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Highlights Lay summary

� We demonstrate that monocyte dysfunction in pa-

tients with decompensated cirrhosis and refractory
ascites is mediated by PGE2 through its EP4 receptor.

� Monocyte HLA-DR expression was also reduced in
both cohorts of patients with decompensated
cirrhosis, at least in part, by elevated circulating PGE2.� Up to 55% of patients with ACLF have an infective
precipitant.

� Improving monocyte function in patients with pre-
hospital cirrhosis and ascites could prevent devel-
opment of ACLF.

� PGE2-EP4 receptor antagonists might represent a
treatment to improve monocyte dysfunction in
outpatients with ascites.
https://doi.org/10.1016/j.jhepr.2021.100332
Patients with decompensated cirrhosis (jaundice, fluid build-
up, confusion, and vomiting blood) have high infection rates
that lead to high mortality rates. A white blood cell subset,
monocytes, function poorly in these patients, which is a key
factor underlying their sensitivity to infection. We show that
monocyte dysfunction in decompensated cirrhosis ismediated
by a lipid hormone in the blood, prostaglandin E2, which is
present at elevated levels, via its EP4 pathway. This dysfunction
worsens when patients are hospitalised with complications of
cirrhosis compared with those in the outpatients setting,
which supports the EP4 pathway as a potential therapeutic
target for patients to prevent infection and hospitalisation.
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Background & Aims: Infection is a major problem in advanced liver disease secondary to monocyte dysfunction. Elevated
prostaglandin (PG)E2 is a mediator of monocyte dysfunction in cirrhosis; thus, we examined PGE2 signalling in outpatients
with ascites and in patients hospitalised with acute decompensation to identify potential therapeutic targets aimed at
improving monocyte dysfunction.
Methods: Using samples from 11 outpatients with ascites and 28 patients hospitalised with decompensated cirrhosis, we
assayed plasma levels of PGE2 and lipopolysaccharide (LPS); performed quantitative real-time PCR on monocytes; and
examined peripheral blood monocyte function. We performed western blotting and immunohistochemistry for PG biosyn-
thetic machinery expression in liver tissue. Finally, we investigated the effect of PGE2 antagonists in whole blood using
polychromatic flow cytometry and cytokine production.
Results: We show that hepatic production of PGE2 via the cyclo-oxygenase 1–microsomal PGE synthase 1 pathway, and
circulating monocytes contributes to increased plasma PGE2 in decompensated cirrhosis. Transjugular intrahepatic sampling
did not reveal whether hepatic or monocytic production was larger. Blood monocyte numbers increased, whereas individual
monocyte function decreased as patients progressed from outpatients with ascites to patients hospitalised with acute
decompensation, as assessed by Human Leukocyte Antigen (HLA)–DR isotype expression and tumour necrosis factor alpha
and IL6 production. PGE2 mediated this dysfunction via its EP4 receptor.
Conclusions: PGE2 mediates monocyte dysfunction in decompensated cirrhosis via its EP4 receptor and dysfunction was
worse in hospitalised patients compared with outpatients with ascites. Our study identifies a potential drug target and
therapeutic opportunity in these outpatients with ascites to reverse this process to prevent infection and hospital admission.
Lay summary: Patients with decompensated cirrhosis (jaundice, fluid build-up, confusion, and vomiting blood) have high
infection rates that lead to highmortality rates. Awhite blood cell subset, monocytes, function poorly in these patients, which is a
key factorunderlying their sensitivity to infection.We show thatmonocyte dysfunction indecompensated cirrhosis ismediated by
a lipid hormone in the blood, prostaglandin E2, which is present at elevated levels, via its EP4 pathway. This dysfunctionworsens
whenpatients are hospitalisedwith complications of cirrhosis comparedwith those in the outpatients setting,which supports the
EP4 pathway as a potential therapeutic target for patients to prevent infection and hospitalisation.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
An estimated 2 million deaths worldwide are currently attrib-
utable to liver disease, a substantial increase from 676,000 (1.5%)
in 1980.1,2 In patients with cirrhosis, bacterial infection or sepsis
is a principal trigger for hospital admission leading to acute
decompensation (AD) and acute-on-chronic-liver failure (ACLF),
when accompanied by organ failure,3 drastically shortening life
expectancy. Furthermore, although overall US inpatient cirrhosis
Keywords: HLA-DR; TNF; IL6; LPS; Cyclo-oxygenase 1; Microsomal PGE synthase 1;
Decompensated cirrhosis.
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mortality rates fell from 2002 to 2010, actual mortality risk from
infection or sepsis increased.4

A dysregulated immune function underlies this increased
propensity to infection, termed ‘cirrhosis-associated immune
dysfunction’ (CAID).5–9 We examined monocytes, because these
key innate immune cells initiate and regulate the inflammatory
response. Monocyte dysfunction has been defined as reduced
monocyte human leukocyte antigen–DR isotype (HLA-DR)
expression10 and reduced ex vivo lipopolysaccharide (LPS)-
induced tumour necrosis factor alpha (TNFa) production,11–15 and
is associated with increased infection rates.16–18 Several studies
detail circulating monocyte dysfunction in advanced liver dis-
ease11,19 and persistently low expression of HLA-DR was associ-
ated with increased secondary infection and 28-day mortality.20

Elevated prostaglandin (PG)E2 is a mediator of monocyte/
macrophage dysfunction in cirrhosis.21 Therefore, a therapeutic

https://doi.org/10.1016/j.jhepr.2021.100332
http://creativecommons.org/licenses/by/4.0/
mailto:a.o&apos;brien@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2021.100332&domain=pdf


Research article
agent that reverses the effects of PGE2 could prevent the harmful
effects of infection. NSAIDs reduce PGE2 production, but are
contraindicated in decompensated cirrhosis because of nephro-
toxicity.22–24 Alternatively, albumin was found to antagonise the
effects of PGE2.

15 However, the Albumin To prevenT Infection in
chronic liveR failurE (ATTIRE) trial showed no effect of targeted
albumin infusions that achieved a serum albumin >−30 g/L to
hospitalised patients for development of infection, renal
dysfunction ,or mortality compared with standard care.25 By
contrast, the ANSWER trial (investigating albumin for the treat-
ment of ascites in patients with hepatic cirrhosis) showed
weekly albumin infusions to outpatients with ascites reduced the
incidence of infection and improved survival.26 The differences
between the ATTIRE and ANSWER trial outcomes suggest that
interventions that combat the effects of PGE2 would be more
effective if given to prehospital patients. Therefore, we compared
patients hospitalised with decompensated cirrhosis (including
both AD and ACLF) to those with ascites refractory to medical
management attending the outpatient department for para-
centesis (OPD) to identify a potential therapeutic target to
improve monocyte function and prevent infection and hospital
admission.
Table 2. Details of transjugular intrahepatic portosystemic shunt patients.

Age Sex Aetiology of cirrhosis TIPS indication

48 F NASH Ascites
50 M Alcohol Ascites
64 F Primary sclerosing cholangitis Variceal bleed
76 M Alcohol/haemochromatosis Ascites
50 F Alcohol Ascites
59 F Alcohol Ascites
58 M HBV and HDV co-infection Ascites
60 M Primary biliary cholangitis Hepatic hydrothorax
54 M Cryptogenic Ascites
69 F Autoimmune hepatitis Ascites
61 F NASH Variceal bleed
50 M Alcohol Variceal bleed
53 M Alcohol Ascites
60 F Autoimmune hepatitis Ascites
62 M HCV Ascites
61 F Alcohol Ascites
74 M Alcohol Ascites

NASH, non-alcoholic steatohepatitis; TIPS, transjugular intrahepatic portosystemic
shunt.
Patients and methods
Ethical approval
NHS Research Ethics Committee ethical approval was given for
‘An investigation of suppression of cirrhosis-mediated immune
suppression by prostaglandin receptor antagonism’ (IRAS
170839, REC 15/LO/0800) with A.O’B. as the principal investi-
gator and University College London Hospitals (UCLH) as the
joint research office sponsor. All procedures were in accordance
with the Helsinki Declaration of 1975, revised 1983. Patient and
healthy volunteer recruitment was under this approval unless
stated, with further approval from Health Research Authority in
2016. Our Patient and Public Involvement group advised on pa-
tient information sheets and consent forms.

Inclusion criteria
The study included all patients attending day-case outpatient
setting with ascites refractory to medical therapy for para-
centesis (OPDs) or hospitalised with complications of
Table 1. Details of outpatients with refractory ascites and acute decompensa

Characteristic Outpatients with refrac

Number 11
Age 60 (55–66)
Sex Male (8)
Cirrhosis aetiology Alcohol (7), NASH (2),

autoimmune (1), drug (1
Reason for admission (can be >1) Paracentesis (11)

Location Day-case unit
Antibiotics 0
Model for end-stage liver disease score 15 (13–16)
Acute-on-Chronic Liver Failure score n/a

Death during admission n.a.
Type 2 diabetes mellitus 3

NASH, non-alcoholic steatohepatitis.
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decompensated liver cirrhosis (including AD and/or ACLF) aged
over 18 years with predicted hospital length of stay greater than
5 days. Informed consent was obtained from all participants.

Exclusion criteria
The exclusion criteria were: HIV infection; advanced hepatocel-
lular carcinoma; patients not expected to survive >48 h; and
pregnancy. Nonsmoking healthy volunteers (HVs) aged 18–50
provided samples for analyses.

Patient demographics
Patients hospitalised with AD/ACLF were recruited from UCLH and
OPDs from the day-case unit at The Royal Free Hospital, using
standard diagnostic criteria (Table 1). In total, 11 OPDs were
recruited at day-case paracentesis, none had infection at sampling,
which was performed before albumin infusion and paracentesis,
and none were taking antibiotics for treatment or prophylaxis.
Overall, 28 patients with AD/ACLF were recruited up to day 9
following hospitalisation (Table 1). It was not possible to perform
all experimental analyses on every patient and absolute numbers
of samples used are detailed in the figure legends. Plasma samples
were analysed from 17 patients undergoing transjugular intra-
hepatic portosystemic shunt insertion (TIPS) (Table 2). Hepatic
tion/acute-on-chronic liver failure.

tory ascites (n) Patients with acute decompensation/
acute-on-chronic liver failure (n)

28
56.5 (53–68)
Male (20)

)
Alcohol (24), NASH (2), HCV (1),
primary biliary cholangitis (1)
Infection (11), hepatic encephalopathy (9),
gastrointestinal bleed (6), ascites (13),
alcohol withdrawal (2), alcoholic hepatitis (1)
Ward (24), ICU (4)
14
17 (10–20)
Grade 0: n = 15
Grade 1: n = 6
Grade 2: n = 6
Grade 3: n = 1
9
7
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Fig. 1. Plasma PGE2 concentration in decompensated cirrhosis. Plasma PGE2 concentrations in HVs, OPDs, and AD/ACLF using (A) EIA, results expressed as pg/
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Plasma PGE2 concentrations expressed according to corresponding serum albumin value in OPDs and patients with AD/ACLF. Data expressed as mean ± SEM, with
1-way ANOVA and multiple comparisons using Browne–Forsythe and Welch’s tests for patient comparisons with HVs. *p <0.05, **p <0.01. ACLF, acute-on-chronic
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venous sampling was prepuncture through the liver, whereas
portal venous blood sampling was after catheter entry to the portal
vein, �1 min after shunt insertion. Ethical approval from UCL-
Royal Free Hospital biobank ref: 16/WA/0289.

Polychromatic Flow Cytometric Analysis
Polychromatic flow cytometric analysis (FACS), including intra-
cellular staining, defining the lineages of blood cells, was
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performed using a LSR Fortessa flow cytometer. See the
supplementary material for methods, Supplementary Table S2
for antibody details, and Supplementary Figs S1 and S2 for the
gating strategy used (lineage/activation panels).

Quantitative real-time PCR
Quantitative real-time PCR (qPCR) of purified (bulk) monocytes
was used to assess the expression of enzymes involved in the
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synthesis and catalysis of PGE2 [PLA2G4A, PTGS1, PTGS2, PTGES1,
PTGES2, PTGES3, and 15-hydroxyprostaglandin dehydrogenase
(HPGD)] and mRNA for the PGE2 membrane-bound receptors
EP1–4 (PTGER1, PTGER2, PTGER3, and PTGER4). mRNA was
extracted from samples using the RNeasy Mini Kit according to
the manufacturer’s instructions and cDNA was synthesised using
the High-Capacity cDNA Reverse Transcription Kit as per the
manufacturer’s instructions.

Immunohistochemistry
Patients with decompensated cirrhosis infrequently undergo
liver biopsy; therefore, we examined cirrhotic liver explants from
patients undergoing liver transplants at the Royal Free Hospital
and specimens following resection of benign adenomas as
healthy controls. For the details of the 10 liver explants exam-
ined, see the supplementary methods.

Plasma PGE2 liquid chromatography-tandem mass
spectrometry
Plasma samples were analysed by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) following protocols
published previously.27 PGE2 and d4-PGE2 standards for LC-MS/
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MS analysis were purchased from Cayman Chemicals. Linear
calibration curves were obtained for each lipid mediator, with r2

values of 0.98–0.99.

Statistical analysis
The data were analysed using Graph Pad Prism 7.0. Unless stated,
data are presented as mean ± SD. Where appropriate the
following statistical tests were performed: (a) 1-way ANOVA and
multiple comparisons using Browne–Forsythe, Tukey and
Welch’s tests when 3 or more groups of values were compared;
(b) Two-tailed (unpaired) t tests ± Welsh correction were per-
formed when comparing 2 independent groups of values with
normal distribution; (c) For the whole-blood experiments, data
were analysed with 2-way ANOVA with multiple comparisons
with Dunnett’s correction.
Results
Circulating PGE2 is elevated in patients hospitalised with
decompensated liver cirrhosis compared with outpatients
Plasma PGE2 concentrations, based on LC-MS/MS and enzyme
immune assay (EIA), were significantly elevated in patients
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with decompensated cirrhosis compared with HVs. Values were
highest in patients hospitalised with AD/ACLF, whereas OPDs
demonstrated intermediate levels (Fig. 1A,B). Most patients had
alcohol-induced cirrhosis (Table 1). Although EIA measure-
ments of PGE2 were consistently much higher than those from
LC-MS/MS, these data demonstrated EIA reproducibly produced
qualitative differences between sample groups consistent with
data from LC-MS/MS analysis, highlighting EIA as a robust
practical alternative to LC-MS/MS. Therefore, we used EIA for
further analyses. The differences in PGE2 between liver disease
cohorts did not reach significance using either technique.
However, we showed previously that circulating albumin binds
to, and inactivates, PGE2.11 Therefore, the lower serum albumin
concentrations in patients with AD/ACLF compared with OPDs
(p <0.05, Supplementary Table S1A) indicated that less of the
total PGE2 measured was albumin bound and, consequently,
more unbound, bioavailable PGE2 was present in these patients.
To demonstrate this, the PGE2 levels (EIA) of patients were
expressed according to their corresponding serum albumin
values, which demonstrated significant differences between
HVs, OPDs and AD/ACLF (p <0.01, Fig. 1C).

Elevated circulating PGE2 in patients with decompensated
liver cirrhosis is produced by both the cirrhotic liver and
peripheral blood monocytes
Samples from patients undergoing TIPS (Table 2) demonstrated
levels of PGE2 that were higher in hepatic venous blood
compared with peripheral (average of 1.7-fold) and portal
venous blood (1.44-fold), although the differences did not ach-
ieve statistical significance and firm conclusions could not be
drawn as to the major source of PGE2 production (Fig. 2A).

Prostaglandins are formed by phospholipase A2 (PLA2)
releasing arachidonic acid from the plasma membrane, which is
metabolised by constitutive cyclooxygenase 1 (COX-1) or
inducible COX-2 to PGH2 via PGG2. PGH2 acts as substrate for
downstream synthases (DSS), PGE2, PGD2, prostacyclin, and
PGF2a. Microsomal PGE synthase 1 (mPGES1), mPGES2, and
constitutively expressed cytosolic (c)PGES/p23 convert PGH2 to
PGE2; mPGES1 is the main inducible synthase following proin-
flammatory stimuli.28

We compared cirrhotic liver explants following trans-
plantationwith nondiseased livers following resection for benign
adenomas as healthy controls. Western blot revealed upregu-
lated COX-1 protein within cirrhotic liver tissue (Fig. 2B), with
COX-2 undetectable in cirrhotic and healthy liver tissue (data not
shown). With limited liver tissue availability, we determined the
expression of PGE2 DSS using immunohistochemistry and kidney
as a positive control with a known presence of PGE2 DSS.29

Cirrhotic livers showed increased mPGES1 compared with
healthy livers, with a digital H-Score of 24.17 vs. 19.79 (p <0.01,
Fig. 2C). There were no differences in mPGES2 or cPGES
(Fig. 2D,E). Thus, these data support the cirrhotic liver as a source
HLA-DR expression on CM cell population with subsequent whole blood (I) TNFa a
and AD/ACLF, respectively). (K) Correlation between LPS-stimulated monocyte TN
cell surface expression on all monocytic cells in n = 11, 10, and 24 for HVs, OPDs, a
way ANOVA with Tukey multiple comparisons test (all groups compared) or unp
acute-on-chronic liver failure; AD, acute decompensation; CM, classical monocy
LPS, lipopolysaccharide; MFI, mean fluorescence intensity; PGE2, prostaglandin E2
for day-case paracentesis; TNFa, tumour necrosis factor alpha.
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of increased plasma PGE2 in decompensated cirrhosis via upre-
gulation of COX-1/mPGES1.

Peripheral blood qPCR revealed a significant reduction in
blood monocyte PTGS1 (COX-1) gene expression in AD/ACLF
compared with healthy controls (p <0.01) with OPDs demon-
strating intermediate expression (Fig. 3A). PTGS2 (COX-2) gene
expression was reduced when OPDs were compared with AD/
ACLF (p <0.05), with mPGES1 expression unchanged across
healthy and cirrhosis cohorts (Fig. 3B,C). There were no differ-
ences in other PGE2 synthesis or catabolism enzymes, mPGES2,
PTGES3, or HPGD (Fig. 3D–F). We observed increased plasma
soluble CD14 (sCD14), a co-receptor for LPS (endotoxin) released
by monocytes upon activation in patients with decompensated
cirrhosis compared with HVs (Fig. 3G). Given that LPS in plasma
will trigger PGE2 production in the presence of monocyte COX
enzymes,10 these data suggest that circulating monocytes
contribute to PGE2 production via LPS-COX stimulation in
decompensated cirrhosis, although COX enzyme expression was
lower than in healthy controls.

Increased systemic inflammation in patients with AD/ACLF
might trigger increased COX-2 production of PGE2 in
peripheral blood monocytes
COX-2 expression on monocytes was highly variable in patients
with AD/ACLF compared with OPDs (Fig. 3B). Investigating this
further, we found COX-2 expression positively correlated with
plasma C-reactive protein (CRP) in patients with AD/ACLF (CRP,
r2 = 0.4, p = 0.03, Fig. 3H), suggesting that those with increased
systemic inflammation had greater monocyte COX-2 expression.
Consistent with these analyses, plasma CRP also correlated
positively with plasma PGE2 in samples tested (r2 = 0.33, p = 0.02,
Fig. 3I). These data suggest that monocyte contribution to PGE2
production is highest in patients with AD/ACLF with the greatest
systemic inflammation.

Consistent with elevated circulating LPS, patients with AD/
ACLF had an expansion of total monocyte numbers, specifically
relating to classical (p = 0.003) and intermediate monocytes (p =
0.02), with an intermediate phenotype in OPDs, and no changes
in nonclassical monocytes and dendritic cells across all cohorts
(Fig. 4A–D).

Finally, there were significant increases in PGE2-mediated
plasma chemokines, MCP-1, MIP-1a, and MIP-1b, in patients with
AD/ACLF, with an intermediate phenotype in OPDs (Fig. 4E–G).

Monocyte dysfunction is more severe in patients hospitalised
with decompensated cirrhosis compared with outpatients
Monocyte dysfunction was assessed by examining HLA-DR
expression and whole-blood LPS-induced TNFa production. We
included IL6 production in line with its crucial role in patients
with AD/ACLF.30,31

There was a reduction in HLA-DR surface expression (p = 0.03,
Fig. 5A), mostly in classical and intermediate monocytes in pa-
tients with AD/ACLF, but not in OPDs (Fig. 5B,C). Linking this to
nd (J) IL6 production following LPS stimulation (n = 9, 11, and 28 for HVs, OPDs,
Fa production and serum albumin in decompensated cirrhosis. (L) MFI of CD64
nd AD/ACLF, respectively. Individual data points or mean ± SEM shown with 1-
aired t-test when 2 groups. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. ACLF,
tes; HLA-DR, human leukocyte antigen – DR isotype; HVs, healthy volunteers;
; OPD, patients with refractory ascites attending hospital outpatient department
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the increased bioavailable circulating PGE2 in AD/ACLF compared
with OPD, we found that HLA-DR expression on monocytes fell
significantly following 72 h incubation with 1 ng/ml PGE2
compared with untreated controls (Fig. 5D). Patients with sepsis
and lower HLA-DR+ monocytes have more secondary infections
and worse outcomes,31 supporting the potential functional
relevance of differences in HLA-DR expression between OPDs
and patients with AD/ACLF .

Monocytes, especially classical and intermediate, make TNFa
and IL6 following whole-blood ex vivo LPS stimulation (Fig. 5E,F).
Expressing LPS-stimulated TNFa and IL6 per blood monocyte
number, synthesis of both cytokines fell significantly when
comparing OPDs and patients hospitalised with AD/ACLF
(Fig. 5G,H).

There was a close correlation between baseline HLA-DR
expression on classical monocytes (the largest population) and
TNFa (Fig. 5I; r = 0.3847, p = 0.0069) and IL-6 (Fig. 5J; r2 = 0.3, p =
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0.0002) following LPS whole-blood stimulation. Furthermore,
serum albumin levels in patients strongly correlated with
monocyte LPS-stimulated TNFa release (Fig. 5K; r = 0.593, p
<0.0001), supporting a link between PGE2 regulation by albumin
and monocyte dysfunction. Not all monocyte expression markers
were downregulated, with increased monocyte CD64 expression,
similar to murine acute liver failure and sepsis (Fig. 5L).32,33

Collectively, our data demonstrate that the progression of
patients from outpatients with ascites to patients hospitalised
with AD/ACLF is accompanied by an increase in bioavailable
PGE2, reduced monocyte HLA-DR expression, and reduced
monocyte TNFa/IL6 production.

PGE2 induces monocyte dysfunction in decompensated
cirrhosis via its EP4 receptor
qPCR of blood monocytes demonstrated upregulation of the EP2
receptor (PTGER2) mRNA in both OPDs and patients hospitalised
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withAD/ACLF comparedwithHVs (Fig. 6A). By contrast,monocyte
EP4 receptor (PTGER4) mRNA was decreased in AD/ACLF, with no
change in OPDs compared with HVs (Fig. 6B); EP1 (PTGER1) and
EP3 (PTGER3) were very low or undetectable (data not shown).

To investigate whether EP2 and/or EP4 receptors transduced
the effects of PGE2, whole blood from patients with AD/ACLF
was pre-incubated with either PF-04418948, an EP2 selective
antagonist (IC50 = 16 nM with >2,000-fold selectivity over EP1,
EP3, and EP 4) or MF498, a selective EP4 receptor antagonist (Ki =
0.7 nM vs. a Ki >1 lM for other EP receptors). Thereafter, cells
were treated with PGE2 before LPS stimulation. Only pre-
incubation using the EP4 receptor antagonist (MF498)
completely reversed PGE2-suppressive effects on monocyte
TNFa secretion from patients with AD/ACLF, with no additional
effect when EP2/4 inhibitors were combined (Fig. 6C). PGE2-
mediated suppression of IL6 exhibited a similar profile,
although EP4 inhibition alone did not significantly reverse this,
whereas the combination of EP2/4 inhibitors did (p <0.05, n = 5
per group) (Fig. 6D).

In the absence of sufficient whole blood from OPDs for these
experiments, monocyte-derived macrophages (MDMs) from
healthy donors were treated with plasma from OPDs or healthy
controls, as previously described.11 Consistent with whole-blood
studies, when LPS-induced TNFa production by MDMs in the
presence of OPD plasma was compared with HVs, there was a
significant reduction in TNFa production (p <0.05, n = 6). This
was fully reversed by the EP4 receptor antagonist, MF498 (p
<0.0001, n = 10) with no effect using the EP2 antagonist, PF-
04418948 (Fig. 6E).

These findings demonstrate that elevated circulating PGE2
causes monocyte dysfunction in decompensated cirrhosis via its
EP4 receptor, despite the relative increased expression of EP2
over EP4.
Discussion
This study demonstrates that monocyte dysfunction in both
patients hospitalised with AD/ACLF and OPDs is mediated by
PGE2 through its EP4 receptor, with patients with AD/ACLF
exhibiting a more severe phenotype. We focused principally on
monocyte TNFa production because of its crucial role in the in-
flammatory cascade and data linking reduced monocyte TNFa
release to survival following sepsis,34–38 although a similar
pattern was observed with IL6. Monocyte HLA-DR expression
was also reduced in decompensated cirrhosis mediated, at least
in part, by elevated circulating PGE2. We believe that our crucial
observation was the change in monocyte dysfunction between
outpatients and those in hospital, and this creates a potential
therapeutic opportunity. Up to 55% of patients with ACLF have an
infective precipitant3; therefore, improving monocyte function
in patients with prehospital cirrhosis with ascites could prevent
the development of this condition. Furthermore, a substantial
gain could be achieved by keeping these prehospital patients
stable, to allow time to address alcohol dependency, or undergo
treatment for viral hepatitis or with emerging non-alcoholic
steatohepatitis (NASH) therapies. Thus, PGE2-EP4 receptor an-
tagonists could represent a treatment to improve monocyte
dysfunction in outpatients with ascites.

The more severe PGE2-mediated monocyte dysfunction in
patients hospitalised with AD/ACLF compared with OPDs could
partly explain the lack of effect of albumin infusions in the
prevention of infection in the ATTIRE trial, compared with the
JHEP Reports 2021
reduction in infections in the ANSWER trial.25,26 Infusing albu-
min might be able to overcome the less severe PGE2-mediated
monocyte dysfunction in OPDs, but not in patients hospitalised
with AD/ACLF.

The cirrhotic liver showed upregulated COX-1 and mPGES1.
The latter regulates macrophage polarisation and liver protection
and repair through EP4 signalling during hepatic ischemia-
reperfusion injury in mice and is increased in human NASH
livers.39 During early stages of liver injury, it appears that acti-
vation within the liver of the mPGES1 antifibrotic pathway is
protective, but once decompensated cirrhosis occurs, the
consequent chronic PGE2 production leads to monocyte
dysfunction. However, the therapeutic potential of mPGES1 in-
hibitors to reverse PGE2-mediated monocyte dysfunction in
decompensated cirrhosis appears limited, with no drug targeting
this pathway progressing beyond safety studies.

We detected elevated circulating LPS secondary to gut bac-
terial translocation. This triggers PGE2 production via monocyte
COX enzymes, even though COX levels were lower or equal to
those in HVs, and this might also represent a significant source of
PGE2.

10 Targeting gut bacterial translocation using antibiotic
prophylaxis to reduce LPS-induced monocyte PGE2 production
could improve monocyte dysfunction. Indeed, persistent gut
translocation of bacterial products causes immune exhaustion9;
however, concerns over antimicrobial resistance limit the use of
this approach.40 Non-antibiotic therapies to reduce gut bacterial
translocation might also improve PGE2-induced monocyte
dysfunction.41

We previously showed increased COX-2 in peripheral blood
mononuclear cells in a small cohort of inpatients with AD/ACLF.21

Here, with a greater sample size, we show a disease-dependent
reduction in blood monocyte COX-1 with no overall change in
COX-2 between healthy and decompensated cirrhosis, although
COX-2 expression fell between outpatients with ascites and
those with AD/ACLF. There was significant heterogeneity in COX-
2 expression in AD/ACLF and circulating PGE2 levels correlated
positively with serum CRP, supporting increased COX-2 expres-
sion in patients with AD/ACLF with the greatest systemic
inflammation or infection. The presence of systemic inflamma-
tion in patients sampled could explain the differences between
our current and previous analyses.

Our study has limitations. Patients studied predominantly
had alcohol-induced liver cirrhosis and analyses might differ for
other aetiologies. We could not perform in vivo pharmacology
studies on patients and these were not attempted in rodents, as
rodent models of acute decompensated cirrhosis are not
considered representative of the human phenotype.42 We only
examined peripheral blood monocytes, and other immune cells
are also dysfunctional in decompensated cirrhosis; for example,
lymphoid cells (including T, B and natural killer cells) are
decreased43,44 and neutrophils might have defective production
of antimicrobial superoxide anions.45 Furthermore, we focussed
solely on PGE2, and there are other potential targets to reverse
monocyte–macrophage dysfunction in liver disease, such as Mer
tyrosine kinase.46 Finally, our study was designed to detect dif-
ferences between outpatients with ascites and patients with
hospitalised decompensated cirrhosis; therefore, there were
insufficient numbers to investigate whether monocyte function
worsened according to ACLF grade, decompensated cirrhosis
status,47 presence or absence of infection, and antibiotic pre-
scription. It appears likely that these will all be significant con-
founders in hospitalised patients.
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To conclude, we provide evidence entirely from human exper-
imentation that demonstrates PGE2, acting via its EP4 receptor,
downregulates monocyte TNFa and IL6 production in decom-
pensated cirrhosis and reduces monocyte HLA-DR expression.
Crucially, we observed worsening monocyte dysfunction in
JHEP Reports 2021
patients attending for day-case paracentesis compared with those
hospitalised with AD/ACLF. Drug development based on our find-
ings could lead to a proactive approach to improve monocyte
dysfunction in outpatients with ascites to prevent infection and
subsequent hospitalisation.
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