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Background. During acute infection and inflammation, dramatic shifts in tissue metabolism are typical, thereby resulting in
profound tissue hypoxia. Therefore, we pursued the hypothesis, that tissue hypoxia may influence innate immune responses
by transcriptional modulation of Toll-like receptor (TLRs) expression and function. Methodology/Principal Findings. We
gained first insight from transcriptional profiling of murine dendritic cells exposed to hypoxia (2% oxygen for 24 h). While
transcript levels of other TLRs remained unchanged, we found a robust induction of TLR2 (2.3660.7-fold; P,0.05) and TLR6
(3.4661.56-fold; P,0.05). Additional studies in different cells types and cell-lines including human dendritic cells, monocytic
cells (MM6), endothelia (HMEC-1) or intestinal epithelia (Caco-2) confirmed TLR2 and TLR6 induction of transcript, protein and
function during hypoxia. Furthermore, analysis of the putative TLR2 and TLR6 promoters revealed previously unrecognized
binding sites for HIF-1, which were shown by chromatin immunoprecipitation to bind the pivotal hypoxia-regulating
transcription factor HIF-1alpha. Studies using loss and gain of function of HIF-1 confirmed a critical role of HIF-1alpha in
coordinating TLR2 and TLR6 induction. Moreover, studies of murine hypoxia (8% oxygen over 6 h) showed TLR2 and TLR 6
induction in mucosal organs in vivo. In contrast, hypoxia induction of TLR2 and TLR6 was abolished in conditional HIF-1a
mutant mice. Conclusions/Significance. Taking together, these studies reveal coordinated induction of TLR2 and TLR6
during hypoxia and suggest tissue hypoxia in transcriptional adaptation of innate immune responses during acute infection or
inflammation.
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INTRODUCTION
Microorganisms that invade a vertebrate host are initially

recognized by the innate immune system through germline-

encoded pattern-recognition receptors [1]. Innate defense mech-

anisms rely heavily on such signaling pathways to alert the

immune system of the presence of the invading pathogens. As a

group of pattern-recognition molecules, Toll-like receptors (TLRs)

have evolved into a central role during such responses. As such,

mammalian TLRs represent a family of at least 12 membrane

proteins that trigger innate immune responses through nuclear

factor-kB (NF-kB)-dependent and interferon (IFN)-regulatory

factor-dependent signalling pathways [2]. TLRs are evolutionarily

conserved molecules and were originally identified in vertebrates

on the basis of their homology with ‘‘Toll’’, a molecule that

stimulates the production of antimicrobial proteins in Drosophila

melanogaster [3]. Mammalian TLRs have been functionally

characterized and distinguished mainly on the basis of their

stimulation by different ligands [4]. As such, the TLR-family

members are pattern-recognition receptors (PRRs) that recognize

lipid, carbohydrate, peptide and nucleic-acid structures that are

broadly expressed by different groups of microorganisms [2]. In

addition to their role in innate immune responses during infection,

the recognition of endogenous ligands by TLRs is now thought to

have an important role also in the regulation of inflammation,

both in infectious and non-infectious diseases [2].

In this context, acute sites of inflammation or infection are

characterized by dramatic shifts in tissue metabolism [5]. These

changes include increased consumption of oxygen by residential or

recruited inflammatory cells, and diminished availability of oxygen

due to thrombosis or inflammation of the vascular support system,

resulting in profound hypoxia [6–8]. Such shifts in tissue

metabolism result, at least in part, from massive recruitment of

inflammatory cell types or pathogens [5,9,10]. As such, studies of

innate immune responses have found a central role of hypoxia–

elicited signaling pathways in inflammatory immune responses.

For example, a very elegant study of inflammatory response in

mice with conditional knockouts of the hypoxia responsive

transcription factor hypoxia inducible factor (HIF)-1a revealed

profound impairment of myeloid cell aggregation, motility,

invasiveness, and bacterial killing [11]. Taken together, these

studies demonstrate a role for HIF-1a in the direct regulation of

survival and function in the inflammatory microenvironment.

At the tissue and cellular level, hypoxia induces an array of

genes pivotal to survival in low oxygen states. As a global regulator

of oxygen homeostasis, the ab heterodimeric transcription factor

HIF-1 facilitates both oxygen delivery and adaptation to oxygen

deprivation [12]. HIF-1 is a member of the Per-ARNT-Sim (PAS)

family of basic helix-loop-helix (bHLH) transcription factors. HIF-

1 activation is dependent upon stabilization of an O2-dependent

degradation domain of the a subunit and subsequent nuclear
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translocation to form a functional complex with HIF-1b and

cofactors such as CBP and its ortholog p300 [13]. Under

conditions of adequate oxygen supply, iron and oxygen dependent

hydroxylation of two prolines (Pro564 and Pro 402) within the

oxygen-dependent degradation domain (ODD) of HIF-1a initiates

the association with the von Hippel-Lindau tumor suppressor

protein (pVHL) and rapid degradation via ubiquitin-E3 ligase

proteasomal targeting [12]. A second hypoxic switch operates in

the carboxy terminal transactivation domain of HIF-1ã Here,

hypoxia blocks the hydroxylation of asparagine-803 so facilitating

the recruitment of CBP/p300 [14]. When levels of oxygen fall

below a critical threshold (hypoxia), the lack of PHD substrate

(oxygen) results in the accumulation of HIF̃a, which then

associates with HIF2b. The HIF heterodimer translocates to the

nucleus where it is made available to activate HIF-bearing gene

promoters. Genes induced by HIF-1 include those necessary for

cell, tissue and whole animal adaptive responses to hypoxia [12].

These proteins include enzymes involved in anaerobic metabo-

lism, the angiogenic cytokine vascular endothelial growth factor

(VEGF) and inducible nitric oxide synthase [12].

In the present study, we pursued the hypothesis that tissue

hypoxia–as occurs during inflammation or infection–may modu-

late PRR-dependent signaling pathways of the innate immune

system. For this purpose, we screened mammalian TLR

expression during normoxic or hypoxic conditions. Serendipitous-

ly, these studies revealed a central role of HIF-1 in the coordinated

induction of TLR2 and TLR6, which are known for their

functional interaction in the cellular response to different

microorganisms [15,16].

RESULTS

Modulation of TLR signaling by hypoxia
Sites of infection and inflammation are characterized by dramatic

shifts in metabolic supply and demand, thereby leading to

profound tissue hypoxia [5]. Given the association of hypoxia

with tissue-infections and the predominant role of TLR-signaling

in regulating host-cell responses during infections with human

pathogens [2], we pursued transcriptional responses of TLRs

during hypoxia. As first step in the line of these experiments, we

examined the influence of hypoxia on expressional levels of

mammalian TLRs (TLR1-9 and 11-13) in vitro, using a cellular

model of murine dendritic cells. For this purpose, we isolated

bone-marrow-derived dendritic cells (BMDCs) from C57BL/

66129SV mice and exposed them ex vivo to normoxia or

normobaric hypoxia (2% oxygen, 24h). Using real-time RT-PCR

analysis, we found selective induction of mRNA levels of TLR2

(2.36060.3810, P,0.05) and TLR6 (3.46060.7820, p,0.05) with

hypoxia exposure in comparison to normoxia (Fig. 1). In contrast,

transcript levels of other TLRs remained unchanged with hypoxia

exposure. Due to the fact that TLR10 expression has not been

detected in murine BMDCs [17] we studies modulation of TLR 10

transcript in human microvascular endothelia (HMEC-1) and

human intestinal epithelia (CaCo-2). These studies revealed no

changes of TLR10 transcript with hypoxia (data not shown).

Taken together, these studies show a robust and selective

induction of TLR2 and TLR6 coordinated by hypoxia.

Hypoxia induces TLR2 mRNA and protein and

enhances TLR2 signaling effects
Based on the above observation of coordinated induction of TLR2

and TLR6 with hypoxia, we next pursued additional details of

TLR2 induction with hypoxia using different cellular models.

Therefore, we exposed human dendritic cells (hDCs), monocytic

cells (MM6), endothelia (HMEC-1) and epithelia (Caco-2) over

indicated time periods to hypoxia (2% oxygen), isolated RNA and

performed real-time RT-PCR to determine TLR2 transcript levels.

Consistent with our studies of murine dendritic cells, we found a

robust induction of TLR2 transcript in all examined cells (Figure 2

A, B). For example, real-time RT-PCR analysis revealed prominent

induction of TLR2 mRNA expression in hDCs (3.01260.3002,

p,0.01) and MM6 cells (1.81260.4875, p,0.05) after 24h exposure

to hypoxia. Similarly, TLR2 transcript was significantly elevated

after 12 h of hypoxia exposure of HMEC-1 (2.17060.2944, p,0.05)

or Caco-2 cells (1.54360.1009, p,0.05). We next pursued induction

of TLR2 protein levels by Western blot analysis. For this purpose,

HMEC-1 were grown to full confluency and exposed to hypoxia (0,

24, 48 and 72 h; pO2 20 torr). Indeed, we found increases of TLR2

protein in HMEC-1 after different time points of hypoxia exposure

(Fig. 2C). As next step, we studied functional consequences of TLR2

induction by hypoxia. Previous studies had shown specific activation

of TLR2 by N-Palmitoyl-bis(palmitoyloxy)-propyl-cysteinyl-seryl-

Lys4 (P3C) leading to TLR2-signaling dependent activation of NF-

kB and the production of pro-inflammatory cytokine IL6 [18]. For

that purpose we stimulated normoxic or post-hypoxic HMEC-1 cells

(48 h at 2% oxygen) with the TLR2 agonist P3C and measured IL6

secretion into the supernatant. These studies revealed that TLR2-

dependent release of IL6 was dramatically enhanced in post-hypoxic

HMEC-1 (Fig. 2D, p,0.01 with 100 ng/ml P3C). Taken together

these studies confirm that TLR2 transcript, protein and function are

induced by hypoxia.

Figure 1. Influence of hypoxia on TLR mRNA expression in murine
dendritic cells. Isolated murine bone-marrow-derived dendritic cells
(BMDCs) were exposed to normoxia or hypoxia for 24 hours. Total RNA
was isolated, and quantitative mRNA levels of TLR1-9 and TLR11-13
were assessed by real-time RT-PCR. Data were calculated relative to ß-
actin and expressed as fold change relative to normoxia6SEM and
transcript levels in normoxic BMDCs were normalized to 1. Results are
derived from three different experiments (*p,0.05, significant differ-
ences from normoxia).
doi:10.1371/journal.pone.0001364.g001

TLR Signaling during Hypoxia

PLoS ONE | www.plosone.org 2 December 2007 | Issue 12 | e1364



Hypoxia induction of TLR6 transcript, protein and

function

After having shown induction of TLR2 with hypoxia, we next

studied additional details of TLR6 induction during hypoxia. In

fact, TLR6 can function as co-receptor and heterodimerizes with

TLR2 to form preexisting cell surface receptors on different cell

types [19]. Such TLR2/TLR6 complexes play an important role

in innate immune responses by recognizing microbial compounds

including lipoteichoic acids from gram-positive bacteria [20] or

fungal zymosan [21]. In order to confirm TLR6 inducibility by

hypoxia, we exposed human DCs, MM6, HMEC-1 or Caco-2

epithelia to hypoxia (2% oxygen) and measured changes in TLR6

transcript level by real-time RT-PCR. Similar to the above

Figure 2. TLR2 transcript, protein and function during hypoxia. A and B, Quantification of TLR2 transcript levels in freshly purified blood DCs, MM6
cells, confluent HMEC-1 monolayers and confluent Caco-2 monolayers. Cells were exposed to normoxia or hypoxia over indicated time periods. Total
RNA was isolated and TLR2 mRNA levels were determined by real-time RT-PCR. Data were calculated relative to ß-actin and expressed as fold change
relative to normoxia6SEM, where transcript levels in normoxic cells were normalized to 1. Results are derived from three different experiments
(*p,0,05, significant differences from normoxia). C, Confluent HMEC-1 cells were grown to confluence and exposed to indicated periods of hypoxia.
Results depict representative TLR2 Western blot from three separate experiments. The same blot was probed for ß-actin expression as a control for
protein loading. D, Similar amounts of HMEC-1 were grown to confluence in 24-well plates and indicated concentrations of specific TLR2 agonist
(P3C) were added before exposure to hypoxia or normoxia for 24 h. After 24 h, generation of IL6 was measured by ELISA in the cell supernatant. Data
are mean6SEM from 3 separate replicates. *, significant differences from untreated cells (p,0.001); #, significant differences from normoxia and
untreated cells (p,0.01).
doi:10.1371/journal.pone.0001364.g002
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findings of TLR2 induction by hypoxia, real-time RT-PCR

confirmed hypoxia induction of TLR6 in all cell lines studied

(Figure 3A and B). For example, TLR6 transcript levels were

dramatically elevated following 24 h of hypoxia exposure in Caco-

2 cells (4.08060.4446, p,0.01). We next verified these findings on

a protein level by measuring TLR6 expression by Western blot

analysis. Here, we exposed confluent HMEC-1 monolayers to

hypoxia over 0 to 72h to hypoxia. Consistent with our studies of

TLR6 transcript, we found a robust induction of TLR6 protein

with hypoxia (Figure 3C). As next step we studied TLR signaling

effects during normoxia or hypoxia. Here, we used a specific

ligand for the TLR2/TLR6 complex (FSL-1, range 1–100 ng/ml)

and measured IL6 concentration in the HMEC-1 pre-exposed to

normoxia or 24 h of hypoxia (2% oxygen). In fact, FSL-1

Figure 3. TLR6 transcript, protein and function during hypoxia. A and B, Quantification of TLR6 transcripit levels in freshly purified blood DCs, MM6
cells, confluent HMEC-1 monolayers and confluent Caco-2 monolayers. Cells were exposed to normoxia and hypoxia for indicated time points. Total
RNA was isolated and TLR6 mRNA levels were determined by real-time RT-PCR. Data were calculated relative to ß-actin and expressed as fold change
relative to normoxia6SEM, where transcript levels in normoxic cells were normalized to 1. Results are derived from three different experiments. *,
significant differences from normoxic cells (p,0.01). C, Confluent HMEC-1 cells were grown to confluence and exposed to indicated periods of
hypoxia. Result depicts a representative TLR6 Western blot from three separate experiments. The same blot was probed for ß-actin expression as a
control for protein loading. D, Same amount of HMEC-1 cells were grown to confluence in 24-well plates. Cells were then stimulated with TLR2/6
agonist (FSL-1) at the indicated concentrations and exposed to hypoxia or normoxia for 24 h. After 24 h, generation of IL6 was measured by ELISA in
the cell supernatant. Data are mean6SEM from 3 separate replicates. *, significant differences from untreated cells (p,0.05); #, significant differences
from normoxia and untreated cells (p,0.05).
doi:10.1371/journal.pone.0001364.g003
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stimulated IL6 production was significantly enhanced in post-

hypoxic HMEC-1 (Fig. 3D), showing that hypoxia enhances

signaling through the TLR2/6 complexes. These findings

confirms induction of TLR6 transcript, protein and function by

ambient hypoxia.

Role of hypoxia inducible factor (HIF)-1 in TLR2

regulation
In an attempt to gain specific insight into the mechanisms of

TLR2 induction, we began examining induction pathways from

hypoxia response genes. In the course of our experiments, we

identified two previously unappreciated HIF-1 binding sites in the

TLR2 gene promoter (DNA consensus motif 59-CCGTG-39

located at positions –54 to –58 and -61 to -65 relative to the

major transcription start site, Fig. 4A) [22]. To study a functional

contribution of HIF-1a in hypoxia induction of TLR2, we next

pursued HIF-1 loss and gain of function. As shown in Figure 4B,

baseline transcript levels are significantly repressed and hypoxia

inducibility of TLR2 transcript is attenuated when using a

previously characterized HMEC-1 line with stable siRNA

repression of HIF-1a compared to control transfected cells [23].

In addition, we studied TLR2 expression in a previously

characterized HMEC-1 line with oxygen stable overexpression

of HIF-1 [23]. As shown in Figure 4, normoxic expression of HIF-

1a is associated with dramatic increases of TLR2 transcript

(35.7669-fold increase, P,0.001). These findings could be

confirmed on a protein level by Western blot analysis (Fig. 4D).

Next, we used the HIF-1 activator dimethyloxalylglycine (DMOG,

a non specific inhibitor of prolylhydroxylases) [24,25]. Similar to

HIF-overexpression, pretreatment of HMEC-1 with DMOG was

associated with induction of TLR2 transcript levels (Figure 4E). As

last step, we determined whether this region of the TLR2

promoter binds HIF-1a. For these purposes, we used chromatin

immunoprecipitation (ChIP) to study HIF-1a binding in live cells.

As shown in Figure 4F, ChIP analysis of nuclei derived from

HMEC-1 cells revealed a prominent band in hypoxic but not

normoxic samples. No bands were evident in beads only or control

IgG immunoprecipitates, and input samples (preimmunoprecipi-

tation) revealed the predictable band under conditions of both

hypoxia and normoxia. Such results indicate that hypoxia induces

HIF-1a binding to the TLR2 promoter region. Together, these

results suggest that TLR2 induction by hypoxia is mechanically

determined, at least in part, by HIF-1.

HIF-1a in TLR6 induction during hypoxia
Similar to our studies of mechanisms of TLR2 induction by

hypoxia, we next attempted translational mechanisms of TLR6

induction during hypoxia. Similar to TLR2, we identified a

previously unrecognized binding site for HIF-1 in the putative

TLR6 gene promoter (DNA consensus motif 59-CCGTG-39

located at positions –502 to –506 relative to the transcription

start site, Fig. 5A). Consistent with our studies of TLR2, HIF-1 loss

and gain of function studies suggest a functional role of HIF-1a in

TLR 6 induction. As shown in Figure 5B, hypoxia inducibility of

TLR6 transcript is attenuated in HMEC-1 with stable siRNA

repression of HIF-1a, while normoxic overexpression of HIF-1a
(Figure 5C and D) or DMOG treatment (Figure 5E) is associated

with increased TLR6 levels. Finally, ChIP analysis of the putative

TLR6 promoter confirmed HIF-1a binding to the promoter

region during hypoxia (Figure 5F). Taken together these results

suggest HIF-1 in coordination of TLR2 and TLR6 induction by

hypoxia.

TLR2 and TLR6 are induced during ambient hypoxia

in vivo
To confirm hypoxia induction of TLR2 and TLR6 in vivo, we

utilized a previously described murine model of ambient hypoxia

[26–30]. For this purpose, we exposed C57BL/6 mice over 6h to

ambient hypoxia (8% oxygen), and examined TLR2 and TLR6

transcript levels in mucosal organs including the colon, liver and

lungs. As shown in Figure 6A (TLR2) and 6B (TLR6), real-time

PCR analysis revealed a significant increase of TLR2 and TLR6

transcript in all three examined organs. In addition, immunohis-

tochemical staining of sections of lung tissues confirmed TLR2

(Figure 7A) and TLR6 (Figure 7B) induction in vivo. Taken

together, these findings indicate that induction of TLR2 and

TLR6 also occurs during ambient hypoxia in vivo.

Role of HIF-1a in TLR2 and TLR6 expression in vivo As

last step in the line of these experiments, we extended these

findings of HIF-1–mediated induction of TLR2 and TLR6

expression into a genetic in vivo model. Here, we examined the

influence of hypoxia on TLR2 and TLR6 transcript levels in

intestinal epithelia derived from conditionally gene-targeted HIF-

1a mice, in which intestinal epithelia lack detectable HIF-1a
expression in .70% of cells [31]. As show in Figure 8A and 8B,

TLR2 and TLR6 levels in mice expressing wild-type HIF-1a
showed a normal pattern of hypoxia-associated induction of TLR2

and TLR6. Consistent with our hypothesis that HIF-1

transcriptionally induces TLR2 and TLR6, real-time PCR

analysis revealed abolished induction of TLR2 and TLR6

transcript levels in intestinal epithelial derived from Hif1a
mutant animals. Taken together, such findings support our in

vitro findings and indicate the likelihood that HIF-1 directly

regulates murine TLR2 and TLR6 expression.

DISCUSSION
Sites of inflammation and infection are characterized by significant

changes in metabolic supply and demand. Such shifts frequently

result in inflammation-associated tissue hypoxia. Due to the

central role of the TLR-signaling system in the regulation of innate

immune responses, both in infectious and non-infectious diseases

[2], we pursued transcriptional effects of hypoxia on TLR

expression patterns. A screen of mammalian TLRs for hypoxia

responsiveness revealed a selective and robust induction of TLR2

and TLR6. Additional studies in different cellular models

(dendritic cells, monocytes, endothelia or epithelia) consistently

confirmed hypoxia-induction of TLR2 and TLR6. Using ChIP

assays, cellular models of HIF-loss and gain of function as well as

murine genetic models we could mechanistically determine HIF-

1a in the coordination of this response. Taken together, these

studies reveal modulation of TLR-dependent immune responses

by hypoxia and confirm previous studies on a central role of HIF

in the regulation of innate immunity [5,11,31–34].

Serendipitously, our studies revealed a coordinated induction of

TLR2 and TLR6 by hypoxia, as both receptors owe each other a

close functional relationship. In fact, a very elegant study on the

coordination of TLR responses revealed that TLR2 and TLR6,

together coordinate macrophage activation by Gram-positive

bacteria and the yeast cell-wall particle, zymosan [21]. In fact,

TLR6 and TLR2 are both recruited to the macrophage

phagosome, where they recognize peptidoglycan, a Gram-positive

pathogen component. By contrast, TLR2 recognizes another

component, bacterial lipopeptide, without TLR6. The require-

ment for TLR cooperation is supported by the finding that TLR2

needs a partner to activate tumor necrosis factor-alpha production

in macrophages. As such, these studies revealed that TLR2 forms

TLR Signaling during Hypoxia
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Figure 4. Influence of hypoxia inducible factor (HIF)-1a on TLR2 expression during hypoxia. A, Map of TLR2 promoter region showing positions of
the putative HIF binding sites and the binding site for NFkB and SP1 relative to the transcription start site (TSS). B, Stable transfected HMEC-1
monolayers containing either HIF-1a siRNA or control-siRNA were exposed to normoxia or hypoxia for indicated time points. Total RNA was isolated,
and 1 mg of RNA was transcribed into first strand cDNA. Relative expressional levels of TLR2 transcript were compared to normoxic controls by real-
time RT-PCR. Data were calculated relative to internal control gene (ß-actin), and are expressed as fold change over normoxia6SEM, *, significant
differences from normoxia and control cells (p,0.05). Results are derived from three different experiments in each condition. C, Total RNA of
normoxic monolayers of either wildtype (WT) or oxygen-stable HIF-1a expressing (HIF+/+) HMEC-1 cells was isolated and real-time RT-PCR was
performed as described above. *, significant differences from wildtype cells (p,0.001). D, Western blot analysis of TLR2 protein of normoxic HMEC-1
wild type (WT) and oxygen-stable HIF-1a expressing (HIF+/+) cells. The same blot was probed for ß-actin expression as a control for protein loading. E,
HMEC-1 monolayers were treated with 1mM of dimethyloxalylglycine (DMOG), following measurement of TLR2 transcript levels by real-time RT-PCR
as described above. *, significant differences from untreated cells (p,0.001). F, ChIP assay was utilized to examine HIF-1a binding to the TLR2
promoter in normoxic and hypoxic HMEC-1 cells. Reaction controls included samples precipitated with protein G sepharose beads alone (beads),
immunoprecipitations using a nonspecific igG monoclonal antibody (IgG) and PCR performed using HMEC-1 DNA (input). An example of three
experiments is shown.
doi:10.1371/journal.pone.0001364.g004

TLR Signaling during Hypoxia

PLoS ONE | www.plosone.org 6 December 2007 | Issue 12 | e1364



functional pairs with TLR6 or TLR1, and this interaction leads to

cytokine induction. The data suggest that TLRs sample the

contents of the phagosome independent of the nature of the

contents, and can establish a combinatorial repertoire to

discriminate among the large number of pathogen-associated

molecular patterns found in nature. As such, TLR2 seems to be

the most promiscuous TLR receptor able to recognize the most

diverse set of pathogen-associated patterns [19]. In fact, its

promiscuity has been attributed to its unique ability to hetero-

dimerize with other TLRs, particularly TLR1 and TLR6. Thus, it

Figure 5. Influence of hypoxia inducible factor (HIF)-1a on TLR6 expression during hypoxia. A, Map of TLR6 promoter region showing positions of
the putative HIF binding sites and the binding site for NFkB relative to the transcription start site (TSS). B, Stable transfected HMEC-1 monolayers
containing either HIF-1a siRNA or control-siRNA were exposed to normoxia or hypoxia for indicated time points. Total RNA was isolated, and 1 mg of
RNA was transcribed into first strand cDNA. Relative expressional levels of TLR6 transcripts were compared to normoxic controls by real-time RT-PCR.
Data were calculated relative to internal control gene (ß-actin), and are expressed as fold change over normoxia6SEM, *, significant differences from
normoxia and control cells. Results are derived from three different experiments in each condition. C, Total RNA of normoxic monolayers of either
wildtype (WT) or oxygen-stable HIF-1a expressing (HIF+/+) HMEC-1 cells was isolated and realt-time RT-PCR was performed as described above. *,
significant differences from wildtype cells. D, Western blot analysis of TLR6 protein of normoxic HMEC-1 wildtype (WT) and oxygen-stable HIF-1a
expressing (HIF+/+) cells. The same blot was probed for ß-actin expression as a control for protein loading. E, HMEC-1 monolayers were treated with
1mM of dimethyloxalylglycine (DMOG) for 24 hours. Afterwards transcript levels of TLR6 where quantified by real-time RT-PCR as described above. *,
significant differences from untreated cells. F, ChIP assay was utilized to examine HIF-1a binding to the TLR6 promoter in normoxic and hypoxic
HMEC-1 cells. Reaction controls included immunoprecipitations using a nonspecific igG monoclonal antibody (IgG) and PCR performed using HMEC-1
DNA (input). An example of three experiments is shown.
doi:10.1371/journal.pone.0001364.g005
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seems that TLR2 forms receptor clusters in response to different

microbial ligands. In this context, a different study investigated

TLR2 cell surface heterotypic interactions in response to different

ligands as well as internalization and intracellular trafficking [19].

This study showed that TLR2/TLR6 heterodimers pre-exist and

are not induced by the ligand. Upon stimulation by the specific

ligand, these heterodimers are recruited within lipid rafts [19].

Thus, it is not surprising that transcriptional regulation of TLR2

and TLR6 are tightly linked together, while hypoxia-dependent

induction of TLR2 and TLR6 is a coordinated response under the

direct control of HIF-1a.

Only recently, many parallels between hypoxia and acute

infection and inflammation have become obvious. For example,

HIF-1 is essential for myeloid cell-mediated inflammation,

bactericidal capacity of phagocytes [35] and mice with conditional

knockouts of HIF-1 show profound impairment of myeloid cell

aggregation, motility, invasiveness, and bacterial killing [11].

Similarly, HIF-1 has been identified as key activator of the

inflammatory transcription factor NF-kB [36]. Similarly, recent

studies have also found a critical role of HIF-1 during bacterial

infections. For example, exposition of host cells to bacteria

(Bartonella henselae) results in HIF-1 activation and vascular

endothelial growth factor (VEGF) secretion in vivo and in vitro

[37]. Similar findings were reported when macrophages were

infected with group B streptococci [11,35]. These studies highlight

the role of HIF-1 in transcriptional regulation of infections with

human bacterial pathogens. Moreover, HIF plays a critical role in

inflammatory diseases, such as inflammatory bowel disease.

Colonic epithelial cells are anatomically positioned to provide a

selective barrier to luminal antigens and pathogens. Supported by

a complex vasculature, this physiologically crucial barrier is a

primary target for diminished blood flow and resultant tissue

hypoxia. A number of studies have indirectly implicated hypoxia

in mucosal inflammatory diseases such as colitis [38–41], and

recent studies in murine models identified the epithelium as the

central target of hypoxia during active inflammation [31]. As such,

the existence of mucosal hypoxia during inflammation could be

confirmed using 2-nitroimidazole compounds, which are retained

in the absence of adequate oxygen levels and can be visualized

using specific antibodies [42]. To further detail the physiologic

implications of epithelial HIF-1, a very elegant study by

Figure 6. Expression of TLR2 and TLR6 during ambient hypoxia in
vivo. A and B, Expression of TLR2 and TLR6 mRNA in normoxic or
hypoxic organs. Tissue of Colon, Liver and Lung where harvested from
mice after exposure to normoxia or normobaric hypoxia (8% O2, 92%
N2 for 6h). Total RNA was isolated, and quantitative mRNA levels of
TLR2 and TLR6 were assessed by real-time RT-PCR. Data were calculated
relative to ß-actin and expressed as fold change relative to normox-
ia6SEM and transcript levels in normoxic organs were normalized to 1.
Results are derived from six animals in each condition (*p,0.01,
significant differences from normoxia).
doi:10.1371/journal.pone.0001364.g006

Figure 7. Pulmonary immunohistochemistry for TLR2 and TLR6
during hypoxia. A and B, Lungs from mice exposed to normoxia or
normobaric hypoxia (8% O2, 92% N2 for 4h) were harvested, formalin-
fixed and paraffin-embedded. Sections were stained with antibodies for
TLR2 and TLR6 or isotype controls. This figure is representative of three
experiments in each condition.
doi:10.1371/journal.pone.0001364.g007
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Karhausen et al. utilized two mouse lines with intestinal epithelial-

targeted expression of either mutant HIF-1a (constitutive repres-

sion of HIF-1) or mutant von Hippel-Lindau gene [31]. Studies of

colitis in these mice revealed that epithelial ‘‘HIF-1 loss of

function’’ correlated with more severe clinical symptoms (mortal-

ity, weight loss, colon length, intestinal epithelial permeability),

whereas an increase in epithelial HIF-1 was protective for these

individual parameters.

At present, it remains unclear, whether HIF-1 represents a

protective host defense during inflammatory hypoxia, or is part of

a pathogenic response elicited by invading pathogens or excessive

inflammation. While recent studies in septic patients have

demonstrated an anti-protective effect of the HIF-1 regulated-

gene VEGF and suggest treatment of sepsis with VEGF-receptor

antibodies [43], other studies of inflammation and infection have

found a host-protective role of HIF-1. Such studies include a

protective role of HIF in murine colitis [31], adenosine-dependent

anti-inflammatory signaling pathways during hypoxia

[26,28,30,44–47], myeloid cell function [11] or bacterial capacity

of phagocytes [35]. With regard to the present findings of

coordinated induction of the TLR2/6 complex during hypoxia, it

remains unclear if such changes in TLR signaling patterns

represent a protective host-defense mechanism or can further

exacerbate infection and inflammation associated tissue damage.

However, recent studies suggesting a protective role of TLR2

signaling in experimental colitis [48]. In this study, oral treatment

of murine colitis with a TLR2 ligand significantly suppressed

mucosal inflammation and apoptosis by restoring tight junctional

integrity of the intestinal epithelium in vivo. In this context, it is

tempting to speculate that HIF-dependent induction of TLR2 and

TLR6 may be part of hypoxia-elicited innate protection during

epithelial inflammation and treatment with HIF-activators (such as

DMOG) may be protective during colitis via TLR2 induction and

signaling.

Taken together, the present studies reveal transcriptional-

dependent induction of TLR2 and TLR6 during hypoxia. Based

on ChIP analysis, cellular models of HIF-loss and gain of function

and additional genetic studies using conditional deletion of HIF-

1a, it appears likely that this response is coordinated by HIF-1a. As

such, these studies highlight the central role of HIF-1 in the

transcriptional control of signaling pathways in innate immune

responses.

MATERIALS AND METHODS

Cell culture
Human microvascular endothelial cells (HMEC-1) were cultured

as described previously [23,26,28–30,49]. Human colonic epithe-

lial cells (Caco2) were grown and maintained as confluent

monolayers in 75 cm2 growing flasks as previously described

[50]. MM6 cells were cultured as described previously [51]. Prior

to all experimental procedures, cultured cells were tested to rule

out contamination with Mycoplasma spp.. Human dendritic cells

(hDCs) were islotated from buffy coats of healthy blood donors as

described previously [52]. BMDCs were isolated and cultured as

described previously [53].

Transcriptional Studies
Transcript levels were quantified by real-time reverse transcrip-

tion-polymerase chain reaction (RT-PCR, iCycler; Bio-Rad

Laboratories, Hercules, CA), as described previously [26,28–

30,45,54]. Primer sets and PCR conditions are summarized in

Table 1.

Immunoblotting experiments
Immunoblotting experiments were performed as described

previously[44,45,47,49,54,55]. In short, HMEC-1 were grown to

confluence on 100-mm dishes and exposed to indicated experi-

Figure 8. Role of hypoxia inducible factor (HIF)-1 in TLR2 and TLR6
expression during hypoxia in vivo. Real-time RT-PCR analysis of murine
epithelial TLR2 and TLR6 mRNA in conditional HIF-1a mutant (HIF-/-) and
littermate control (WT) animals subjected to normoxia or hypoxia. Data
were calculated relative to ß-actin and are expressed as fold change over
normoxia6SEM, where transcript levels of control animals were
normalized to 1. *, significant differences from normoxic control animals
(p,0.05). Results are derived from 8 animals in each condition.
doi:10.1371/journal.pone.0001364.g008
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mental conditions. The monolayers were lysed for 10 min in

300 ml lysis buffer (150 mM NaCl, 25 mM Tris, pH 8.0, 5 mM

EDTA, 2% Triton X-100, and 10% mammalian tissue protease

inhibitor cocktail; Sigma-Aldrich), scraped and collected into

microfuge tubes. After spinning at 14,000 g to remove cell debris,

the pellet was discarded. Proteins were solublized in nonreducing

Laemmli sample buffer and heated to 70uC for 10 min. Samples

were resolved on a 12% polyacrylamide gel and transferred to

nitrocellulose membranes. The membranes were blocked for 1 h

at room temperature in TBS supplemented with 0.05% Tween 20

and 3% nonfat dry milk. The membranes were incubated either

with polyclonal rabbit anti-TLR2 (Acris, 2 mg/ml) or with

polyclonal rabbit anti-TLR6 (Abcam, 2 mg/ml) in PBS-T

supplemented with 0,05% Tween 20 and 3% nonfat dry milk

for 1h at 4uC over night, followed by 10 min washes in PBS-T.

The membranes were incubated in goat anti-rabbit (Pierce,

200 ng/ml) and conjugated to horseradish peroxidase for 1 h at

room temperature. The wash was repeated and proteins were

detected by enhanced chemiluminescence. To control for protein

loading, blots were stripped and re-probed for ß-actin using a

mouse monoclonal anti-human ß-actin antibody (Sigma-Aldrich).

TLR stimulation and IL6 ELISA
Similar numbers of HMEC-1 (,105 cells/well) were seeded in a

24-well plate and grown to confluence (2–3 days). After adding

new media, cell monolayers were stimulated with specific TLR

ligands (P3C, TLR2 ligand) from EMC microcollections GmbH,

Tuebingen, Germany; FSL-1 (synthetic, TLR2/6 ligand) from

InVivoGen, San Diego, CA, USA) with indicated ligand

concentrations (1, 10 and 100 ng/ml). Cells were exposed to

hypoxia and normoxia for 24h. Afterwards, supernatants were

harvested, centrifuged to remove cellular debris, and stored at

270uC until assayed by ELISA. Human IL-6 was quantified using

matched antibody pairs from R&D Systems in an ELISA

according to the manufactures instructions.

Chromatine immunoprecipitation (ChIP) assay
ChIP assays were performed using HMEC-1 subjected to

normoxia or hypoxia [30]. In brief, 26107 cells were fixed with

1% paraformaldehyde for 10 min. Cross-linking was stopped by

the addition of 125 mM glycine, and chromatin derived from

isolated nuclei was sheared using a F550 micro-tip cell sonicator

(Fisher Scientific). After centrifugation, supernatants containing

sheared chromatin were incubated for 4 h with 5 mg of anti–HIF-

1a antibody or IgG control (Upstate Biotechnology) as negative

control. Protein A sepharose was added and the incubation

continued overnight at 4uC. Immune complexes were washed

extensively and eluted from the protein A sepharose. The

supernatants were transferred to a new tube, and 1 mg/ml of

RNase was added and incubated for 5 h at 67uC. Samples were

frozen at 280uC and 60 mg/ml proteinase K was added and

incubated for 2 h at 45uC. Next, DNA was purified and extracted

using Nucleo Spin Extract II kit (Macherey& Nagel, Dueren,

Germany) and analyzed by PCR. 1 ml of sample was used for each

PCR reaction. The sequences of the TLR2 and TLR6 promoter-

specific primers spanning the putative HIF-1–binding regions were

as follows. TLR2: sense, 59-TCAGCGCGAGGTCCAGAGTT -

39 and antisense, 59-TCCGAGCAGTCACCTGAGAG -39. The

size of the amplified product resulting from the use of this primer

pair was 320 bp. TLR6: sense, 59- AAGATGAGCCAGAGGT-

GAAG-39 and antisense, 59- GCAAGCAGCAGACACATCAA-

39. The size of the amplified product resulting from the use of this

primer pair was 285 bp. The primer sets were amplified using

increasing numbers of cycles of 94uC for 1 min, 56uC for 2 min,

72uC for 4 min, and a final extension of 72uC for 7 min. The PCR

transcripts were visualized on a 2% agarose gel containing 5 mg/

ml of ethidium bromide.

In vivo hypoxia model and immunohistochemistry
Colonic mucosal scraping (enriched in epithelial cells) were

obtained from 6–8 wk-old conditional HIF-1a mutant mice or

Table 1. Human and murine Primer pairs as used for real-time RT-PCR.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Human Forward (59-39) Reverse (59-39) Product [bp] Temp [Cu]

ß-actin GGTGGCTTTTAGGATGGCAAG ACTGGAACGGTGAAGGTGACAG 161 58–61

TLR2 GGAGCTGAAGAACTTCAATC TTGCACCACTCACTCTTC 159 58

TLR6 CAGAGTGAGTGGTGCCATTA GCCTTCAGCTTGTGGTACTT 137 61

TLR10 AGGTGCAGTGGCTCACTCTT TTCACCATGTTGGCCAGGAT 100 58

Murine Forward (59-39) Reverse (59-39) Product [bp] Temp [Cu]

ß-actin CGAGCGTGGCTACAGCTTCA AGGAAGAGGATGCGGCAGTG 122 58–60

TLR1 TGATCTTGTGCCACCCAACA GCAGGGCATCAAAGGCATTA 66 58

TLR2 TTGCTCCTGCGAACTCCTAT AGCCTGGTGACATTCCAAGA 157 58

TLR3 TAGACTGCATCGCCTGCTAA AAGCAGCCAGAAGCAGAACT 122 59

TLR4 TCCGGAAGTTCACATAGCTG TCCATCTCACAAGGCATGTC 163 58

TLR5 AGCTGGTGTTCAAGGACAAG CCTGGATGTTGGAGATATGG 210 57

TLR6 TCTGGGATAGCCTCTGCAACA GGCGCAAACAAAGTGGAAAC 71 60

TLR7 TACCAGGACAGCCAGTTCTA AGGAGCCTCTGATGAGACAA 136 58

TLR8 TGCGCTACCACCTTGAAGAG CACTGGTTCCAGGAGGATGA 248 58

TLR9 ACCTCAGCCACAACATTCTC TGCACCTCCAACAGTAAGTC 142 58

TLR11 GGCAGAGGCTCCATAGTTAC CCGTCTCTTCAGTTGCTCAC 116 58

TLR12 CGCTTATGTCCAGGACAAGA GAGGAGAGGCAAGCCAATTA 144 58

TLR13 AGCCTAGCTGCCTGGAAGAA AGCTCAACAGGATGGAGAGT 100 58

doi:10.1371/journal.pone.0001364.t001..
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littermate controls, as described previously [31]. Organs were

obtained from C57BL/6 mice exposed either to normobaric

hypoxia (8% O2 and 92% N2) or room temperature air for 6 h

(n = 6 animals per condition). After hypoxia/normoxia exposure,

the animals were killed and organs were harvested. For RT-PCR

analysis scrapings and organs tissue were homogenized in

RNAlater (QUIAGEN) using a 22-gauge syringe (Becton-Dick-

inson) and Quiashredder column (QUIAGEN). Further analysis of

TLR2 and TLR6 mRNA fold changes were performed as

described above. For immunohistochemistry organs were harvest-

ed and collected in a tube containing Tissue Tec freezing media

and were then subsequently shock frozen. Frozen tissue were cut to

5-mm sections and placed on a glas slide. After fixation with

acetone for 10 min and washing in PBS for 10 min sections were

blocked in TBST supplemented with 0.05% Tween 20 and 5% of

human serum at room temperature for 30 min. After blocking

sections were incubated either with monoclonal mouse anti-TLR2

(eBioscience, 1:50–1:200 dilutions), or with polyclonal goat anti

TLR6 (Santa Cruz Biotechnology Inc., 1:50–1:200 dilutions) in

PBS-T supplemented with 0,05% Tween 20 and 5% of human

serum for 1 h at room temperature, followed by washing twice in

PBS. Alexa Fluor 488-conjugated goat anti-mouse (TLR2 and

IgG) or donkey anti-goat (TLR6) were used as secondary

antibodies (Invitrogen, 1:5000 for 60 min at room temperature).

After washing twice with PBS samples were mounted (ProLong

Gold antifade reagent, Invitrogen) and assessed within the next

24 h using a laser-scanning confocal microscope (Leica). Single-

plane optical slices were then processed for double-labelled cells

using identical laser and standardized microscope settings and

exported to Adobe Photoshop 5.0LE (TIFF). Representative

results are shown for the experiment for each condition. These

protocols were in accordance with National Institutes of Health

guidelines for use of live animals and were approved by the

Institutional Animal Care and Use Committee at University of

Colorado Health Science Center in Denver.

Data analysis
Data were compared by 2-factor ANOVA or Student’s t test,

where appropriate. Values are expressed as the mean6SEM from

at least three separate experiments per condition. P,0.05 was

considered statistically significant.
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