk, the Netherlands) performed as prescribed by
the manufacturer (cut-off ≥ 30% positive and <30% negative). The surrogate virus neutral-
ization test in its original composition detects antibodies against the wild-type virus and
all VOCs except omicron. For omicron (and its diverse sub-variants), a specific horseradish
peroxidase (HRP)-conjugated RBD is provided by the test manufacturer. As the sample that
resulted in an inconclusive value within the measuring range of the in-house RBD-ELISA
was collected in 2021, i.e., prior to the emergence of omicron in the study area, we applied
the original composition of the surrogate virus neutralisation test.
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