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VetTag: improving automated veterinary diagnosis coding via

large-scale language modeling
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2,4

Unlike human medical records, most of the veterinary records are free text without standard diagnosis coding. The lack of
systematic coding is a major barrier to the growing interest in leveraging veterinary records for public health and translational
research. Recent machine learning effort is limited to predicting 42 top-level diagnosis categories from veterinary notes. Here we
develop a large-scale algorithm to automatically predict all 4577 standard veterinary diagnosis codes from free text. We train our
algorithm on a curated dataset of over 100 K expert labeled veterinary notes and over one million unlabeled notes. Our algorithm is
based on the adapted Transformer architecture and we demonstrate that large-scale language modeling on the unlabeled notes
via pretraining and as an auxiliary objective during supervised learning greatly improves performance. We systematically evaluate
the performance of the model and several baselines in challenging settings where algorithms trained on one hospital are evaluated
in a different hospital with substantial domain shift. In addition, we show that hierarchical training can address severe data
imbalances for fine-grained diagnosis with a few training cases, and we provide interpretation for what is learned by the deep
network. Our algorithm addresses an important challenge in veterinary medicine, and our model and experiments add insights into
the power of unsupervised learning for clinical natural language processing.
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INTRODUCTION

Large-scale electronic health records (EHR) can be a powerful
resource for patient care and research. There have been many
exciting efforts applying machine learning to human medical
records—e.g. predicting in-hospital mortality, 30-day unplanned
readmission, and prolonged length of stay'? —with the goal of
assisting medical professionals. In comparison to the human EHR,
there has been little machine learning (ML) work on veterinary
EHR, which faces several unique challenges. While it is standard
practice for clinicians to enter standardized diagnosis and billing
codes for human EHR, almost all veterinary clinics lack resources to
annotate their patient notes with standard diagnosis coding.
Veterinary records can be extremely valuable for research and
public health—60-70% of all emerging diagnoses are transmitted
from animals to humans. Beyond that, companion animals have
been increasingly used to study naturally occurring diseases as
they share similar environments to humans and are often more
representative disease models compared with induced mouse
models, which frequently do not accurately recapitulate diseases
in humans. While cancer is a leading area of cross-species
translational studies,® other diseases such as genetic neuromus-
cular disorder,* osteoarthritis® and diabetes® are being studied in
companion animals as well. The lack of standard diagnosis coding
on veterinary records is a major bottleneck for public health
monitoring and these cross-species translational studies.”
Inferring diseases and diagnoses from free text such as
diagnostic reports and clinical notes has been actively studied in
clinical natural language processing (NLP).2 However, most of
these works are designed for human EHR. They are often trained

and evaluated on clinical notes gathered from the same hospital
as well. Veterinary notes have different styles and vocabulary, and
its diagnosis codes use a terminology framework different from
humans. Therefore an automated veterinary coding algorithm is
needed. Moreover, due to the lack of general coding practice in
the veterinary clinics, algorithms can only be trained on coded
notes collected from a handful of training hospitals, but need to
maintain high performance when they are applied to notes from a
diverse set of clinics across the country. Clinical notes from
different clinics can differ substantially in its writing style, making
automated coding a challenging task.

Processing free text such as diagnostic reports and clinical
notes, as well as generating structured information understand-
able by human have been a central focus of clinical natural
language processing.® Most of the previous research has focused
on the human healthcare systems, assisting a wide range of
clinical operations such as adenoma detection, assisting billing
code assignment® and discovering novel phenotypes and
diagnoses using unsupervised learning method on a large set of
multimodal data.'®

Previous work has also focused on searching for effective
architectures for the automated coding of human diagnoses, from
applying the long short-term memory networks (LSTM),"" multi-
level hierarchical text processing models,'> to memory conden-
sing networks.'® Rajkomar et al. have also proposed using deep
learning models to predict a wide range of quantities in electronic
medical record.! Learning text representation that generalizes
across domains is the goal of many recent papers. These
promising results share the same approach: pretrain the model
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CSuU

$Pet_Name$ is a 10 year old male castrated hound mix that was presented for continuation of chemotherapy for previously diagnosed
B-cell multicentric lymphoma. $Pet_Name$ was started on CHOP chemotherapy last week and has been doing very well since
receiving doxorubicin. The owners have noted his lymph nodes have gotten much smaller. He has some loose stool, yet improved with
metronidazole. Current medications include prednisolone. Assessment: $Pet_Name$ is in a strong partial remission based on today’s
physical exam. He is also doing very well since starting chemotherapy. A CBC today was unremarkable and adequate for
chemotherapy. She was dispensed oral cyclophosphamide and furosemide that the owners were instructed to give at home.

Expert annotated diseases: Malignant tumor (disorder), Disorder of haematopoietic cell proliferation, Lymphoproliferative disorder
(disorder), Neoplasm and/or hamartoma, Lymphoreticular tumor (disorder), Neoplasm, Malignant tumor of lymphoid hemopoietic and
related tissue (disorder), Neoplasm of haematopoietic cell type

PP

$Person_Name$ cc : recheck hypercalcemia responding to pred - iCa has dropped - is on 10 milligram twice a day pred 25 milligram
twice a day lasix eating human food on own feeling better blood urea nitrogen down from 89 -- > 62 today Vit D still pending wt stable
has residual brisket edema from Fluids on Wed patient : Treating symptomatically discontinue fluids since drinking well on own lower
pred to 10 milligram once daily and lasix 25 milligram once daily recheck on Tues pred appears to be treating underlying cause so
strong suspicion for LSA E. Ellis VMD wt : 62.5 Ibs . temperature : 101.3f

Expert annotated diseases: Metabolic derangement, Disorder of calcium metabolism (disorder), Disorder of phosphate, calcium and
vitamin D metabolism (disorder), Disorder of mineral metabolism (disorder)

PSVG

$Pet_Name$ initially presented on 9/30 with lethargy and fever. She was diagnosed with bilateral renomegaly. An ultrasound had
revealed possible cyst in a small left kidney and probable ureteral obstruction with secondary hydronephrosis of the right kidney.

$Pet_Name$ was transfered to our care on the evening of 10/2.

Fig. 1

on a large unlabeled text corpus using unsupervised learning
objectives. Such unsupervised pretraining allows the model to
achieve state-of-the-art results on many tasks such as question
answering, named entity recognition, and commonsense
reasoning.'*'®

Veterinary clinical notes, due to the lack of infrastructure and
third-party payer system, are almost entirely uncoded, making it
challenging to analyze the record for diagnosis prevalence,
outcome studies, and drug adverse effects. A recent method,
DeepTag, takes the first step toward addressing this challenge.'®
DeepTag predicts 42 top-level diagnosis codes from veterinary
clinical notes by training a deep learning model on the Colorado
State University Veterinary (CSU) dataset. Although the training
dataset is large, DeepTag suffers from significant performance
drop when it is deployed to another set of notes collected from a
private practice. This new work differs from DeepTag as we
augment supervised training with a form of unsupervised learning
- language modeling to read through millions of unlabeled notes
provided by another hospital. Such unsupervised training is a
promising new approach to boost the power of many clinical NLP
methods on both human and veterinary data.

SNOMED-CT codes, similar to other structured diagnostic codes
assigned to clinical notes, are designed to form a hierarchy.
DeepTag predicts whether a given note fits in with a subset of the
42 broad diagnosis codes, corresponding to the highest level of
SNOMED-CT hierarchy. It does not predict specific diagnoses. The
challenge with directly predicting each fine-grained diagnosis
code is that there are thousands of diagnoses and many of them
are rare in the training set. Perotte et al. had proposed a training
method for support vector machine (SVM) to leverage the
hierarchy and alleviate the problem of low recall on very rare
label classes.'” In this work, we extend this hierarchical training
method to neural network classifiers and apply it to veterinary
diagnosis coding to predict 4577 SNOMED-CT codes with high
performance.

We develop a large-scale algorithm, VetTag, that automatically
predicts thousands of fine-grained veterinary diagnosis codes
from free-form veterinary notes. Our algorithm is trained on a
curated dataset of over 100 K expert labeled veterinary notes and
over one million unlabeled notes. We adapt the new state-of-the-
art Transformer model proposed by Vaswani et al,'® and
demonstrate that large-scale language modeling on the unlabeled
notes substantially improves coding accuracy. We systematically
evaluate the model performance in challenging settings where
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Example clinical notes from the Colorado State University (CSU), a private practice clinic (PP) and a private specialty veterinary group
(PSVG) datasets. CSU and PP are expert labeled and PSVG is unlabeled

VetTag trained on one hospital is evaluated in a different hospital
with substantial domain shift. We use hierarchical training to
alleviate data imbalances and demonstrate such training scheme
substantially benefit rare diagnoses. In addition, we provide
interpretation for what is learned by the deep network. VetTag
addresses an important application in healthcare and our
experiments add insights into the power of unsupervised learning
for clinical natural language processing.

RESULTS

Problem definition

VetTag takes a free-text clinical note as input and infers a set of
clinical diagnoses from the note. The inferred diagnosis is in the
form of SNOMED-CT codes and each note can be associated with
multiple codes if the patient has several diagnoses. Figure 1
provides examples of veterinary notes from Colorado State
University (CSU), a private practice clinic in Northern California
(PP), and a large private specialty veterinary group (PSVG) that we
use to train and evaluate our coding algorithms. CSU and PP notes
are expert labeled with the relevant SNOMED-CT codes, and PSVG
is unlabeled.

VetTag is trained in two stages: unsupervised learning and then
supervised learning. During the unsupervised learning stage, we
train VetTag on 1,019,747 unlabeled veterinary clinical notes from
a large private specialty veterinary group that operates multiple
specialty clinics (PSVG) to simply predict the next word condi-
tioned on all previous words. The goal of this unsupervised
learning is to “familiarize” VetTag with medical concepts and
writing, so that it can more efficiently learn from the labeled data.
During the supervised learning stage, we train VetTag on 112,557
labeled veterinary notes from the Colorado State University of
Veterinary Medicine and Biomedical Sciences (CSU). VetTag adapts
the Transformer architecture as the encoder'® to generate a
contextualized vector representation for the input text, and
predicts the diagnosis using the vector. Figure 2 provides a
schematic overview of VetTag and details of the model are
provided in Supplementary Materials.

VetTag aims to predict whether each of the 4577 SNOMED-CT
diagnosis codes applies to the clinical note. A major challenge
here is the large number of potential diagnoses and the fact that
many of the codes are rare in the dataset. We leverage the
hierarchical structure of SNOMED-CT codes to improve VetTag
training. In the SNOMED-CT hierarchy, the top level codes (i.e.
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Fig. 2 Our proposed model architecture for automated diagnosis coding. Two tasks are shown: unsupervised language modeling (top) and
supervised learning (bottom). The dashed red arrows represent the pretraining process on the unlabeled PSVG data, and the solid blue arrows
represent the fine-tuning process on the labeled CSU data. Additional test is done on the PP data (not shown)
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Fig. 3 Example of hierarchical training. We show a 4-layer subtree of SNOMED-CT Codes in the left part and its vector representation in the
right part. Each node is labeled with diagnosis name, depth, true diagnosis label (marked as check or cross) and VetTag'’s predicted probability
(shown as the horizontal bar). During training, we only consider the binary cross entropy loss for nodes whose parent diagnosis is present in
the expert label—each node is linked with a solid line in the tree. Malformation and Anemia are not taken into consideration, i.e. they are
masked, because their parents Congenital and Chronic are not present in the expert labels. These masked nodes are linked with dotted edges.
The masked predictions are not used to update the model during training

depth 1 and 2 starting from the top) correspond to broad
diagnosis categories, while the lower level codes are increasingly
more fine-grained diagnoses. Instead of predicting all of the codes
in parallel, we use a hierarchical prediction approach where
VetTag first predicts the top level codes and then sequentially
predicts on a child diagnosis when its parent diagnosis is
predicted to be present. This approach enables VetTag to leverage
the relations between the diagnosis. Figure 3 provides an example
of the hierarchical training and more details are in the Methods
Section.

We evaluate VetTag's performance on two datasets. One
contains a set of holdout non-overlapping 5628 notes randomly
selected from the CSU dataset. The second is an external
validation dataset that we collected from a different commercial
hospital PP that contains 586 documents. CSU dataset contains
notes collected from a tertiary referral academic hospital—the
writing tends to be more polished and longer. PP and PSVG notes
are collected from primary and secondary referral hospitals, where
the notes are shorter and written with expediency using more
abbreviations. We provide a comparison of these datasets in
Supplementary Figs. 1 and 2.

Scripps Research Translational Institute

Performance evaluation

We systematically compare the performance of VetTag on both
CSU and PP test data with commonly used non-deep learning
algorithms (MetaMap) and standard deep learning algorithms
based on convolutional neural networks (CNN),' long short-term
memory networks (LSTM),?® as well as recent variations including
the state-of-the-art model on MIMIC — an open data of ICU
medical records?! (CAML),??> bidirectional LSTM (BLSTM) and
pretrained LSTM encoder with auxiliary language modeling
objective (LSTM + AP). As none of these algorithms have been
applied to this veterinary coding task previously, we trained our
own implementations for the purpose of this comparison. Table 1
reports the performance of all of the algorithms. Each algorithm is
evaluated based on prediction precision (the fraction of predicted
diagnoses that match the expert diagnoses), recall (the fraction of
the expert diagnoses that are successfully retrieved), F; (the
harmonic mean of precision and recall), and exact match (EM, the
fraction of notes where the algorithm’s predicted diagnoses
exactly match the expert diagnoses). Since there are 4577 possible
diagnoses, getting an exact match is quite challenging. VetTag
achieves the best performance across all of the metrics. The

npj Digital Medicine (2019) 35

np)



npj

Y. Zhang et al.

improvement over other algorithms is especially notable for the
PP test data, demonstrating that VetTag is more robust to
variations across different hospitals and clinics.

As discussed above, VetTag combines the recently developed
Transformer model’ with an auxiliary language modeling

Table 1.
PP data

Evaluation of trained classifiers on the CSU test data and

Model CcSuU PP (Cross-hospital)

F1 Prec Rec EM F1 Prec Rec EM

VetTag 66.2 72.1 63.1 26.2 48.6 549 47.7 9.2
MetaMap (SVM)  56.8 564 577 89 327 357 373 0.0
MetaMap (MLP) 508 552 475 138 216 273 202 03

CNN 62.7 756 558 202 331 420 307 19
CAML 626 741 562 178 377 547 320 3.1
LSTM 60.1 724 534 223 303 499 241 75
BLSTM 60.2 706 545 202 355 509 302 44
LSTM + AP 453 638 387 125 313 489 263 2.2
Transformer 382 553 322 139 229 348 223 22

Transformer+W 446 616 380 148 29.0 456 251 1.7
Transformer+P 633 766 56.1 228 30.1 564 243 65
Transformer+A 63,5 722 583 209 412 516 373 55
Transformer + AP 64.8 744 598 203 450 53.1 427 70

EM is the fraction of cases where the set of diagnoses predicted by the
model exactly matches the expert labels. The classifiers are trained on a
subset of CSU. Notation: CNN, LSTM and Transformer are our base models;
BLSTM is bidirectional LSTM; CAML is the state-of-the-art model on MIMIC,
an open data of ICU medical records. +W uses Word2Vec trained on PSVG
to initialize; +P uses language modeling objective trained on PSVG to
initialize; +A uses language modeling objective on CSU in addition to
classification objective on CSU; Hierarchical uses hierarchical loss during
training process; VetTag trains a transformer with auxiliary objective (+A),
pretraining (+P) and hierarchical loss

objective (A), pretrained encoder (P) and the SNOMED hierarchical
loss. In order to evaluate the contribution of each of these
components, we also systematically quantify the model’s perfor-
mance when each of these three components is removed. Using
only a subset of these components leads to strictly worse
performance on both CSU and PP test data, indicating that they
are all required to produce the optimal results.

DeepTag is the previous state-of-the-art algorithm for auto-
mated veterinary diagnosis.'® DeepTag is a bidirectional LSTM
trained to predict 42 top-level SNOMED diagnoses, and can not be
directly applied to predict the 4577 fine-grained codes we are
interested in here. Therefore we can not compare it directly in
Table 1; the DeepTag architecture is the most similar to BLSTM. In
order to head-to-head compare VetTag with DeepTag, we restrict
predictions to 41 top-level diagnoses except for clinical finding
(the spurious category) and report its results in Supplementary
Table 1 and Supplementary Fig. 3. Note that since VetTag is
optimized for all 4577 diagnoses and DeepTag is optimized for
only 42 diagnoses, this comparison is favorable for DeepTag.
Despite this, VetTag and DeepTag achieve similar accuracy on the
CSU data, with VetTag having higher EM score, and VetTag is
substantially better on the PP test data.

Performance analysis

Language model helps Transformer. Training a system on multiple
tasks with shared encoding can often improve the model's
performance on all tasks, as different tasks serve as implicit
regularization to prevent the model from overfitting to a particular
task?® In our experiment, we compare the performance of our
system by adding language modeling objective as an auxiliary task
during the classification task (Transformer + A vs. Transformer in
Table 1). Adding the language modeling as an auxiliary task
improves Transformer CSU test set as well as the cross-hospital PP
evaluation set. We also combine the language modeling pretraining
as well as the auxiliary task during the classification task and observe
a substantially better performance on the overall model compared
to the baseline model with either approach alone (Transformer + AP
vs. Transformer + A or Transformer + P in Table 1).

Table 2. Comparison of tagging performance by depth with/without hierarchical training
Dataset Depth #Diagnosis #Case Without Hierarchical With Hierarchical
F1 Prec Rec EM F1 Prec Rec EM

csu 1 56 91109 76.2 81.8 74.1 51.3 76.6 83.8 729 52.7
2 299 90880 733 79.1 70.0 359 73.8 78.3 713 38.9
3 632 89856 66.9 75.9 61.1 31.0 68.1 729 65.1 333
4 1086 85783 62.6 733 56.7 337 63.9 69.7 60.9 338
5 1298 70242 55.6 68.4 49.8 45.8 57.7 65.2 54.2 441
6 804 46250 45.2 62.7 39.7 68.2 49.4 59.2 45.7 65.5
7 283 12994 37.9 54.7 31.1 90.2 453 56.1 433 89.7
8 66 2918 19.7 41.9 144 97.4 31.7 441 315 97.4

PP 1 56 497 57.8 61.8 57.2 26.8 57.7 67.6 54.9 253
2 299 495 524 56.3 52.0 13.8 55.5 58.7 56.5 15.0
3 632 489 46.0 545 424 14.2 50.2 55.6 49.8 11.9
4 1086 462 434 54.7 39.3 16.9 46.9 54.1 45.2 14.5
5 1298 389 283 38.7 26.9 25.8 334 42.2 313 24.6
6 804 216 16.1 28.6 17.7 58.9 229 287 216 543
7 283 68 10.9 10.3 13.0 86.5 14.9 243 14.5 86.3
8 66 9 18.2 50.0 1.1 95.1 0.0 0.0 0.0 97.8

Data are more unbalanced as depth increases, and thus we observe more significant improvements by hierarchical training
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We sample three of the five most frequent diagnoses from each layer and report its performance for each depth. Diagnoses are more specific as layer

Y. Zhang et al.
5
Table 3. Label performance by depth
Depth Diagnosis csu PP (Cross-hospital)
# F1 Prec Rec EM # F1 Prec Rec EM
1 Disease by body site 84832 91 920 92 87 461 83 84 82 74
Inflammatory disorder 25271 72 77 68 89 193 64 73 57 79
Infectious disease 11304 60 70 52 93 88 42 68 31 87
2 Disorder of body systems 79365 20 88 91 85 459 83 85 81 74
Disorder of soft tissue 36237 75 78 73 85 205 65 57 76 72
Disease of trunk 35398 78 77 79 86 147 56 53 59 77
3 Malignant tumor 28058 91 93 89 96 19 52 36 90 95
Inflam. of specific body systems 23911 72 71 73 88 190 66 66 67 78
Inflam. of specific body organs 22531 72 71 73 89 170 66 65 68 80
4 Disease of abdomen 20215 73 71 75 20 90 44 46 42 84
Disease of digestive organ 19136 68 70 65 90 177 55 62 50 76
Disease of digestive tract 17997 71 75 68 92 184 60 69 53 78
5 Disease of upper digestive tract 11316 65 69 61 94 154 57 65 51 80
Disease of gastrointestinal tract 9265 70 74 67 96 33 29 29 30 92
Disorder of anterior eye segment 7638 80 77 83 97 38 58 56 61 94

Table 4. VetTag performance stratified by species

Species (@V] PP (Cross-hospital)

# F1 Prec Rec EM # F1 Prec Rec EM
Canine 4351 67.2 733 639 245 425 49.7 569 482 78
Feline 607 59.8 64.1 58.8 234 149 439 468 454 128
Equine 549 613 651 603 397 0 00 00 00 00
Bovine 60 47.8 55.0 46.1 40.0 0O 00 00 00 0.0
Caprine 21 39.5 36.8 45.0 38.1 0O 00 00 00 0.0
Porcine 26 636 77.2 57.6 385 1 312 312 312 0.0
Ovine 8 54,7 520 609 500 0 00 00 00 00
Other 6 569 53.8 629 333 10 53.1 542 543 100
Mammals

Hierarchical training improves performance. Diagnosis codes at a
greater depth in the SNOMED hierarchy tend to be more specific,
and thus fewer positive cases can be found for it. In the traditional
multilabel classification setting, rare diagnoses will have signifi-
cantly more negative labels than positive labels, encouraging the
classifier to always output a negative label. We use hierarchical
training to address this imbalance problem. We report the
performance comparison by depth in Table 2. We observe more
significant improvement as depth increases when we use
hierarchical training compared to the same model with the
standard non-hierarchical loss (Transformer + AP). In Table 3, we
give samples of the representative diagnoses and VetTag's
performance at the first five depth levels.

VetTag achieves good performance across species. Our CSU
training and test data contain a broad range of animal species,
with canine being the dominant species (over 75% of the dataset).
In the PP test data, we observe that canine make up around 70%
of the cases and a larger portion of feline. In Table 4, we break
down the test performance of VetTag for each species. Overall,
VetTag achieves the highest F; on the canine cases, and slightly

Scripps Research Translational Institute

lower performance for feline and equine cases. We provide
statistics on the number of notes per species for both CSU and PP
data in Supplementary Fig. 2.

MetaMap fails to extract discriminative information. We investi-
gate the effectiveness of traditional feature extraction techniques
provided by MetaMap, which is a popular method in medical NLP
for extracting medically relevant keywords from text.>* We apply
MetaMap directly to each veterinary note to extract a bag-of-
keywords. Then we use either Support Vector Machine (SVM) with
the linear kernel or Multilayer Perceptron (MLP) as the classifica-
tion algorithm from scikit-learn.> We treat these as our baseline
and report the result in Table 1. We find that MetaMap features are
not very discriminative at identifying diagnoses in the veterinary
medicine domain, and its performance is worse than our various
baselines on both the CSU and PP test data.

Pretrained language model outperforms Word2Vec. Perplexity is a
common metric to evaluate the quality of a language model;
lower the perplexity, higher the quality.® Our Transformer model
achieves a test perplexity of 15.6 on the PSVG dataset, which is
substantially better than the 20.7 perplexity achieved by LSTM on
the same data. We also note that compared to the state-of-the-art
perplexity achieved on other corpora such as Wall Street Journal
or Wikipedia, 47.69 and 40.68 respectively,®’ the perplexity we
obtained is much lower, signaling that the clinical notes are much
more structured than other sources of written text. In the
experiments reported in Table 1, we also find that language
modeling as pretraining is sufficient for models to learn useful
word embeddings—model with +P outperforms model using
Word2Vec embedding trained on PSVG (4-W) on both CSU and the
cross-hospital dataset PP.

Interpreting how VetTag works

In order to better understand how VetTag predicts diagnosis
codes from clinical notes, we implement a simple saliency-based
interpretation method for VetTag. The saliency of each word
quantifies how much that word influences VetTag's predictions,
and it is computed as the gradient of the predicted probability

npj Digital Medicine (2019) 35
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Hypersensitivity condition
deacon , a 2 year old male neutered boxer , presented to csu dermatology service for a recheck of BllSIgI6
. it was reported that deacon 's pruritus is relatively seasonal , worse in the spring and summer ,
but does not completely go away in the winter . deacon 's main problem areas were his paws and his
muzzle . melissa recently had been adding nettles to deacon 's food and saw a noticeable decrease in

pruritus for a few days but not so much anymore .

Fig. 4 Example of text interpretation from the CSU dataset. Words positively contributing to the predicted label are highlighted in red by the

gradient map

Table 5. Most salient words for VetTag

Diagnosis (SNOMED-CT code) Extracted keywords

Visual system disorder
Hypersensitivity condition
Metabolic disease

Anemia

Disorder of immune function

Disorder of endocrine system
diagnosed

Disorder of connective tissue
Poisoning
Congenital disease

Traumatic AND/OR non-traumatic injury fracture, wound, laceration, due, assessment, trauma, this, bandage, time, owner

eye, ophthalmology, surgery, eyelid, assessment, sicca, time, uveitis, diagnosed, this

dermatitis, allergic, therapy, atopic, otitis, pruritus, ears, assessment, allergies, dermatology

diabetes, nph, hypercalcemia, glargine, vetsulin, weeks, home, insulin, amlodipine, dose

pancytopenia, anemia, visit, hemolytic, persistent, steroids, hypertension, neoplasia, exam, thickening
eosinophilic, then, problem, todays, hypocalcemia, cornea, dose, skin, alt, weeks

methimazole, thyroid, weeks, levothyroxine, carcinoma, mass, hyperadrenocorticism, assessment, diabetes,

osteosarcoma, assessment, ligament, surgery, carboplatin, disease, dysplasia, rupture, cruciate, fracture
ingestion, assessment, toxicity, chocolate, vomiting, charcoal, not, maya, chance, activated
dysplasia, hip, bilateral, assessment, testicle, right, cerebellar, service, surgery, echo

We select ten representative diagnosis categories. For each diagnosis, we show the top 10 words in the MetaMap medical dictionary that the model most
strongly associates with the phenotype. Words are sorted in decreasing order by its frequency in the CSU test set

with respect to the input word. We show an example of the
keywords highlighted by saliency scores in Fig. 4—the higher the
saliency score, the darker the color and the more influential is the
word to VetTag's prediction. We report the top ten most salient
words for ten top-level diagnosis codes that overlap DeepTag’s
diagnosis codes in Table 5. The full list of salient words for all the
top-level diagnosis codes is provided in Supplementary Table 2.
More precisely, for each diagnosis category, we compute the
medical words that are the most likely to be salient—i.e. with
saliency score =0.2, a score chosen to select on average 11 words
per note—and report these words. Words captured by the model
have high quality and agree with medical domain knowledge.
Most words captured by the model is in the expert-curated
dictionary from the MetaMap. Moreover, we notice that the model
is capable of capturing abbreviations (i.e., ‘kcs’—keratoconjuncti-
vitis sicca), combinations (i.e, ‘immune-mediated’) and rare
professional terms (i.e., ‘cryptorchid’) that MetaMap fails to extract.

DISCUSSION

Processing veterinary clinical notes and generating structured
information has a tremendous impact on the ecosystem of
veterinary clinical data science. In this study, we extended the
previous work in two important directions.'® First, we propose a
language model framework to leverage a massive amount of
unlabeled clinical notes, demonstrating that this type of
unsupervised learning is crucial in improving the performance
and robustness of the diagnosis coding model. Second, we build a
system to predict 4577 SNOMED codes—DeepTag was also able
to predict 42 top-level diagnosis codes by comparison—by
leveraging the hierarchy amongst the SNOMED codes so that
the model only predicts the child diagnosis when all of its parents
are present. We demonstrate that this hierarchical training is
significantly better than the standard multi-label prediction
scheme especially for rare diagnosis categories which previously
suffered from low recall. We show that training with diagnosis
hierarchy not only improves performance on the original task, but
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also improves the robustness of VetTag when it is applied to data
from a different clinic.

We analyze the impact of depth (specificity) of a diagnosis to
the performance of the model. Clinical note coders are instructed
to apply lower-level, more specific codes as much as they can.
Many labeled codes correspond to very specific diagnoses, and
simply predicting top-level diagnosis is not sufficient in practice.
As specificity and depth increase, the number of potential
diagnoses also increases and the number of relevant cases
decreases. With hierarchical training, we find a substantial
improvement for the more specific diagnosis.

We additionally provide a saliency method to explain VetTag by
visualizing the words in the clinical note that most significantly
influences VetTag's prediction. The most salient words for VetTag
agree well with the clinically meaningful terms. Moreover, VetTag
saliency map identifies words such as acronyms and combinations
beyond what the standard MetaMap vocabulary. Highlighting
such salient in clinical notes can help human curators to label
documents more quickly and provide rationalization over the
VetTag's decision process.

As we make meaningful progress toward a more robust
automated coding system for veterinary medicine, we note that
there is still a significant drop in performance when applied to text
from a different hospital. The significant improvement over the
baseline methods as well as the ability to infer a wide range of
diagnosis codes gives us cautious optimism to apply this tool to
label veterinary clinical notes and conduct analyses. However, due
to the inherent bias from our training data, some important
diagnoses such as neoplasm and/or hamartoma are over-
represented, resulting in lower precision when applied in the
cross-hospital setting. We can partially mitigate this effect by
adjusting the decision threshold of the binary classifier, but further
research needs to be conducted on learning both over-
represented diagnoses and under-represented diagnoses in this
setting. An important step of future work will be to fully study the
cross-hospital performance of our algorithm by collaborating with
other veterinary academic institutions, and conduct pilot studies
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that integrate VetTag into the veterinary IT infrastructure. There
could be potential values to mapping SNOMED labels to a
restricted subset of codes that are currently used in clinical
practices. We focused on SNOMED because it is commonly used
and we believe similar model as VetTag can be used to predict
other codes with potentially even better accuracy. This is a good
direction of further work.

METHODS
Datasets

We use three datasets in our experiments (Table 6). Three examples are
sampled from each dataset and shown in Fig. 1.

Labeled data 1: Colorado State University (CSU). We use a curated set of
112,557 veterinary notes from the Colorado State University College of
Veterinary Medicine and Biomedical Sciences. Each note is labeled with a
set of SNOMED-CT codes by veterinarians at Colorado State. Colorado State
is a tertiary referral center with an active and nationally recognized cancer
center. We find 4577 total SNOMED codes present in the CSU labeled
dataset. These represent the relatively more common diagnosis and we
focus on predicting these codes.

Labeled data 2: private practice (PP). We also use a smaller set of 586
discharge summaries curated from a commercial veterinary practice
located in Northern California. Two veterinary experts applied SNOMED-CT
codes to these records. Records with coding discrepancies were reviewed
by both coders to reach a consensus on each record. This dataset is
drastically different from the CSU dataset. PP notes are written often in an
informal style, evidenced by their shorter length and usage of abbrevia-
tions. The PP data also has a different diagnosis distribution compared to a
specialized academic cancer center CSU.

Unlabeled data: private specialty veterinary group (PSVG). We obtained a
large set of over one million unlabeled notes from a large private specialty
veterinary group that operates multiple veterinary clinics. This is a set of
raw clinical notes without any codes applied to them.

Data Processing. We filter out all non-ASCIl characters in our documents,
convert all letters to lower case, and then tokenize with NLTK.?® We apply
the standard BPE (Byte Pair Encoding)?® algorithm to address the out-of-
vocabulary problem, and to speed up the language modeling training. BPE
uses a vocabulary size of 50 K, and out-of-vocabulary words are encoded as
subword units. We randomly split the CSU and PSVG dataset into training,
validation and test set for supervised learning and unsupervised learning.

SNOMED-CT Codes. SNOMED-CT is a comprehensive clinical health
terminology managed by the International Health Terminology Standards
Development Organization.>* Annotations are applied from the SNOMED-
CT veterinary extension (SNOMED-CT VET), which is a veterinary extension
of the International SNOMED-CT edition. In this work, we try to predict
disease-level SNOMED-CT codes.

ICD-9/ICD-10 billing codes are the results of complex interactions
between the patient, care-provider, potentially third-party coders and
insurance policies, all of which could introduce systematic bias in what
codes are assigned.?’ In order to reduce potential biases, the SNOMED-CT
VET codes in our dataset are assigned by veterinary school students using
standardized procedures to facilitate cohort identification and record
retrieval for clinical science.

Disease-level SNOMED-CT codes are organized as a directed acyclic

Table 6. Descriptive statistics of the three datasets
CSU (Labeled) PP (Labeled) PSVG (Unlabeled)
# of notes 112,557 586 1,019,747
# of training set 101,301(90%)  0(0%) 917,665(90%)
# of validation set 5,628(5%) 0(0%) 51,103(5%)
# of test set 5,628(5%) 586(100%) 50,979(5%)
Avg # of words 368 253 72
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Table 7. Descriptive statistics of the disease-level SNOMED-CT codes
Mean Std Min  Max  Median
Depth (Distance from root) 5.0 1.5 0 11 5

Branch (# of children) 1.9 8.9 0 891

graph. However, there are only a small number of nodes with more than
two ancestors. By applying the breadth-first search algorithm from the root
node, the general disease in SNOMED-CT codes, we can get the shortest
path from the root node to any specific diagnosis node. For each node, we
only reserve the shortest path from the root node. The directed acyclic
graph is transformed to a tree after processing. For each node, depth
represents for the distance from the root node to the current node, and
branch represents the number of children of the current node. We show
statistics of processed disease-level SNOMED-CT codes in Table 7.

Algorithm development and analysis

We build the base of our model using the multi-layer Transformer
architecture similar to the setup in Radford et al.'® We concisely summarize
the VetTag algorithm here and more details are provided in Supplemen-
tary Materials.

We model automated coding as a multi-label classification problem.
Given a note, we want to predict whether the note is positive (i.e. supports
the diagnosis) of each diagnosis label y in a predefined set of diagnoses ).
For the i-th diagnosis, we want to predict whether the binary diagnosis
label y; is 0 or 1. Here each label corresponds to a SNOMED-CT diagnosis
code. Our proposed model architecture is shown in Fig. 2. Three tasks are
shown: unsupervised learning, supervised learning and hierarchical
training. We describe these three tasks in the following section and details
are provided in Supplementary Materials.

Unsupervised Learning. We build a generative model over text for
unsupervised learning, also referred to as a language model. Text
sequence is an ordered list of tokens. Therefore, we can build an
autoregressive model to estimate the joint probability of the entire text
sequence X: p(X) =p(x,, ..., x7), where x; represents the t-th token in the
sequence of length T. In an ordered sequence, we can factorize it as

;
p(X) = [1 p(xe|x1, ..., X—1). Concretely, we estimate the token distribution
t=1

of x; by using the contextualized representation vector h; € R provided
by our encoder: h, = Encoder(h, ..., h,_;), where d is latent dimensions of
the model. We optimize over the negative log-likelihood of the distribution

;
—logp(X) = — 21 logp(Xe|X1, <oy Xe—1)-
t=

In our model, we examine the effect of language modeling on two
encoder architectures: Transformer and the long short-term memory
(LSTM). We use this objective in two parts of our system: (1) pretrain
encoder’'s parameters; (2) serve as an auxiliary task during training of the
classifier.

Supervised Learning. We get a summary representation vector ¢ € R for
the entire sequence from the encoder. We then use a fully connected layer
to down project it and calculate the probability of whether j-th diagnosis
should be predicted: p(y;) = O(Wch+ b;), where w; € R? and b; € R are
the weight and bias for the classifier of j-th diagnosis, and o is the sigmoid
function: a(x) = 1/(1 + ™). We compute the binary cross entropy loss L(C)

m
across m labels: L(C) = — > y;logp(y;) + (1 — ;) log(1 — p(y;)), where
j=1

binary label y;€{0, 1} indicates whether jth diagnosis is true in the
expert label.

Finally, we use a mixture of two losses Ligtal = L(C) — A« log p(X) and
use hyperparameter A = 0.5 to set the strength of the auxiliary loss when
we use language modeling as an auxiliary task in our classification training.

Hierarchical Training. There are less training cases for a more specific
diagnosis. The severe data imbalance for certain diagnosis makes classifier
tend not to predict these diagnoses. We alleviate the problem by utilizing
hierarchy in SNOMED-CD codes. Instead of predicting each diagnosis
individually, we predict diagnosis from top to bottom, and we call it
hierarchical training. We show an example in Fig. 3.
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For training, we update the classifier using its prediction of a diagnosis
only when all the ancestors of this diagnosis are true in the expert label. In
practice, we ignore the binary cross entropy loss of the diagnosis if any
ancestor of this diagnosis is not true in the expert label.

For prediction, we only predict that the diagnosis is true when all the
ancestors of the diagnosis are predicted as true. In practice, we predict the
diagnosis as false if any of the ancestors of the diagnosis has been
predicted to be false.
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