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Machine learning‑based prediction 
of acute severity in infants 
hospitalized for bronchiolitis: 
a multicenter prospective study
Yoshihiko Raita1*, Carlos A. Camargo Jr1, Charles G. Macias2, Jonathan M. Mansbach3, 
Pedro A. Piedra4, Stephen C. Porter5,6, Stephen J. Teach7 & Kohei Hasegawa1

We aimed to develop machine learning models to accurately predict bronchiolitis severity, and to 
compare their predictive performance with a conventional scoring (reference) model. In a 17-center 
prospective study of infants (aged < 1 year) hospitalized for bronchiolitis, by using routinely-available 
pre-hospitalization data as predictors, we developed four machine learning models: Lasso regression, 
elastic net regression, random forest, and gradient boosted decision tree. We compared their 
predictive performance—e.g., area-under-the-curve (AUC), sensitivity, specificity, and net benefit 
(decision curves)—using a cross-validation method, with that of the reference model. The outcomes 
were positive pressure ventilation use and intensive treatment (admission to intensive care unit and/
or positive pressure ventilation use). Of 1,016 infants, 5.4% underwent positive pressure ventilation 
and 16.0% had intensive treatment. For the positive pressure ventilation outcome, machine learning 
models outperformed reference model (e.g., AUC 0.88 [95% CI 0.84–0.93] in gradient boosted decision 
tree vs 0.62 [95% CI 0.53–0.70] in reference model), with higher sensitivity (0.89 [95% CI 0.80–0.96] 
vs. 0.62 [95% CI 0.49–0.75]) and specificity (0.77 [95% CI 0.75–0.80] vs. 0.57 [95% CI 0.54–0.60]). 
The machine learning models also achieved a greater net benefit over ranges of clinical thresholds. 
Machine learning models consistently demonstrated a superior ability to predict acute severity and 
achieved greater net benefit.
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Bronchiolitis is the leading cause of infant hospitalization in the US, accounting for 107,000 infant hospitali-
zations each year with direct cost of 734 million US dollars1. Even among hospitalized infants, the severity of 
bronchiolitis can range from moderate severity (which requires observation and supportive therapies, such as 
supplemental oxygen, fluid, and nutrition) to near-fatal and fatal infections. Previous studies have identified 
individual risk factors for higher severity of bronchiolitis (e.g., young age, prematurity, viral etiology)2–5 and 
developed prediction scoring models (e.g., logistic regression models)6–9. However, identifying the subgroup of 
infants with bronchiolitis who require higher acuity care (e.g., positive pressure ventilation, intensive care unit 
[ICU] admission) remains an important challenge. The difficulty and uncertainty of predicting acute sever-
ity—and, consequently, the appropriate level of care for infants with bronchiolitis—are reflected by the well-
documented variability in inpatient management across the nation1,10–12.

Machine learning models have gained increasing attention because of their advantages, such as the ability to 
incorporate high-order, nonlinear interactions between predictors and to yield more accurate and stable predic-
tions. Indeed, recent studies have reported that the use of machine learning models provide a high predictive 
ability in various conditions and settings—e.g., sepsis13,14, asthma exacerbation15, emergency department (ED) 
triage16,17, and unplanned transfers to ICU18. Despite the clinical and research promise, no study has yet examined 
the utility of modern machine learning models in predicting outcomes in infants hospitalized for bronchiolitis—a 
large population with high morbidity and health resource use.

In this context, we aimed to develop machine learning models that accurately predict acute severity in infants 
hospitalized with bronchiolitis, and compare their predictive performance with that of conventional scoring 
approaches6.

Results
During 2011–2014, 1,016 infants with bronchiolitis were enrolled into a 17-center prospective cohort study. 
The median age at the enrolment was 3.2 months (IQR 1.6–6.0), 40% were female, and 42% were non-Hispanic 
white. The length-of-hospital stay varied widely from 0 to 60 days (median, 2 days) (Table 1). Clinical data had 
a small proportion of missingness; most had < 1% missingness (e.g., missingness on oxygen saturation with the 
use of supplemental oxygen, 0.1%) while the maximum proportion of missing was 4.8% (eTable 3 in Additional 
file 1). Overall, 55 infants (5.4%) underwent positive pressure ventilation and 163 infants (16.0%) had intensive 
treatment outcome.

Predicting positive pressure ventilation outcome.  In the prediction of positive pressure ventilation 
outcome, the discriminatory abilities of all models are summarized in Fig. 1A and Table 2. All four machine 
learning models demonstrated significantly superior AUCs (all P < 0.001). For example, compared with the ref-
erence model (AUC 0.62 [95% CI 0.53–0.70]), the AUC was higher in the elastic net regression (AUC 0.89 [95% 
CI 0.85–0.92]) and gradient boosted decision tree (AUC 0.88 [95% CI 0.84–0.93]) models. Similarly, compared 
with the reference model, all machine learning models also achieved a significant net reclassification improve-
ment (all P < 0.001).

Additionally, compared with the reference model, all machine learning models also demonstrated a higher 
sensitivity (e.g., 0.62 [95% CI 0.49–0.75] in the reference model vs. 0.89 [95% CI 0.80–0.96] in the elastic net 
regression; Table 2) and specificity (e.g., 0.57 [95% CI 0.54–0.60] in the reference model vs. 0.79 [95% CI 
0.77–0.82] in the Lasso regression model). More specifically, all machine learning models correctly predicted 
a larger number of infants who underwent positive pressure ventilation (true-positives) with a fewer number 
of predicted outcomes (Table 3). For example, the reference scoring system categorized most infants (n = 629, 
62%) into the prediction score groups of 2–3. The reference model correctly identified 16 out of 25 infants who 
underwent positive pressure ventilation, while predicting that 265 infants would have undergone positive pres-
sure ventilation. In contrast, the gradient boosted decision tree model correctly identified 23 (of 25) patients, 
while predicting that 135 infants would have undergone positive pressure ventilation in the same patient groups. 
Considering the low prevalence of the positive pressure ventilation outcome, all models had a high negative 
predictive value (e.g., 0.96 [95% CI 0.95–0.97] in the reference model vs. 0.99 [95% CI 0.99–0.99] in the Lasso 
regression model; Table 2).

Likewise, in the decision curve analysis (Fig. 1B), all four machine learning models outperformed the refer-
ence model, demonstrating a greater net benefit throughout the range of clinical thresholds, indicating that the 
machine learning prediction would more accurately identify high-risk infants (true-positives) while taking the 
trade-off with false-positives into consideration.

Predicting intensive treatment outcome.  In the prediction of intensive treatment outcome, the dis-
criminatory abilities of all models are shown in Fig. 2A and Table 2. All four machine learning models demon-
strated a significantly higher AUC (all P < 0.001). For example, compared with the reference model (AUC 0.62 
[95% CI 0.57–0.67]), the AUC was higher in the elastic net regression (AUC 0.80 [95% CI 0.76–0.83]) and ran-
dom forest (AUC 0.79 [95% CI 0.75–0.84]) models. Similarly, compared with the reference model, all machine 
learning models also achieved significant net reclassification improvement (all P < 0.001).

Additionally, all machine learning models demonstrated a higher sensitivity (e.g., 0.58 [95% CI 0.49–0.75] 
in the reference model vs. 0.75 [95% CI 0.69–0.82] in the Lasso regression; Table 2) and specificity (e.g., 0.58 
[95% CI 0.50–0.66] in the reference model vs. 0.78 [95% CI 0.76–0.81] in the random forest model). For exam-
ple, among the infants categorized into the reference score groups of 2–3 (62% of cohort infants), the reference 
model correctly identified 39 out of 80 infants who had intensive treatment, while predicting that 275 infants 
would have had intensive treatment (Table 3). In contrast, the gradient boosted decision tree correctly identified 
52 (out of 80) infants with the outcome, while predicting that 162 infants would have had intensive treatment. 
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Table 1.   Patient characteristics and clinical outcomes in 1,016 infants hospitalized for bronchiolitis. Data are no. (%) of infants 
unless otherwise indicated. Percentages may not equal 100, because of rounding and missingness. bpm beats per minute, 
IQR interquartile range, ICU intensive care unit, RSV respiratory syncytial virus. a Infants with bronchiolitis who underwent 
continuous positive airway ventilation and/or mechanical ventilation. b Infants with bronchiolitis who were admitted to ICU 
and/or who underwent positive pressure ventilation.

Variables n = 1,016

Demographics

Age (month), median (IQR) 3.2 (1.6–6.0)

Female sex 406 (40.0)

Race/ethnicity

 Non-Hispanic white 430 (42.0)

 Non-Hispanic black 239 (23.5)

 Others 347 (34.2)

Medical history

Prenatal maternal smoking 147 (14.7)

Gestational age (week)

 32–33 35 (3.4)

 34–36 151 (14.9)

 37–39 417 (41.0)

 40–41 391 (38.5)

 ≥ 42 22 (2.2)

Birth weight (kg)

 0–1.3 3 (0.3)

 1.4–2.2 61 (6.0)

 2.3–3.1 343 (33.9)

 ≥ 3.2 604 (59.7)

Postnatal ICU admission 167 (16.4)

Previous hospital admission 162 (16.0)

Previous ICU admission 17 (1.7)

Previous breathing problems (count) 32 (3.2)

 0 810 (79.7)

 1 160 (15.7)

 2 46 (4.5)

History of eczema 149 (14.7)

Parent-reported symptoms at home

Poor feeding 32 (3.2)

Cyanosis within 24 h 92 (9.1)

Apnea 131 (12.9)

Apnea within 24 h 86 (8.5)

Duration of symptom ( ≤ 24 h) 53 (5.2)

Signs and symptom at ED

Vital signs at presentation

 Temperature (F), median (IQR) 99.4 (98.8–100)

 Pulse rate (bpm), median (IQR) 162 (150–176)

 Respiratory rate (per min), median(IQR) 48 (40–60)

 Use of supplemental oxygen (%) 51 (5)

 Oxygen saturation level (%) at room air (IQR) 96 (94–98)

 Oxygen saturation level (%) with the use of supplemental oxygen (IQR) 98 (95–100)

Wheeze 602 (62.3)

Severity of retraction

 None 192 (19.6)

 Mild 431 (43.9)

 Moderate/severe 358 (36.5)

Apnea 56 (5.5)

Dehydration 392 (39.5)

Virology

RSV 821 (80.8)

Length of hospital stay (days), range 0–60

Clinical outcomes

Positive pressure ventilation usea 55 (5.4)

Intensive treatment useb 163 (16.0)
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Figure 1.   Prediction ability of the reference and machine learning models for positive pressure ventilation 
outcome in the overall cross-validation dataset. (A) Receiver-operating-characteristics (ROC) curves. The 
corresponding value of the area under the receiver-operating-characteristics curve (AUC) for each model are 
presented in Table 2. (B) Decision curve analysis. X-axis indicates the threshold probability for positive pressure 
ventilation outcome; Y-axis indicates the net benefit. Compared to the reference model, the net benefit of all 
machine learning models was larger over the range of clinical threshold.

Likewise, in the decision curve analysis (Fig. 2B), all four machine learning models outperformed the reference 
model, demonstrating a greater net benefit throughout the range of clinical thresholds.
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Variable importance.  To yield insights into the relevance of each predictor, eFigures 1 and 2 (Additional 
file 1) summarized the 15 most important predictors of random forest and gradient boosted decision tree models 
for each outcome. In the prediction of positive pressure ventilation outcome, age, oxygen saturation level with 
the use of supplemental oxygen, and other vital signs [at the presentation] were the most important predictors in 
both models (eFigures 1A and 2A). Likewise, in the prediction of intensive treatment outcome, similar predic-
tors were considered important in the both models (eFigures 1B and 2B).

Discussion
In this analysis of multicenter prospective cohort data from 1,016 infants, we applied four modern machine 
learning approaches (i.e., Lasso regression, elastic net regression, random forest, and gradient boosted decision 
tree) to the prediction of acute severity outcomes of bronchiolitis. Compared to the reference model that was 
derived in an ED sample6, these machine learning models consistently demonstrated a superior performance in 
predicting positive pressure ventilation and intensive treatment outcomes, including AUC and net reclassification. 
Additionally, the machine learning models achieved a higher sensitivity and specificity for the two outcomes, in 
both the overall cohort and the majority of cohort infants that were categorized into the reference score groups of 
2–3. Furthermore, the decision curve analysis also demonstrated the net benefit of machine learning models was 
also greater—i.e., a larger number of true-positives considering a trade-off with false-positives—across a range 
of clinical thresholds. To the best of our knowledge, this is the first study that has investigated the performance 
of modern machine learning models in predicting severity in infants with bronchiolitis.

One of the main objectives in the risk stratification of infants with bronchiolitis is to promptly identify 
infants at risk for higher severity and efficiently utilize finite healthcare resources. The American Academy of 
Pediatrics bronchiolitis guideline2 highlights the importance of assessing the risk in infants with bronchiolitis. 
However, optimal risk stratification and prediction remains a challenge as the clinical course in this population 
(even in infants hospitalized for bronchiolitis) is highly variable10–12. Previous studies, by using conventional 
modeling (e.g., logistic regression models), have reported a moderate ability to predict severity outcomes (e.g., 
ED-to-hospital admission, hospital length-of-stay, ICU admission, positive pressure ventilation use) of infants 
with bronchiolitis6–9,19. Although the use of an expanded set of predictors—e.g., repeated examinations and 
invasive monitoring during hospital course—may yield better predictive performance, it is often impractical 
in the real-world acute care settings with an aim to promptly risk-stratify these infants. Alternatively, the use 
of advanced machine learning models may improve the clinician’s decision-making ability. Indeed, machine 
learning models have recently been applied to the prediction of various disease conditions and clinical settings, 
such as early identification of mortality risk in patients with sepsis13, rehospitalization in patients with heart 
failure20, intensive treatment outcomes in patients with asthma exacerbation15, unplanned transfer to ICU18, and 
escalated care at pediatric ED triage16. Our multicenter study builds on these earlier reports, and extends them 
by demonstrating that the modern machine learning models outperform conventional approaches in predict-
ing higher severity of infants with bronchiolitis. While external validation is warranted, these machine learning 
models using routinely-available predictors can be implemented to clinical practice (e.g., online risk calculators 
or build-in risk assessment systems)—similar to existent clinical scoring rules.

Clinical prediction systems strive for an appropriate balance between sensitivity and specificity because of 
the trade-off relationship between these two factors in the context of prevalence of clinical outcomes. In the 
present study, we observed that the reference score model did not effectively categorize most infants (i.e., 62% 

Table 2.   Prediction performance of the reference, and machine learning models in infants hospitalized 
for bronchiolitis. AUC​ area under the receiver-operating-characteristic curve, NRI net reclassification 
improvement, PPV positive predictive value, NPV negative predictive value. a P-value was calculated to 
compare area-under-the-curve of the reference model with that of each machine model. b We used continuous 
NRI and its P-value.

Outcomes and models AUC​ P-valuea NRIb P-valueb Sensitivity Specificity PPV NPV

Positive pressure ventilation outcome

Reference model 0.62 (0.53–0.70) Reference Reference Reference 0.62 (0.49–0.75) 0.57 (0.54–0.60) 0.075 (0.054–0.097) 0.96 (0.95–0.97)

Logistic regression with Lasso 
regularization 0.88 (0.84–0.93) < 0.001 1.09 (0.87–1.32) < 0.001 0.84 (0.73–0.93) 0.79 (0.77–0.82) 0.19 (0.14–0.24) 0.99 (0.99–0.99)

Logistic regression with elastic net 
regularization 0.89 (0.85–0.92) < 0.001 1.05 (0.82–1.28) < 0.001 0.89 (0.80–0.96) 0.73 (0.70–0.75) 0.15 (0.11–0.18) 0.99 (0.99–0.99)

Random forest 0.89 (0.85–0.92) < 0.001 1.17 (0.96–1.38) < 0.001 0.85 (0.75–0.95) 0.74 (0.71–0.76) 0.15 (0.12–0.21) 0.99 (0.99–0.99)

Gradient boosted decision tree 0.88 (0.84–0.93) < 0.001 1.08 (0.84–1.33) < 0.001 0.89 (0.80–0.96) 0.77 (0.75–0.80) 0.17 (0.08–0.21) 0.99 (0.99–0.99)

Intensive treatment outcome

Reference model 0.62 (0.57–0.67) Reference Reference Reference 0.58 (0.55–0.62) 0.58 (0.50–0.66) 0.21 (0.18–0.24) 0.88 (0.86–0.89)

Logistic regression with Lasso 
regularization 0.79 (0.76–0.83) < 0.001 0.68 (0.52–0.84) < 0.001 0.75 (0.69–0.82) 0.70 (0.66–0.73) 0.31 (0.26–0.38) 0.94 (0.93–0.94)

Logistic regression with elastic net 
regularization 0.80 (0.76–0.83) < 0.001 0.58 (0.42–0.74) < 0.001 0.72 (0.64–0.79) 0.74 (0.71–0.77) 0.33 (0.28–0.41) 0.93 (0.92–0.94)

Random forest 0.79 (0.75–0.84) < 0.001 0.70 (0.55–0.86) < 0.001 0.70 (0.63–0.77) 0.78 (0.76–0.81) 0.37 (0.29–0.45) 0.93 (0.92–0.94)

Gradient boosted decision tree 0.79 (0.75–0.84) < 0.001 0.72 (0.57–0.87) < 0.001 0.74 (0.67–0.80) 0.74 (0.71–0.77) 0.33 (0.26–0.42) 0.93 (0.92–0.94)
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of cohort were categorized into the two score groups) or appropriately predicted infants who developed the 
outcomes. By contrast, the machine learning models correctly identified a larger number of true-positives (i.e., 
higher sensitivity). This finding supports the utility of these models in the target population, for which the one 
of the major priorities is to reduce “missed” high-risk cases. Additionally, the machine learning models also had 
a fewer number of false-positives (i.e., higher specificity) in predicting both outcomes while they were imperfect 
in the setting of relatively-smaller prevalence of outcome (5.4% for positive pressure ventilation use). This may 
mitigate excessive resource use in this large population. These findings are further supported by the decision 
curve analysis that demonstrated a greater net benefit of the machine learning models incorporating the trade-
offs between true-positives and false-positives across the wide ranges of clinical thresholds.

There are several potential explanations for the observed gains in the predictive abilities of machine learning 
models. For example, machine learning models incorporate high-order interactions between predictors and 
nonlinear relationships with outcomes. Additionally, machine learning models are able to mitigate potential 
overfitting by adopting several methods, such as regularization, out-of-bagging estimation, and cross-validation. 
Furthermore, the use of large multicenter data with rigorous quality assurance might have contributed to low 
bias and variance in the machine models. Although the machine learning models achieved superior predictive 
ability, their performance remained imperfect. This may be explained, at least partially, by the limited set of 
predictors, subjectivity of some data elements (e.g., parent-reported symptoms at home), variable clinical fac-
tors after prehospitalization assessment (e.g., ED management and patient responses), difference in clinician’s 
practice patterns, and availability of intensive care resources. Notwithstanding the complexity and challenges of 

Reference 
model 
(score)

Positive 
pressure 
ventilation 
use
n (%)

Reference model Lasso regression Elastic net regression Random forest Gradient boosted tree

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

0: (n = 41) 1 (2.4) 0 6 0 7 0 8 1 9 0 8

1: (n = 64) 3 (4.7) 1 15 3 11 2 14 2 11 2 11

2: (n = 359) 13 (3.6) 9 156 12 80 11 106 11 78 12 79

3: (n = 270) 12 (4.4) 7 109 10 52 12 65 10 58 11 56

4: (n = 122) 3 (0.8) 2 46 1 20 1 30 2 41 1 24

5: (n = 58) 8 (13.8) 3 22 7 21 8 24 7 31 8 24

6: (n = 15) 0 (0.0) 0 3 0 6 0 6 0 8 0 6

7: (n = 41) 5 (12.5) 3 22 3 22 5 30 4 28 5 29

8: (n = 24) 4 (16.7) 2 8 4 12 4 14 4 17 4 15

9: (n = 11) 0 (0.0) 0 2 0 4 0 4 0 7 0 5

10: (n = 8) 5 (62.5) 3 3 5 7 5 7 5 8 5 7

11: (n = 3) 1 (33.3) 0 2 1 2 1 3 1 3 1 2

12: (n = 0) 0 (0)

Overall 
(n = 1,016) 55 (5.4) 30 (55) 394 46 (84) 244 49 (89) 311 47 (85) 299 49 (89) 266

Reference 
model 
(Score)

Intensive 
treatment
n (%)

Reference model Lasso regression Elastic net regression Random forest Gradient boosted tree

Correctly 
identified 
outcome
n (%)

Predicted 
outcome 
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

Correctly 
identified 
outcome
n (%)

Predicted 
outcome
n

0: (n = 41) 2 (4.9) 1 10 1 8 0 5 0 4 0 4

1: (n = 64) 8 (12.5) 1 11 5 17 5 11 5 12 5 9

2: (n = 359) 44 (12.2) 21 157 27 133 23 111 26 77 24 87

3: (n = 270) 36 (13.3) 18 118 28 75 28 71 23 64 28 75

4: (n = 122) 17 (13.8) 8 53 9 36 9 33 7 40 10 53

5: (n = 58) 17 (29.3) 6 26 14 30 14 30 15 28 15 29

6: (n = 15) 3 (20.0) 0 3 3 7 2 7 3 9 3 12

7: (n = 41) 19 (47.5) 15 28 19 38 19 36 18 32 18 35

8: (n = 24) 7 (29.2) 4 8 7 18 7 17 7 16 7 17

9: (n = 11) 1 (9.1) 0 3 1 10 1 9 1 6 1 7

10: (n = 8) 7 (87.5) 3 4 7 7 7 7 7 8 7 8

11: (n = 3) 2 (66.7) 0 1 2 3 2 3 2 3 2 3

12: (n = 0) 0 (0)

Overall 
(n = 1,016) 163 (16.0) 77 (47) 422 123 (75) 382 117 (72) 340 114 (70) 299 120 (74) 339

Table 3.   The number of actual and predicted outcomes of prediction models, according to the score of the 
reference model.
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clinical prediction in infants with bronchiolitis, machine learning models have scalable advantages in the era of 
health information technology, such as automated sophistication of models through the sequential extraction 
of electronic health records, continuous non-invasive physiological monitoring, natural language processing, 

Figure 2.   Prediction ability of the reference and machine learning models for intensive treatment outcome in 
the overall cross-validated dataset. (A) Receiver-operating-characteristics (ROC) curves. The corresponding 
values of the area under the receiver-operating-characteristics curve (AUC) for each model are presented in 
Table 2. (B) Decision curve analysis. X-axis indicates the threshold probability for intensive treatment outcome; 
Y-axis indicates the net benefit. Compared to the reference model, the net benefit of all machine learning models 
was larger over the range of clinical threshold.
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and reinforcement learning21–24. In the past, this scalability had not been attainable with the use of conventional 
approaches. Taken together, our findings and recent developments support cautious optimism that modern 
machine learning may enhance the clinician’s ability as an assistive technology.

Our study has several potential limitations. Firstly, the data may be subject to measurement bias and missing-
ness. However, the study was conducted by trained investigators using a standardized protocol, which led to the 
low proportion of missingness in the predictors (eTable 3 in Additional file 1). Secondly, the clinical thresholds 
for these outcomes may depend on local resources and vary between clinicians and hospitals (e.g., different cri-
teria for admission to the ICU). Yet, the decision curve analysis demonstrated the greater benefit of the machine 
learning models across the wide range of clinical thresholds. Lastly, the study cohort consisted of a racially/
ethnically- and geographically-diverse US sample of infants hospitalized with bronchiolitis. While the severity of 
this population was highly variable and the model used pre-hospitalization data, our models might not be gener-
alizable to infants in ambulatory settings. External validation of the models in different populations and settings 
is necessary. Nonetheless, our data remain highly relevant for the 107,000 infants hospitalized yearly in the US1.

Conclusion
Based on data from a multicenter prospective cohort of 1,016 infants with bronchiolitis, we developed four 
machine learning models to predict severity of illness. By using prehospitalization data as predictors, these 
models consistently yielded superior performance—a higher AUC, net reclassification, sensitivity, and specific-
ity—in predicting positive pressure ventilation and intensive treatment outcomes over the reference model6. 
Specifically, these advanced machine learning models correctly predicted a larger number of infants with higher 
severity—with a fewer number of false-positives—who would not be appropriately predicted by the conventional 
models. Moreover, the machine learning models also achieved a greater net benefit across wide ranges of clini-
cal thresholds. Although an external validation is warranted, the current study lends support to the application 
of machine learning models to the prediction of acute severity in infants with bronchiolitis. Machine learning 
models have a potential to enhance clinicians’ decision-making ability and hence to improve clinical care and 
optimize resource utilization in this high morbidity population.

Methods
Study design, setting and participants.  The current study aimed to develop machine learning models 
that accurately predict acute severity in infants with bronchiolitis, by using the data from a multicenter pro-
spective cohort study of 1,016 infants hospitalized for bronchiolitis—the 35th Multicenter Airway Research 
Collaboration (MARC-35) study25,26. MARC-35 is coordinated by the Emergency Medicine Network (EMNet, 
https​://www.emnet​-usa.org27) an international research collaboration with 246 participating hospitals. Briefly, 
at 17 sites across 14 U.S. states (eTable 1 in Additional file 1), MARC-35 enrolled infants (aged < 1 year) who 
were hospitalized with an attending physician diagnosis of bronchiolitis during three consecutive bronchiolitis 
seasons (November 1 to April 30) during 2011–2014. The diagnosis of bronchiolitis was made according to the 
American Academy of Pediatrics bronchiolitis guidelines2, defined as acute respiratory illness with a combina-
tion of rhinitis, cough, tachypnea, wheezing, crackles, and retractions. We excluded infants who were transferred 
to a participating hospital > 24 h after initial hospitalization or with a preexisting heart and lung disease, immu-
nodeficiency, immunosuppression or gestational age of < 32 weeks.

We followed the Standards for Reporting Diagnostic Accuracy statement guideline for the reporting of pre-
diction models28. The institutional review board of the 17 participating hospitals (Alfred I. duPont Hospital for 
Children, Arnold Palmer Hospital for Children, Boston Children’s Hospital, Children’s Hospital of Los Angeles, 
Children’s Hospital of Philadelphia, Children’s Hospital of Pittsburgh, The Children’s Hospital at St. Francis, 
The Children’s Mercy Hospital & Clinics, Children’s National Medical Center, Cincinnati Children’s Hospital 
and Medical Center, Connecticut Children’s Medical Center, Dell Children’s Medical Center of Central Texas, 
Norton Children’s Hospital, Massachusetts General Hospital, Phoenix Children’s Hospital, Seattle Children’s 
Hospital, Texas Children’s Hospital) approved the study. Written informed consent was obtained from the par-
ent or guardian.

Predictors.  For predictors in the machine learning models, we selected variables based on clinical plausibil-
ity and a priori knowledge3,6–9,29–31. These predictors—which are available in most prehospitalization settings—
included demographics (age, sex, and race/ethnicity), medical history (prenatal maternal smoking, gestational 
age, birth weight, postnatal ICU admission, history of hospital and ICU admission, history of breathing prob-
lems, and history of eczema), parent-reporting symptoms (poor feeding, cyanosis, apnea, and duration of symp-
toms), ED presentation (vital signs [temperature, pulse rate, respiratory rate, oxygen saturation], interaction 
between oxygen saturation and supplemental oxygen use, wheezing, retractions, apnea, and dehydration), and 
detection of respiratory syncytial virus (RSV) by PCR25. These clinical data were obtained through a structured 
interview and medical record review by trained physicians and investigators using a standardized protocol26. All 
data were reviewed at the EMNet Coordinating Center at Massachusetts General Hospital (Boston, MA), and 
site investigators were queried about missing data and discrepancies identified by manual data checks.

Outcomes.  The primary outcome was the use of positive pressure ventilation—continuous positive airway 
pressure ventilation and/or intubation during inpatient stay32. The secondary outcome was intensive treatment 
defined as a composite of ICU admission and/or the use of positive pressure ventilation during the inpatient 
stay3, 31. In this observational study, patients were managed at the discretion of treating physicians. These two 
outcomes have been employed for outcomes in the MARC-35 study.

https://www.emnet-usa.org
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Statistical analysis.  In the training sets (80% randomly-selected samples) in fivefold cross-validation, we 
developed five models: the reference model6 and four machine learning models for each outcome. As the refer-
ence model, we fit logistic regression models using the predictors of a previously-established clinical prediction 
score that was derived using an ED sample6. We selected this prediction score as the reference model since it 
was recently developed in a large sample and focused on similar clinical outcomes reflecting acute severity of 
bronchiolitis6,33. The predictors included age, poor feeding, oxygen saturation, retractions, apnea, and dehydra-
tion, excluding nasal flaring/grunting, based on the availability of data in the current study (eTable 2).

Next, using the prehospitalization predictors, we developed four machine learning models: (1) logistic regres-
sion with Lasso regularization (Lasso regression), (2) logistic regression with elastic net regularization (elastic 
net regression), (3) random forest, and (4) gradient boosted decision tree models. First, Lasso regression is an 
extension of regression-based models that has an ability to shrink (or regularize) the predictor coefficients toward 
zero, thereby effectively selecting important predictors and improving interpretability of the model34. Lasso 
regression computes the optimal regularization parameter (lambda) that minimizes the sum of least square plus 
L1-shrinkage penalty using a cross-validation method35. Second, elastic net regression is another regression-based 
model incorporating both Lasso-regularization and Ridge-regularization34,36. Elastic net regression calculates 
the optimal regularization parameter that minimizes the sum of least square plus weighted L1-shrinkage penalty 
and weighted L2-shrinkage penalty. We used R glmnet and caret packages for Lasso regression and elastic net 
regression models37,38. Third, random forest is an ensemble of decision trees generated by bootstrapped train-
ing samples with random predictor selection in tree induction34,39. We created a hyperparameter tuning grid to 
identify the best set of parameters using cross-validation methods. We used randomForest and caret packages to 
construct random forest models38,40. Lastly, gradient boosted decision tree is another ensemble method which 
constructs new simple tree models predicting the errors and residuals of the previous model. When adding a new 
tree, this model uses a gradient descent algorithm minimizes a loss function41. We performed hyperparameter 
tuning sequentially using a fivefold cross-validation method. We used R xgboost and caret packages to construct 
gradient boosted decision tree38,42. To minimize potential overfitting, we utilized several methods—e.g., regu-
larizations (or penalizations) in Lasso and elastic net regression models, out-of-bag estimation in random forest 
models, and cross-validation in all models.

As for the predictor engineering methods of the machine learning models, we preprocessed predictors 
sequentially. First, we investigated non-linear relationships between the continuous predictors and outcomes 
and created quadric terms of age, respiratory rate, and temperature. These quadratic terms were used only for 
regression-based machine learning models (i.e., logistic regression models with Lasso regularization and those 
with elastic net regularization). Second, we also chose either of highly-correlated predictors (e.g., age and weight 
at hospitalization). Third, we imputed predictors with missing values (eTable 3) using bagged tree imputation. 
Fourth, we converted continuous predictors into normalized scales using Yeo-Johnson transformation. Categori-
cal predictors were coded as dummy variables while birth weight, gestational age, previous breathing problem, 
and degree of retraction were coded as ordinal variables. Fifth, to incorporate clinically evident interaction 
between oxygen saturation level and use of supplemental oxygen, we created an interaction term between oxygen 
saturation and use of supplemental oxygen. Lastly, we removed predictors that are highly sparse in the dataset. 
We applied these preprocessing methods independently to the training sets and the test sets to avoid carrying the 
information from the training sets to the test sets. We used R recipe package for these predictor preprocessing43.

To examine the variable importance in the random forest, we used permutation-based variable importance—
normalized average values of difference between the prediction accuracy of out-of-bag estimation and that of the 
same measure after permutating each predictor. In the gradient boosted model, we also computed the variable 
importance that is summed over iterations39. We graphically presented the rank of variable importance using 
unscaled values.

To measure the test performance of each model, we computed the overall cross-validation performance from 
the test sets (the remaining randomly-selected 20% samples). As the predictive performance, we used (1) the area 
under the receiver-operating-characteristic curve (AUC), (2) net reclassification improvement, (3) confusion 
matrix results (i.e., sensitivity, specificity, positive predictive value, and negative predictive value), and (4) net ben-
efit from decision curve analysis. To compare the AUC between the models, we used Delong’s test44. To compute 
AUC and its confidential interval, we used pROC package45. We also used the net reclassification improvement 
to quantify whether a new model provides clinically relevant improvements in prediction when compared to 
the reference model46. To compute the net reclassification improvement, we used PredictABEL package47. To 
address the class imbalance in the both outcomes, we employed the value with the shortest distance to the top-
left part of the AUC plot as the threshold for the confusion matrix39.The decision curve analysis incorporates 
the information on both the benefit of correctly predicting the outcome (true-positives) and the relative harm 
of incorrectly labelling patients as if they would have the outcome (false-positives)—i.e., the net benefit48–52. We 
made a graphical presentation of the net benefit for each model over a range of threshold probabilities (or clinical 
preferences) of the outcome as decision curves. We used decision curve analysis R source code from Memorial 
Sloan Kettering Cancer Center53 and plotted the graphs using ggplot2 package54. We performed all analysis with 
R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria)55.

Data availability
The datasets generated and analysed during the current study are not publicly available because of the informed 
consent documents. Per the informed consent documents of the MARC research participants, the data sharing 
and use are limited to the severe bronchiolitis, recurrent wheezing, asthma and related concepts. Accordingly, 
the data are not publicly available but available from the corresponding author on reasonable request.
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