Full Article doi.org/10.1002/ansa.202100047

Received: 4 September 2021 Revised: 18 October 2021 Accepted: 18 October 2021

Analysis of the isomerization of diketopiperazine consisting of proline and aromatic amino acid residues using nuclear magnetic resonance

Takashi Ishizu	Popuri Sato	Shiori Tsuyama	Ryosuke Nagao	Kanae Fujiki
Amia Yamaji				

Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan

Correspondence

Takashi Ishizu, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzo Gakuen-cho 1, Fukuyama, Hiroshima 729-0292, Japan. Email: ishizu@fukuyama-u.ac.jp

Abstract

Under different concentrations of the base potassium deuteroxide KOD, the progress of reactions, such as enolization, D-substitution, isomerization, and conformational changes of diketopiperazine cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx) (Xxx = Phe, Tyr) in D₂O solution, was investigated by ¹H nuclear magnetic resonance (NMR). Cyclo(L-Pro-L-Xxx) is mostly isomerized to cyclo(D-Pro-L-Xxx) in D₂O solution, whereas cyclo(D-Pro-L-Xxx) is only slightly isomerized to cyclo(L-Pro-L-Xxx) even under stronger basic conditions. After adding a deuterated organic solvent (CD₃COCD₃, CD₃SOCD₃ or CD₃OD) to a D₂O solution of cyclo(L-Pro-L-Xxx), cyclo(D-Pro-L-Xxx), or increasing the temperature of the D₂O solution, CH- π interaction between H₉ and the benzene ring of cyclo (D-Pro-L-Xxx) was stronger than that between H_{8 α} and the benzene ring of cyclo(L-Pro-L-Xxx).

KEYWORDS

¹H NMR, aromatic amino acid, CH- π interaction, diketopiperazine, folded conformation, proline

1 | INTRODUCTION

Proline, which is an essential amino acid, is a cyclic α -secondary amino acid that has a characteristic structure that other α -primary amino acids do not. Thus, peptides and proteins containing proline residues often have a characteristic stereochemical structure and may exhibit unique functions.^{1,2}

We synthesized cyclic octapeptides with proline residues and analyzed their conformations in solution and developed higher order functions.

Based on the ¹³CNMR spectrum, cyclo(L-Phe-L-Pro-Gly-L-Pro)₂ took a C₂ symmetric conformation in which the peptide bond between L-Phe-L-Pro consisted of both cis- and trans- types in CDCl₃ solution. By forming a complex with caesium thiocyanate CsSCN or

L-phenylalanine methyl ester hydrochloride L-PheOMe+HCl, a C_2 symmetric conformation with only a trans-type peptide bond was observed.^{3,4}

Cyclo(L-Phe-L-Pro)₄ and cyclo (L-Try-L-Pro)₄ have a rigid C₂ symmetric conformation with two 1,4-hydrogen bonds in CDCl₃ and CD₃OD solution, and formed a 1:1 complex with phenylalanine methyl ester hydrochloride PheOMe•HCl or noradrenaline hydrochloride, and recognized their asymmetry.⁵⁻⁸

However, as most of these cyclic octapeptides containing proline residues are insoluble in water, in order to develop functions under conditions closer to those in vivo, we investigated water-soluble diketopiperazine (cyclic dipeptide) containing proline residues. Then, we examined the behaviour of cyclo(Pro-Xxx) (Xxx = Phe, Tyr) in D_2O using nuclear magnetic resonance (NMR) (Figure 1). We found that cyclo

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2021 The Authors. *Analytical Science Advances* published by Wiley-VCH GmbH

Full Article doi.org/10.1002/ansa.202100047

(L-Pro-L-Xxx) and cyclo (L-Pro-D-Xxx) had a folded conformation, and under basic conditions, cyclo (L-Pro-L-Xxx) isomerized to its diastereomer cyclo(D-Pro-L-Xxx).⁹

Under different concentrations of the base KOD, the progress of reactions, such as enolization, D-substitution, isomerization, and conformational changes of cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx) in D_2O solution, were investigated in detail by NMR.

2 | RESULTS AND DISCUSSION

2.1 | Isomerization of diketopiperazine cyclo(Pro-Yyy) (Phe, Tyr, Trp) under basic conditions

2.1.1 | Cyclo(Pro-Phe)

39

 ^1H NMR spectra of cyclo(L-Pro-L-Phe) were measured in D₂O solution or D₂O solution with KOD concentrations of $1.0\times10^{-6}, 1.0\times10^{-5}, 1.0\times10^{-4}, 1.0\times10^{-3}, 1.0\times10^{-2}, 1.0\times10^{-1}, \text{and } 1.0\times10^0$ M (Figure 2).

FIGURE 3 Folded conformation of cyclo(Pro-Xxx) (Xxx = Phe, Tyr) with $CH-\pi$ interaction

In the ¹H NMR spectrum in D₂O, the proton signal for H_{8 α} of cyclo(L-Pro-L-Xxx) (Xxx = Phe, Tyr) at 0.752 and 0.721 ppm was in a higher magnetic field than that of cyclo (D-Pro-L-Xxx) at 1.637 and 1.644 ppm. This was due to the magnetic anisotropic shielding effects of the ring current from the benzene ring. CH- π interactions were formed between the H_{8 α} of cyclo(L-Pro-L-Xxx) and their benzene rings; cyclo(L-Pro-L-Xxx) took a folded conformation in D₂O (Figure 3).¹⁰⁻¹²

When the basicity was increased, the ¹H NMR spectra of cyclo(L-Pro-L-Phe) did not differ in the solution from 1.0×10^{-6} to 1.0×10^{-4} M KOD/D₂O, but the integrated value of the H₉ proton signal decreased in the ¹H NMR spectrum of 1.0×10^{-3} M KOD/D₂O solution and disappeared completely in that of the 1.0×10^{-2} M KOD/D₂O solution.

We considered that enolization of the O_1 - C_1 - C_9 - H_9 moiety occurred and the H_9 proton signal disappeared by D-substitution. On

FIGURE 2 ¹H nuclear magnetic resonance (NMR) spectrum of cyclo(L-Pro-L-Phe) in D₂O solution under basic conditions

FIGURE 4 Isomerization of cyclo(Pro-Phe) (Xxx = Phe, Tyr) via the enol form

the other hand, enolization of the $O_4-C_4-C_3-H_3$ moiety did not occur (Figure 4). D-substitution of H₉ was thought to occur due to the reason that H₉ was in an axial conformation at the bridgehead position. In addition, the integrated value of the proton signal for H₃ of cyclo(L-Pro-L-Phe) decreased from that in the ¹H NMR spectrum of 1.0 × 10^{-3} M KOD/D₂O solution, whereas that of the isomerized diastereomer cyclo(D-Pro-L-Phe) increased. Moreover, the integrated value of the H_{8 α} proton signal observed at a high magnetic field shift decreased. The ratio of the integrated value of proton signal for H₃ of cyclo(L-Pro-L-Phe) and that of cyclo(D-Pro-L-Phe) in the ¹H NMR spectrum of a 1.0×10^{-2} M KOD/D₂O solution, in which the proton signal of H₉ disappeared and isomerization was completed, was 0.088:0.912, and cyclo(D-Pro-L-Phe) was markedly more predominant than cyclo(L-Pro-L-Phe).

Furthermore, in the ¹H NMR spectrum of the 1.0×10^{-1} M KOD/D₂O solution with higher basicity, a new proton signal was observed at 3.926 ppm. We considered that H₉ (D₉) was separated as H⁺ (D⁺) from cyclo(L-Pro-L-Phe) and cyclo(D-Pro-L-Phe), and an anionic form was generated. Therefore, the signal was thought to be derived from H₃ of the anionic form. However, the generation of the anionic forms has not yet been confirmed by spectral analysis. In the ¹H NMR spectrum of 1.0×10^{0} M KOD/D₂O solution, the H₃ proton signals of cyclo(L-Pro-L-Phe) and cyclo(D-Pro-L-Phe) disappeared, and only the H₃ proton signals considered to be from the anion forms were observed.

In the same manner, ¹H NMR spectra of cyclo(D-Pro-L-Phe) were measured in D₂O solution or D₂O solution with KOD concentrations of 1.0×10^{-6} , 1.0×10^{-5} , 1.0×10^{-4} , 1.0×10^{-3} , 1.0×10^{-2} , 1.0×10^{-1} and 1.0×10^{0} M (Figure 5).

In the ¹H NMR spectrum in D₂O, the proton signal for H₉ of cyclo(D-Pro-L-Xxx) (Xxx = Phe, Tyr) at 2.430 and 2.441 ppm was observed in a higher magnetic field than that of cyclo(D-Pro-L-Xxx) at 4.052 and 4.031 ppm. This was due to the magnetic anisotropic shielding effects of the ring current from the benzene ring, and CH- π interactions were formed between the H₉ of cyclo(D-Pro-L-Xxx) and their benzene rings, and cyclo(D-Pro-L-Xxx) took a folded conformation in D₂O (Figure 3).

When the basicity was increased, the ¹H NMR spectra of cyclo(D-Pro-L-Phe) did not differ in solution from 1.0×10^{-6} to 1.0×10^{-4} M

KOD/D₂O, but the H₉ proton signal decreased from the ¹H NMR spectrum of 1.0×10^{-2} M KOD/D₂O solution and disappeared completely in that of 1.0×10^{-1} M KOD/D₂O solution. This was because the enolization of the O₁-C₁-C₉-H₉ moiety progressed and H₉ was substituted by the D atom of D₂O. In addition, a slight proton signal for H₃, derived from the isomerization of the diastereomer cyclo(L-Pro-L-Phe) was observed in the ¹H NMR spectrum of 1.0×10^{-2} M KOD/D₂O solution. In the ¹H NMR spectrum of 1.0×10^{-2} M KOD/D₂O solution, the proton signal for H₉ disappeared completely. Based on the integrated value of the proton signal for H₃, the ratio of cyclo(L-Pro-L-Phe) and cyclo(D-Pro-L-Phe) was 0.044:0.956, and cyclo(D-Pro-L-Phe) was markedly more predominant than cyclo(L-Pro-L-Phe). Furthermore, in the ¹H NMR spectrum of 1.0×10^{-1} M KOD/D₂O solution, the proton signal thought to be derived from H₃ of the anionic form was observed at 3.926 ppm.

2.1.2 | Cyclo(Pro-Tyr)

¹H NMR spectra of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) were measured in D₂O solution or D₂O solution with KOD concentrations of 1.0×10^{-6} , 1.0×10^{-5} , 1.0×10^{-4} , 1.0×10^{-3} , 1.0×10^{-2} , 1.0×10^{-1} and 1.0×10^{0} M (Figures 6 and 7).

After increasing the basicity, the ¹H NMR spectra of cyclo(L-Pro-L-Tyr) did not differ in solution from the ¹H NMR spectra of 10⁻⁶- 1.0×10^{-4} M KOD/D₂O, but the integrated value of H₉ proton signal decreased in the ¹H NMR spectrum of 1.0×10^{-3} M KOD/D₂O solution. In addition, the proton signal for H₉ disappeared completely in that of the 1.0×10^{-1} M KOD/D₂O solution due to the enolization of the O₁-C₁-C₉-H₉ moiety of cyclo(L-Pro-L-Tyr) and D-substitution of H₉. The basicity of which the enolization and D-substitution were completed was stronger than that for cyclo(L-Pro-L-Phe). This was considered to be due to the hydroxyl group of the Tyr residue. As cyclo(L-Pro-L-Tyr) became a potassium salt in the 1.0×10^{-1} M KOD/D₂O solution, two doublets derived from hydrogen atoms bonded to the benzene ring were observed with a high magnetic field shift. At that time, the ratio of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) was 0.090: 0.910, and cyclo(D-Pro-L-Tyr) was markedly more predominant than cyclo(L-Pro-L-Tyr). Furthermore, based on the ¹H NMR spectrum of 1.0

FIGURE 5 ¹H nuclear magnetic resonance (NMR) spectrum of cyclo(D-Pro-L-Phe) in D₂O solution under basic conditions

FIGURE 6 ¹H nuclear magnetic resonance (NMR) spectrum of cyclo(L-Pro-L-Tyr) in D₂O solution under basic conditions

42

FIGURE 7 ¹H nuclear magnetic resonance (NMR) spectrum of cyclo(D-Pro-L-Tyr) in D₂O solution under basic conditions

 \times 10⁻¹ M KOD/D₂O solution, the integrated value of the proton signal for H_{8a} of cyclo(L-Pro-L-Tyr) decreased until the proton signal was only slightly observed. However, a new signal thought to be derived from H₃ of the anionic form was observed at 3.815 ppm in the ¹H NMR spectrum of 1.0 \times 10⁰ M KOD/D₂O solution.

After increasing the basicity, the proton signal for H₉ of cyclo(D-Pro-L-Tyr) did not disappear even in the 1.0×10^0 M KOD/D₂O solution. Then the ratio of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) was estimated using the integrated value of the proton signal for H₃ in the ¹H NMR spectrum of 1.0×10^{-1} M KOD/D₂O solution, in which D-substitution of H₉ of cyclo(L-Pro-L-Tyr) and disappearance of its H₉ were completed. The ratio was 0.090:0.910, with cyclo(D-Pro-L-Tyr) predominating. A proton signal thought to be derived from H₃ of the anionic form was newly observed at 3.815 ppm in ¹H NMR spectrum of 1.0×10^{0} M KOD/D₂O solution.

2.1.3 | Cyclo(Pro-Trp)

As cyclo(L-Pro-L-Trp) and cyclo(D-Pro-L-Trp) (Figure 8) were insoluble in D₂O, their ¹H NMR spectra were observed using CD₃OD as the measurement solvent. ¹H NMR spectra of cyclo(L-Pro-L-Trp) and cyclo(D-Pro-L-Trp) were measured in CD₃OD solution or CD₃OD solution with KOD concentrations of 1.0×10^{-6} , 1.0×10^{-5} , 1.0×10^{-4} , 1.0×10^{-3} , 1.0×10^{-2} , 1.0×10^{-1} and 1.0×10^{0} M (Figures 9 and 11).

As shown in Figure 10, two proton signals for H_{8a} of cyclo(L-Pro-L-Trp) in the ¹H NMR spectrum in CD₃OD solution were observed.

FIGURE 8 Folded conformation of cyclo(Pro-Trp) wth $CH-\pi$ interaction

In addition to the folded conformation due to CH- π interaction between H_{8 α} and its indole skeleton, an extended conformation was slightly present. The ratio of folded to extended conformations was 0.993:0.007, based on the integrated value of the proton signal for H_{8 α}. On the other hand, cyclo(D-Pro-L-Trp) in CD₃OD solution only took a folded conformation due to CH- π interaction between H₉ and its indole skeleton.

Based on the integrated value of the H₃ proton signal in the ¹H NMR spectrum of 1.0×10^{-1} M KOD/CD₃OD where the H₉ proton signal of cyclo(L-Pro-L-Trp) disappeared and isomerization was completed, the ratio of cyclo(L-Pro-L-Trp) to cyclo(D-Pro-L-Trp) was 0.063:0.937, and cyclo(D-Pro-L-Trp) production was markedly dominant over that of cyclo(L-Pro-L-Trp).

FIGURE 9 ¹H nuclear magnetic resonance (NMR) spectrum of cyclo(L-Pro-L-Trp) in D₂O solution under basic conditions

The ratio of Folded : Extented conformation is 0.993 : 0.007.

On the other hand, the proton signal of H₉ of cyclo(D-Pro-L-Trp) disappeared in the ¹H NMR spectrum of the 1.0×10^0 M KOD/CD₃OD solution, therefore, the ratio of cyclo(L-Pro-L-Trp) to cyclo(D-Pro-L-Trp) was estimated using the integrated value of the proton signal for H₃. The ratio was 0.043:0.957, with cyclo(D-Pro-L-Trp) being predominant.

3 | CONFORMATION CHANGE OF DIKETOPIPERAZINE CYCLO(PRO-Xxx) (XXX = PHE, TYR)

3.1 | Addition of organic solvent to a D_2O solution of Cyclo(Pro-Xxx)

In order to investigate the strength of CH- π interactions, changes in the chemical shift value of the proton signal for H_{8 $\alpha}$} of cyclo(L-Pro-L-Xxx) (Xxx = Phe, Tyr), and that of H₉ of cyclo(D-Pro-L-Xxx) in D₂O solution were measured by adding a water-soluble deuterated organic solvent (CD₃COCD₃, CD₃SOCD₃ or CD₃OD). The addition of an organic solvent was considered to have weakened the CH- π interaction derived from the hydrophobic effect, resulting in a conformational change from folded to extended (Figure 12).

The chemical shift values of the proton signal for H_{8α} of cyclo(L-Pro-L-Xxx) in D₂O taking a folded conformation due to CH- π interaction between H_{8α} and its benzene ring were 0.752 and 0.721 ppm. The chemical shift values of the proton signal for H_{8α} of cyclo(D-Pro-L-Xxx) in D₂O were 1.637 and 1.644 ppm, which were regarded as the chemical shift values of the proton signal for H_{8α} of cyclo(L-Pro-L-Xxx) taking only the extended conformation without CH- π interaction.

FIGURE 12 Extended conformation of cyclo(Pro-Xxx) (Xxx = Phe, Tyr)

Similarly, the chemical shift values of the proton signal for H₉ of cyclo(D-Pro-L-Xxx) taking a folded conformation due to CH- π interaction between H₉ and its benzene ring were 2.430 and 2.441 ppm. The chemical shift values of the proton signal for H₉ of cyclo(L-Pro-L-Xxx) were 4.052 and 4.031 ppm, which were regarded as the chemical shift values of the proton signal for H₉ of cyclo(D-Pro-L-Xxx) taking only the extended conformation without the CH- π interaction.

The ratio of deuterated organic solvent (CD_3COCD_3 , CD_3SOCD_3 or CD_3OD) is shown on the horizontal axis, and the ratio of the extended conformation is shown on the vertical axis in Figure 13A–C. The ratio of the extended conformation of cyclo(L-Pro-L-Xxx) increased more than

that of cyclo(D-Pro-L-Xxx) with increasing concentrations of deuterated organic solvent. As shown in Figure 11A, in CD_3COCD_3 , cyclo(L-Pro-L-Xxx) (Xxx = Phe, Tyr) took an extended conformation at a ratio of 100, 100%, whereas, cyclo(D-Pro-L-Xxx) (Xxx = Phe, Tyr) took an extended conformation at a ratio of only 28.5, 27.4%. CH- π interaction in cyclo(D-Pro-L-Xxx) was stronger than that in cyclo(L-Pro-L-Xxx).

Furthermore, it was found that as the chemical shift value of the proton signal for H_3 change was hardly affected by the addition of a deuterated organic solvent to a D_2O solution of cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx), the change from a folded to extended conformation was due to rotation of the C_3 - C_{10} bond.

45

FIGURE 13 Ratio of the extended conformations of cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx) (Xxx = Phe, Tyr) with an increase in (A) CD_3COCD_3 , (B) CD_3SOCD_3 or (C) CD_3OD

3.2 | Increase in temperature of a D_2O solution of cyclo(Pro-Xxx)

In order to investigate the strength of CH- π interaction, changes in the chemical shift values of the proton signal for H_{8 α} of cyclo(L-Pro-L-Xxx) (Xxx = Phe, Tyr) and for H₉ of cyclo(D-Pro-L-Xxx) in D₂O solution were measured by increasing the temperature from 25 to 80°C. An increase in temperature was considered to weaken the

FIGURE 14 Ratio of the extended conformations of cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx) (Xxx = Phe, Tyr) with increasing temperature

 ${\rm CH}\text{-}\pi$ interaction, resulting in a conformational change from folded to extended.

The ratio of the extended conformations of cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx) with a change from 25 to 80°C is shown in Figure 14. The ratio of the extended conformation of cyclo(L-Pro-L-Xxx) increased more than that of cyclo(D-Pro-L-Xxx) with increasing temperature, suggesting that CH- π interactions in cyclo(D-Pro-L-Xxx) were stronger than those in cyclo(L-Pro-L-Xxx).

4 CONCLUSION

Diketopiperazine cyclo(L-Pro-L-Xxx) (Xxx = Phe, Tyr) isomerized via the enol form under basic conditions and produced remarkedly more cyclo(D-Pro-L-Xxx) than cyclo(L-Pro-L-Xxx) (Figure 4). In addition, enolization of cyclo(D-Pro-L-Xxx) required stronger basic conditions than cyclo(L-Pro-L-Xxx), resulting in almost only cyclo(D-Pro-L-Xxx).

Change from a folded to extended conformation due to elimination of CH- π interactions in cyclo(L-Pro-L-Xxx) and cyclo(D-Pro-L-Xxx) was investigated by the addition of a deuterated organic solvent (CD₃COCD₃, CD₃SOCD₃ or CD₃OD), and increase in temperature. These experiments demonstrated that the CH- π interactions in cyclo(D-Pro-L-Xxx) are stronger than those in cyclo(L-Pro-L-Xxx).

Therefore, under basic conditions, diketopiperazine cyclo(L-Pro-L-Xxx) (Xxx = Phe, Tyr) produced more cyclo(D-Pro-L-Xxx) than cyclo(L-Pro-L-Xxx).

5 | EXPERIMENTAL SECTION

5.1 | Preparation of cyclo(L-Pro-L-Yyy) and cyclo(D-Pro-L-Yyy) (Yyy = Phe, Tyr, Trp)

tert-Butoxycarbonyl (Boc)-L-Pro-OH was purchased from Peptide Institute Ltd., and Boc-D-Pro-OH, H-L-Phe-OBzl•*p*-tosylate, H-L-Tyr-OBzI•*p*-tosylate, and H-L-Trp-OBzI•HCl were purchased from Kokusan Kagaku Co. Ltd.

The detailed method for synthesizing diketopiperazine cyclo (Pro-Yyy) (Yyy = Phe, Tyr, Trp) was described in our previous report.¹³

The 3D structure of cyclo(Pro-Xxx)(Xxx = Phe, Tyr, Trp) was constructed using ChemBio3D Ultra 14.0 (PerkinElmer), and then optimized by molecular dynamics.

5.2 | NMR experiments

¹H NMR spectra were recorded at 30°C on a JEOL JNM-ECZ400R (Tokyo, Japan) operating at 400 MHz using a 5 mm ϕ sample tube. In general, ¹H NMR experiments were performed with 32 K data points covering a spectral width of 10,000 Hz with ca. 3.7 s pulse delay time and 16 scan times. Deuterated water D₂O (99.9 atom % D; Fuji Film Wako Pure Chemical Industries Ltd.) was used as a measurement solvent. Chemical shift values are expressed in ppm downfield using deuterated sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS-*d*₆; Fiji Film Wako Pure Chemical Industries Ltd.) as an internal standard.

Deuterated acetone CD_3COCD_3 was purchased from Fuji Film Wako Pure Chemical Industries Ltd., deuterated dimethylsulfoxide CD_3SOCD_3 was purchased from Eurosotop, and deuterated methanol CD_3OD was purchased from Cambridge Isotope Laboratories Inc.

The concentration of the sample cyclo(Pro-Yyy) (Yyy = Phe, Tyr, Trp) in the NMR measurement was set to 40 mmol and the basic conditions were adjusted using a 40 wt% potassium deuteroxide KOD/D₂O solution (Sigma-Aldrich).

In general, nuclear Overhauser effect spectroscopy was conducted with 32 K data points covering a spectral width of 10,000 Hz and a ca. 5 s presaturation time at 30°C, with the other parameters the same as for the ¹H NMR spectrum.

Quantitative ¹H NMR was performed using the following optimized parameters: probe temperature, 30°C; spinning, off; number of scans, 8; spectral width, 20 ppm; relaxation delay, 64 s and pulse angle, 90°.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

- Hamaguchi K. Protein Molecular. Tokyo: Iwanami Shoten Publishers; 1985.
- Rivier JE, Marshall GR. Peptides: Chemistry, Structure and Biology. The Netherlands: ESCOM Science Publishers; 1990.
- Ishizu T, Fujii A, Noguchi S. Conformational studies of cyclo(L-Phe-L-Pro-Gly-L-Pro)2 by 13C nuclear magnetic resonance. *Chem Pharm Bull*. 1991;39(6):1617-1619.
- Ishizu T, Fujii A, Noguchi S. Conformational studies of cyclo(L-Phe-L-Pro-Gly-L-Pro)2 by 1H-and 13C-Nuclear magnetic resonance spectroscopy, and its enantioface-differentiating ability. *Chem Pharm Bull.* 1993;41(2):235-238.
- Ishizu T, Hirayama J, Noguchi S, Iwamoto H, Hirose J, Hiromi K. Preparation and complex formation of Cyclic Octapeptides Containing L-Proline residues with phenylalanine methylester hydrochloride. *Chem Pharm Bull.* 1993;41(11):2029-2031.
- Ishizu T, Hirayama J, Noguchi S. complex formation of cyclo(L-Phe-L-Pro)4 with noradrenaline hydrochloride. *Chem Pharm Bull*. 1994;42(5):1146-1148.
- Ishizu T, Noguchi S. Enantiomer-differentiating ability of cyclo(L-Phe-L-Pro)4 having a rigid skeleton for phenylalanine methylester hydrochloride. *Chem Pharm Bull.* 1997;45(7):1202-1204.
- Ishizu T, Noguchi S. Enantiomer-differentiating ability of cyclo(Phe-Pro)4 for noradrenaline hydrochloride and preparation of complexes with various amine hydrochlorides. *Chem Pharm Bull.* 1998;46(8):1303-1307.
- Ishizu T, Tsutsumi H, Yokoyama E, Kawamoto H, Yokota R. Conformational change and epimerization of diketopiperazines containing proline residue in water. *Chem Pharm Bull*. 2017;65(6):598-602.
- Sano S, Nakao M, Takeyasu M, Kitaike S, Nagao Y. Use of diketopiperazines for determining absolute configurations of 1±-substituted serines by 1H-NMR spectroscopy. *Heterocycles* 2009;79(1):781-789.
- Nakao M, Toriuchi Y, Fukayama S, Sano S. Synthesis and conformational characterization of diketopiperazines bearing a benzyl moiety. *Chem Lett.* 2014;43(3):340-342.
- 12. Sano S, Nakao M. Chemistry of 2,5-diketopiperazine and its bis-lactim ether: a brief review. *Heterocycles* 2015;91(7):1349-1375.
- Ishizu T, Tokunaga M, Fukuda M, Matsumoto M, Goromaru T, Takemoto S. Molecular capture and conformational change of diketopiperazines containing proline residues by epigallocatechin-3-O-gallate in water. *Chem Pharm Bull*. 2021;69(6):585-589.

How to cite this article: Ishizu T, Sato P, Tsuyama S, Nagao R, Fujiki K, Yamaji A. Analysis of the isomerization of diketopiperazine consisting of proline and aromatic amino acid residues using nuclear magnetic resonance. *Anal Sci Adv*. 2022;3:38–46. https://doi.org/10.1002/ansa.202100047