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Abstract

Several experiments indicate that there exists substantial synaptic-depression at the synapses between olfactory receptor
neurons (ORNs) and neurons within the drosophila antenna lobe (AL). This synaptic-depression may be partly caused by
vesicle-depletion, and partly caused by presynaptic-inhibition due to the activity of inhibitory local neurons within the AL.
While it has been proposed that this synaptic-depression contributes to the nonlinear relationship between ORN and
projection neuron (PN) firing-rates, the precise functional role of synaptic-depression at the ORN synapses is not yet fully
understood. In this paper we propose two hypotheses linking the information-coding properties of the fly AL with the
network mechanisms responsible for ORN?AL synaptic-depression. Our first hypothesis is related to variance coding of
ORN firing-rate information — once stimulation to the ORNs is sufficiently high to saturate glomerular responses, further
stimulation of the ORNs increases the regularity of PN spiking activity while maintaining PN firing-rates. The second
hypothesis proposes a tradeoff between spike-time reliability and coding-capacity governed by the relative contribution of
vesicle-depletion and presynaptic-inhibition to ORN?AL synaptic-depression. Synaptic-depression caused primarily by
vesicle-depletion will give rise to a very reliable system, whereas an equivalent amount of synaptic-depression caused
primarily by presynaptic-inhibition will give rise to a less reliable system that is more sensitive to small shifts in odor
stimulation. These two hypotheses are substantiated by several small analyzable toy models of the fly AL, as well as a more
physiologically realistic large-scale computational model of the fly AL involving 5 glomerular channels.

Citation: Rangan AV (2012) Functional Roles for Synaptic-Depression within a Model of the Fly Antennal Lobe. PLoS Comput Biol 8(8): e1002622. doi:10.1371/
journal.pcbi.1002622

Editor: Peter E. Latham, Gatsby Computational Neuroscience Unit, University College London, United Kingdom

Received January 6, 2012; Accepted June 11, 2012; Published August 23, 2012

Copyright: � 2012 Aaditya V. Rangan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the NSF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: rangan@cims.nyu.edu

Introduction

The early stages of the drosophila olfactory system include a

primary sensory structure called the antenna lobe (AL). The AL

receives input from olfactory sensory neurons (ORNs) at the

sensory periphery, and is organized into glomerular clusters, with

each cluster corresponding to a specific olfactory receptor class [1–

5]. Each glomerulus within the AL contains dendrites of local

neurons (LNs) whose projections are limited to the AL, as well as

projection neurons (PNs) whose axons extend beyond the AL

deeper into the fly brain [6]. The PNs are excitatory, whereas

there is evidence that both excitatory local neurons (LNEs) and

inhibitory local neurons (LNIs) exist [7–9]. The LNs associated

with each glomerulus have local projections, which connect to that

glomerulus, as well as lateral projections which connect to other

glomeruli [10].

Various experiments indicate that there exists substantial

synaptic-depression at the synapses between olfactory receptor

neurons (ORNs) and neurons within the drosophila antenna lobe

(AL); by ‘synaptic-depression’, we refer to any mechanism which

gives rise to short-term depression of the ORN-induced EPSCs

within the AL following an increase in ORN activity. While it has

been proposed that this synaptic-depression contributes to the

nonlinear relationship between ORN and PN firing-rates, the

precise functional role of synaptic-depression at the ORN synapses

is not yet fully understood. To investigate the relationship between

synaptic-depression and the coding properties of the fly AL, we

created and analyzed the dynamics of several models of the fly AL.

We have been able to distill two hypotheses linking the

information-coding properties of the fly AL with the network

mechanisms responsible for ORN?AL synaptic-depression.

Our first hypothesis is related to the variance coding of ORN

firing-rate information — once stimulation to the ORNs is

sufficiently high to saturate PN responses within any particular

glomerular channel, further stimulation of the ORNs can reduce

the amount of fluctuation of the ORN?PN input within that

channel, thus increasing the regularity of PN spiking activity while

maintaining PN firing-rates. Thus, given two different stimuli

which saturate the responses of a given glomerulus, it may still be

possible to distinguish between these two stimuli solely by using

this saturated glomerulus’ activity. In order to distinguish these

saturated responses, a readout mechanism must be sensitive to

higher-order statistics (such as variance) in the saturated glomer-

ulus’ activity.

Our second hypothesis proposes a tradeoff between trial-to-trial

reliability and sensitivity governed by the mechanisms responsible

for ORN?AL synaptic-depression. Within the fly, synaptic-

depression may be partly caused by vesicle-depletion, and partly

caused by presynaptic-inhibition due to the activity of inhibitory

local neurons within the AL [11,12]. Our second hypothesis is that

synaptic-depression caused primarily by vesicle-depletion will give

rise to a very reliable system, whereas an equivalent amount of
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synaptic-depression caused primarily by presynaptic-inhibition will

give rise to a less reliable system that is more sensitive to small

shifts in odor stimulation. Using this second hypothesis, one can

further postulate that a balance of vesicle-depletion and presyn-

aptic-inhibition within the AL is required in order to optimize the

discriminability of the network over short observation-times.

Results

The relationship between the architecture of the fly AL and its

odor-coding properties largely remain a mystery. Specifically, the

precise functional role of synaptic-depression at the ORN synapses

is still unclear. In order to investigate the possible function

associated with these network mechanisms, we have designed and

built a scaled down computational network model of the fly AL.

By analyzing the dynamics of this model we have been able to

distill two hypotheses linking the information-coding properties of

the fly AL with the network mechanisms responsible for

ORN?AL synaptic-depression. We will discuss these hypotheses

later in the sections below, after first introducing a few pertinent

details regarding our computational model.

Sketch of computational network model
In brief, our computational network model incorporates 5

glomerular channels, each with 6 PNs, 6 LNEs, 6 LNIs and 60
ORNs, in rough accordance with the experimentally observed

ratio of ORNs to PNs and LNs [13]. As the real fly AL has *50
glomerular compartments, each of roughly this size [10], this

model is *10% the size of the full AL. Each neuron in this

network model is modeled using Hodgkin-Huxley-type equations.

The synaptic currents in this network allow neurons to affect other

neurons in the same glomerulus, as well as neurons in other

glomeruli. The input to this network takes the form of noisy

stimulus current to the ORNs, with different ‘odors’ corresponding

to different levels of stimulus current to different ORN input

channels. Importantly, the model is built to accommodate

synaptic-depression of the ORN synapses, allowing for both the

mechanisms of presynaptic-inhibition as well as vesicle-depletion.

An illustration of the network’s connectivity, as well as an abridged

list of network parameters, is given in Fig. 1. We have built this

network to respect physiological constraints, and we have tuned

this model using several experiments as benchmarks. Here we

provide a brief summary of these results. A more detailed

description of the model as well as the details regarding the

benchmarking are contained in the Methods section.

Our goal while benchmarking this model was to ensure that our

model produced reasonable statistical features of AL activity

during the *500ms following odor onset. The reason we focused

on matching the statistics of this transient period is that evidence

indicates that this period is likely critical for many basic olfactory

discrimination and classification tasks [14,15]. One of the

simplifications we have made in our model is that the input to

the ORNs following odor onset is assumed to be a Poisson process

with a time-varying rate that is roughly stereotyped across ORN

classes (see Methods). While natural odor stimuli are likely

temporally complex [16] and even static stimuli generate odor-

specific temporal fluctuations at the level of the fly ORNs after

Figure 1. A schematic of the large-scale network model. [Left]: The network consists of 5 glomerular channels, each incorporating 60 olfactory
receptor neurons (ORNs in green) which stimulate a ‘glomerulus’ consisting of 6 projection neurons (PNs in red), 6 excitatory local neurons (LNEs in
magenta) and 6 inhibitory local neurons (LNIs in blue). The PNs, LNEs and LNIs are connected to one another randomly within each glomerulus, and
the LNEs and LNIs also affect the neurons in other glomeruli. The LNIs affect the ORN?AL synapses via presynaptic-inhibition. [Right]: The non-
negligible connection strengths are listed on top, with the slow-inhibitory connection strengths listed separately from the fast-inhibition strengths.
The relevant connection probabilities are listed on the bottom. The parameter SP refers to Spresyn, which characterizes the overall strength of
presynaptic-inhibition. See Methods for full details.
doi:10.1371/journal.pcbi.1002622.g001

Author Summary

Understanding the intricacies of sensory processing is a
major scientific challenge. In this paper we examine the
early stages of the olfactory system of the fruit-fly. Many
experiments have revealed a great deal regarding the
architecture of this system, including the types of neurons
within it, as well as the connections those neurons make
amongst one another. In this paper we examine the
potential dynamics produced by this neuronal network.
Specifically, we construct a computational model of this
early olfactory system and study the effects of synaptic-
depression within this system. We find that the dynamics
and coding properties of this system depend strongly on
the strength, and sources of, synaptic-depression. This
work has ramifications for understanding the coding
properties of other insect olfactory systems, and perhaps
even other sensory modalities in other animals.

Synaptic Depression within Fly AL
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several hundred ms [17], the dynamics of the ORN responses

during the first 500ms following odor onset seems to be relatively

stereotypical, involving either a sharp increase in activity or, more

rarely, an inhibitory phase [18,19]. Thus, the idealized input to the

ORNs we employ in our model is intended to capture these simple

features of ORN activity which drive the AL during the first

*500ms following odor onset.

The experimental phenomena we used to benchmark our

model ultimately provided three constraints on the connectivity of

our model network. First, the convergence ratio of ORNs to PNs

must be high, otherwise the PNs do not receive sufficient

convergent input to fire quickly after odor onset. Second, the

synaptic-depression at the ORN synapses must be sufficient to

ensure that PN firing-rates peak earlier than ORN firing-rates (in

response to odor stimulus), and that ORN?PN input is strong

and relatively stable during the first 500ms after odor stimulus

onset. Finally, the inter-AL connectivity (governed by the

LN?LN, PN?PN, PN?LN, and LN?PN connection matrix)

must be sufficiently strong to create PNs which are more broadly

responsive than their ORN inputs, yet sufficiently sparse to place

the network in a dynamic regime which does not develop

spontaneous oscillations (which are not observed experimentally

during the initial transient following odor onset – [17]).

In addition, to further understand the network mechanisms

underlying the two proposed hypotheses, we have designed

simpler neuronal network models which distill the relevant

phenomena, while allowing for a more comprehensive analysis.

The analytical tools we use include the analysis of return-maps for

simple network models, as well as the analysis of population-

dynamics equations for more complicated network models (see the

sections to follow for more details).

Hypothesis 1: a monotonically decreasing map between
ORN activity and PN input variance

As evidenced in [20,21], the relationship between ORN firing-

rate (mORN ) and PN firing-rate (mPN ) for a given glomerulus is

often nonlinear, with the PN firing-rate saturating rather quickly

as a function of ORN firing-rate. One consequence of this

nonlinearity is that, for low mORN , the gain in mPN is high — as

mORN varies from 0–50 Hz, mPN can vary from 0–150 Hz or

more. Another consequence of the nonlinear relationship is that,

for high mORN , the gain in mPN is low — as mORN varies from

100–200 Hz, mPN may remain almost constant. Many have noted

that the region of high gain allows for ‘odor separation’ — namely,

odors which give rise to similar mORN profiles for a given

glomerulus may in turn produce very different mPN profiles within

that glomerulus [20]. However, this ‘odor separation’ only works

when the odors in question generate mORN which are sufficiently

low as to lie in the region of high mPN gain. It is tempting to

conclude that if two odors generate mORN which are sufficiently

high (such that the induced mPN lie in the region of low gain), then

the mPN generated by these odors would be similar, and the odors

would not be ‘separated’.

The first hypothesis we propose is that, even if two odors

generate mORN which correspond to similar mPN , the dynamics of

the glomerulus may still serve to separate these odors. However, in

this case the odor separation takes place not in terms of PN firing-

rates (as, indeed, the mPN generated by these two odors may be

very similar or identical), but rather in terms of higher-order

statistics of PN activity. In other words, even though the set of PN

firing-rates produced at the plateau of the mPN mORNð Þ relation-

ship are similar, we hypothesize that there is in fact a systematic

difference in the PN dynamics underlying these similar PN firing-

rates.

To be more specific, we claim that for values of mORN along the

plateau of the mPN mORNð Þ relationship, as mORN increases (and

mPN stays roughly the same), the synaptic-depression at the ORN

synapses continues to increase. One consequence of this increase

in synaptic-depression is that, as mORN increases along the plateau

of mPN mORNð Þ, the number of ORN firing-events increases, but

the effect of each ORN firing-event on postsynaptic PNs decreases.

Thus, the postsynaptic conductance induced within any PN by the

ORNs (i.e., the ORN input to the PN) maintains roughly the same

mean, but decreases in variance. When discussing a reduction in

the variance of ORN input, we refer specifically to a reduction in

the variance across short time-windows of the PN excitatory-

conductance due to ORN activity.

If the mORN is not very high, then each ORN generates

relatively few spikes, each resulting in a large EPSC in the

postsynaptic PN. Thus, the ORN input to the PNs will have large

fluctuations (i.e., the PNs will be ‘fluctuation-driven’). On the other

hand, if mORN is very high, then each ORN generates very many

spikes, each resulting in a small EPSC within the postsynaptic PN.

In this case the PN conductance due to the ORNs will be nearly

constant (and the PNs will be ‘mean-driven’). We further

hypothesize that, as mORN increases along the plateau of

mPN mORNð Þ, the decrease in variance of ORN input to the PNs

will correspond to a decrease in the variance of PN spiking activity.

Because (i) the ORN activity is not deterministic, but rather driven

by many independent stochastic molecular binding events [18],

and (ii) many ORNs are presynaptic to each PN, the accumulation

of ORN firing-events observed by any given PN during any trial of

odor presentation is well-approximated by a Poisson process with

time-varying rate. Thus, a decrease in the ORN input variance

across short time-windows will be associated with a decrease in the

ORN input variance across multiple trials (for the same time-

window). Thus, one would expect the variance in PN spiking

activity mentioned above to decrease both across short time-

windows and across multiple trials (for the same time-window).

This reduction in variance of PN spiking activity is equivalent to

an increase in the regularity of PN spiking activity, which is

equivalent to a reduction in the variance of the inter-spike-interval

distribution associated with a PN within the given glomerulus.

Thus, in summary, our first hypothesis is that the dynamics of a

glomerulus can serve to separate ORN inputs in two ways. Not

only can similar ORN inputs within the high-gain region of

mPN mORNð Þ be mapped to significantly different PN firing-rates

(see [20]), but ORN inputs within the low-gain region of

mPN mORNð Þ can give rise to PN activity with differing degrees

of regularity, even when the PN firing-rates associated with those

ORN inputs are not significantly different. This hypothesis may

have significance for odor discrimination, as the variance in PN

activity may encode features of the odor even in situations where

the ORN input is sufficiently high that PN firing-rates have

saturated (see Discussion).

A simple cartoon of variance coding. As a simple cartoon

which illustrates this hypothesis, we have simulated a single

conductance-based integrate-and-fire PN, driven by a set of 4
ORNs, each endowed with a simple model of synaptic-depression.

This simple model exhibits the following dynamical features: (i) the

mPN mORNð Þ relationship exhibits high gain and saturation, and (ii)

for different values of mORN on the plateau of the mPN mORNð Þ
relationship, the variance in PN activity decreases as mORN

increases, even though mPN remains roughly constant.

Within this simple model, we describe each ORN as a Poisson

process with fixed rate g (0Hzƒgƒ180Hz). The coupling strength

SPN/ORN between the ORNs and the PN is modulated by a term

m tð Þ (0vmv1), which is intended to model vesicle-depletion at the

Synaptic Depression within Fly AL
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ORN synapses. As each ORN fires, this m term will give rise to

synaptic-depression between the ORNs and the PN. If m~1, the

synapses between the ORNs and the PN are 100% exhausted. If

m~0, the synapses between the ORNs and the PN are completely

refreshed. The model details are given in a section entitled ‘‘An

idealized model used to illustrate variance coding’’ in Methods.

With this simple model, it can be seen that the PN firing-rate

mPN gð Þ is a nonlinear function of the ORN firing-rate g, and that

mPN saturates (plateaus) at values of g*30Hz (See Fig. 2A). The

time-averaged mean total excitatory conductance SGETt of the

PN enjoys a similar nonlinear relationship (Fig. 2B). Notably, for

values of gw30Hz, the time-averaged mean vesicle-depletion

parameter SmTt,ORN increases as a function of g, and the standard

deviation in the total PN conductance sGE
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SG2

ETt{SGET2
t

q
decreases as a function of g (Fig. 2C and Fig. 2D). This decrease in

standard deviation is associated with a decrease in coefficient-of-

variation for the total PN conductance. Qualitatively speaking, the

PN is more ‘mean driven’ when g*180Hz, and the PN is more

‘fluctuation driven’ when g*30Hz, even though the firing-rate of

the PN is similar in both cases (Fig. 2E and Fig. 2F). This can be

quantified by measuring, for example, the autocorrelation of the

PN. In the case g~180Hz, the PN autocorrelation shows several

significant peaks, the first of which is at *13ms, indicating

periodic-firing at *70Hz (Fig. 2E). In the case g~30Hz, the PN

autocorrelation does not indicate a strong periodicity to the PN

firing-patterns (Fig. 2E).

The simple cartoon described above only considers synaptic-

depression resulting from vesicle-depletion. The real AL displays

evidence of presynaptic-inhibition as well. Nevertheless, the same

general principle still holds regardless of the source of synaptic-

depression at the ORN synapses, as long as the PNs become more

mean driven as ORN firing-rates increase. In fact, it is possible to

show analytically that similar results hold across a wide range of

parameters for an idealized system similar to this one (see the

section entitled ‘‘A simple analyzable cartoon of variance coding’’

in Methods).

If this picture is accurate in the real AL, then the PN dynamics

within any given glomerulus in the AL will change as a function of

ORN input to that glomerulus, even when the mean PN firing-

rates have saturated for that glomerulus. These dynamical changes

will only be observable through measurements of statistics that are

‘higher-order’ than mean firing-rate. We note that synaptic-

depression of the ORN synapses is not the only mechanism via

which the PNs may become more mean-driven as ORN firing-

rates increase — other mechanisms, such as spike-frequency

adaptation, could also contribute to this effect. As long as the

postsynaptic influence of each ORN spike decreases as mORN

increases, the PN activity will become more mean-driven as mORN

increases. As the PN activity becomes more mean-driven, we

expect the firing-sequences produced by that PN to become more

regular [22].

An illustration of variance coding within a large-scale

model. We also observe this phenomenon within our large-scale

model (described in Methods), which contains both presynaptic-

inhibition and vesicle-depletion. To illustrate this phenomenon at

work, we created a panel of 16 odors, all of which saturated the PN

firing-rates (i.e., produced average PN firing-rates at the ‘plateau’

of the mPN mORNð Þ curve for the model). We presented each of

these odors to the model network 64 times.

For each of the 64 trials of each stimulus we measured the 30-

component vector of PN firing-counts collected over the 256ms
following odor onset. Each component of this vector represents the

number of spikes fired by one of the 5|6 PNs during this time.

We then used this vector to perform each possible 2-way and 3-

way stimulus discrimination task (see the section entitled ‘‘Odor

Discrimination’’ in the Methods). Each of these 2-way and 3-way

discrimination tasks results in a discriminability rate (i.e., the

fraction of correctly categorized trials – note that chance

performance for a 2-way task is 50%, and chance performance

for a 3-way task is 33%).

We construct a histogram of the discriminability rates for the

16

2

� �
2-way discrimination tasks, and as expected (see Fig. 3A),

the typical discriminability rate for the system is not particularly

high (recall that each odor saturated the PN firing-rates). Similarly,

the
16

3

� �
3-way discrimination tasks performed using PN firing-

rate vectors also do not yield high discriminability rates (Fig. 3B).

However, if instead of merely using PN firing-rate information we

also use information regarding PN-PN correlations within the

system, then the typical discriminability rates for the 2-way and 3-

way tasks increase (see Fig. 3C,D). To produce the discriminability

rates shown in Fig. 3C,D, we measured not only the 30-

component vector of PN firing-counts for each odor trial, but

also the 302-component vector of PN-PN correlations (with

correlation time 32ms). As expected, these higher-order statistics

contain enough information to discriminate odors significantly

more reliably than mere firing-rates.

The difference between the performance of these low-order and

high-order readouts is more noticeable when the synaptic-

depression in the system is strong. Conversely, in a network with

no vesicle-depletion and reduced presynaptic-inhibition, the low-

and high-order readouts yield more similar discriminability-rates

(see Fig. 3E,F). Thus, the presence of strong synaptic-depression

within our system is one factor which allows the network’s

dynamics to encode input-specific information within the PN-PN

correlations.

For the example shown in Fig. 3, the difference between the

typical 2-way discriminability rates observed when using high-

order versus low-order readouts is maximized when the synaptic-

depression is strongest; the effect of variance coding is seen quite

clearly. However, for the 3-way discriminability rates, the

difference between the high- and low-order readouts is greatest

when the presynaptic-inhibition is not too strong. A natural

question is: why does the performance for the 3-way discrimina-

tion task not parallel that for the 2-way task? Why is the difference

in performance between high- and low-order readouts not

maximized when both presynaptic-inhibition and vesicle-depletion

are at their strongest?

This effect arises in part because the 3-way task is quite difficult

and the observation time Tobs over which the task is carried out is

rather short — Tobs~256ms in this case. As we will argue below,

one consequence of strong presynaptic-inhibition is that the

network’s ability to perform fine discrimination will be compro-

mised when Tobs is small. In order to perform very well on fine

discrimination tasks when Tobs is small, the network should have

only moderate amounts of presynaptic-inhibition (consistent with

Fig. 3F).

Hypothesis 2: a tradeoff between reliability and
sensitivity

It has been hypothesized that one functional role for the AL is to

separate similar odors and that the nonlinear gain curve

mPN mORNð Þ is instrumental in this process. As shown in [11],

the nonlinearity of mPN mORNð Þ is influenced strongly by

substantial synaptic-depression at the ORN synapses. Thus, it is

Synaptic Depression within Fly AL

PLOS Computational Biology | www.ploscompbiol.org 4 August 2012 | Volume 8 | Issue 8 | e1002622



reasonable to conclude that one functional role of synaptic-

depression at the ORN synapses is to enhance the odor separation

capabilities of the AL.

Within the fly AL there are multiple sources of synaptic-

depression at the ORN synapses. Two major mechanisms which

contribute to this synaptic-depression are vesicle-depletion and

presynaptic-inhibition. While either one of these mechanisms

could, in principle, be the major contributing factor to the

synaptic-depression observed within the fly AL, it seems as

though both of these mechanisms play a substantial role in

producing synaptic-depression [11,12]. Thus, one is faced with

the following natural question: What purpose do these two

distinct mechanisms serve within the fly AL? How would the

odor-coding properties of the fly AL change if, say, only one of

Figure 2. A simple illustration of variance coding. Here we presume the simple model described in the section entitled ‘‘An idealized model
used to illustrate variance coding’’. [A] There is a nonlinear relationship between the ORN firing-rate and the PN firing-rate. [B] There is also a
nonlinear relationship between the ORN firing-rate and the time-averaged conductance of the PN. [C] As the ORN firing-rate increases, the time-
averaged vesicle-depletion parameter increases and saturates. [D] Since the average vesicle-depletion parameter increases as the ORN firing-rate
increases, the variance in the PN conductance is a decreasing function of ORN firing-rate, for sufficiently high ORN firing-rates. Two different points
along this curve are indicated, corresponding to two different PN dynamical regimes with similar PN firing-rates. The ‘|’ and ‘%’ symbols indicate,
respectively, an irregularly firing-regime and a regularly firing-regime. [E] As a result of the fact that the PN conductance has a low variance when the
ORN firing-rates are high, the PN activity is very regular when the ORN firing-rate is high. In contrast, the PN activity is less regular when the ORN
firing-rate is not as high. This is reflected in the normalized PN autocorrelation, which shows several significant peaks when the variance in the PN
conductance is low (‘%’-regime, left). In contrast, when the variance in the PN conductance is high the autocorrelation does not show significant
peaks (‘|’-regime, right). [F] The regularity in the PN spiking activity is seen in PN voltage trace, as shown for the ‘%’-regime (top) and ‘|’-regime
(bottom). [G] The variance in the PN conductance is seen in PN conductance trace, as shown for the ‘%’-regime (top) and ‘|’-regime (bottom). [H] In
this panel we show the voltage-trace of a putative Kenyon cell, a conductance-based integrate-and-fire-neuron, driven by either the PN from the %-
regime (top) or the PN from the |-regime (bottom). Thick vertical lines indicate firing-events for this putative KC. When driven by the regular activity
of the %-PN, the KC mainains an elevated subthreshold voltage, but does not fire often. On the other hand, when driven by the irregular activity of
the |-PN, the KC does not maintain an elevated subthreshold voltage but fires after each burst in |-PN-activity. This provides a simple illustration of
one possible way in a variance-code could be ‘read-out’ by downstream neurons.
doi:10.1371/journal.pcbi.1002622.g002
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these mechanisms were responsible for the observed levels of

synaptic-depression at the ORN synapses? Is there some

functional advantage gained by having both of these mechanisms

at play?

In what follows we introduce a hypothesis which links the

underlying nature of synaptic-depression at the ORN synapses to

information-coding properties of the AL, such as reliability,

sensitivity and discriminability. First we will define these terms,

and then we will explain our hypothesis in more detail throughout

the rest of this section.

sources of noise: There are two sources of ‘noise’ in our

network which influence the reliability (or unreliability) of the AL’s

activity across trials. The first is the initial condition of the system

(i.e., the state of the system at odor onset). Different initial

conditions will give rise to different dynamic trajectories. The

second source of noise is the odor-driven Poisson input to the

ORNs in the model. Different trials will give rise to different

sequences of ORN spikes.

reliability: We define the reliability of the AL as the inverse of

the coefficient-of-variation in spike-counts of AL neurons, as

measured across trials over a given stimulus-driven time-window.

Reliability is high if the spike-counts of the AL neurons are similar

from trial-to-trial. Reliability is low if the spike-counts vary

significantly from trial to trial. In our analysis we will consider a

family of networks with the same mean firing-rate, hence the

notion of reliability can be constructed using standard-deviation in

spike-counts across trials, rather than coefficient-of-variation.

sensitivity: Given two similar stimuli, we can measure the

time-averaged firing-rates of the various neurons in the AL,

collected over a long time (e.g., 1024ms). If the firing-rates induced

by these two similar stimuli are nearly identical, we say that the AL

is ‘not sensitive’ to the difference between these two stimuli. On

the other hand, if the firing-rates induced by these two stimuli are

quite different, then we would describe the AL as ‘sensitive’ to the

stimulus difference. More specifically, we define sensitivity to be

the magnitude of the derivative of the vector of steady-state AL-

Figure 3. A manifestation of variance coding within the large-scale model. The large scale model (described in Methods) exhibits a
phenomenon similar to the variance coding shown in Fig. 2. We constructed a panel of 16 odors, all of which only directly stimulated the same 3
glomeruli (although to differing degrees). Moreover, we chose every odor within this panel such that the ORN firing-rates of the 3 directly stimulated
glomeruli were sufficient to saturate the firing-rates of the associated PNs (i.e., the directly stimulated ORN firing-rates were §12 Hz, see Fig. 10).
Given this panel of odors, we presented each odor multiple times, and used the collection of 30-component PN firing-rate vectors (measured over the
256ms period immediately following odor onset) to perform a variety of odor discrimination tasks (see Results for details). [A] The histogram of
discriminability rates associated with 2-way discrimination tasks when only firing-rate data is used. Note that 50% is chance level for these tasks
(chance level is also shown in panels B,C,D). [B] The histogram of discriminability rates associated with the 3-way discrimination tasks when only
firing-rate data is used (note that 33% is chance level for these tasks). [C] The histogram of discriminability rates associated with 2-way discrimination
tasks when firing-rate data and 2-point correlations (correlation time 32ms) are used. [D] The histogram of discriminability rates associated with 3-way
discrimination tasks when firing-rate data and 2-point correlations (correlation time 32ms) are used. Note that the typical discriminability rate is
higher when correlations are used. [E] Here we plot the difference in mean discriminability for the 2-way discrimination task between the cases (i)
when firing-rate data and 2-point correlations are used, and (ii) only firing-rate data is used. We plot this difference as a function of the parameters
Svesdep and Spresyn used in our large-scale model. The vesicle-depletion parameter Svesdep ranges from 0 to 0:95 across the vertical axis, and the
presynaptic-inhibition parameter Spresyn ranges from 1=3 to 2:25 across the horizontal axis. The data shown in panels A–D is taken from the
simulation indicated by the dashed square. Note that, as the total amount of synaptic-depression decreases, the discriminability computed using only
firing-rates is closer to the discriminability computed using both firing-rates and 2-point correlations. [F] Similar to panel-E, except for the 3-way
discrimination task, rather than the 2-way discrimination task.
doi:10.1371/journal.pcbi.1002622.g003
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firing-rates, when considered as a function of the odor input. In

this sense, our notion of sensitivity is built around firing-rates, and

does not explicitly consider higher order dynamical structure.

discriminability: Given an unknown odor from amongst a

set of possible known candidates, we can use the AL as a

discriminator: by presenting this mystery odor to the AL and

measuring PN firing-counts over a time-period Tobs, we can

attempt to classify the input as one of the possible candidate odors.

We define the discriminability of the AL as the accuracy (i.e.,

correct-classification rate) of this procedure. The discriminability

depends strongly on Tobs. If Tobs is sufficiently long, the

discriminability of the AL is related directly to its sensitivity. If

Tobs is short, then unreliability may come into play and reduce

discriminability. As with our definition of sensitivity, our definition

of discriminability is built around measurements of firing-rates,

and does not take into account higher order dynamic structure.

The main thrust of our second hypothesis is that the

combination of the mechanisms of vesicle-depletion and presyn-

aptic-inhibition allows the fly AL to balance sensitivity and

reliability in such a manner as to maximize the discriminability of

AL activity (with respect to similar ORN inputs) over short

observation times.

An illustration of the tradeoff between reliability and

sensitivity within a large-scale model. In this subsection we

will show how the hypothesis introduced above manifests within

our large scale model. First we will discuss some features of this

model which are pertinent to this hypothesis, then we will discuss

our hypothesis in more detail.

We used simulations to investigate and benchmark our large-

scale model (see the sections regardin benchmarking in the

Methods). By analyzing these simulations we determined that,

even after benchmarking, there were still a handful of free

parameters that were left unconstrained. Two parameters in

particular were not fully constrained by our benchmarking: (i) the

strength of vesicle-depletion as characterized by Svesdep, and (ii) the

strength of presynaptic-inhibition as characterized by Spresyn.

Within our large-scale model the combination of these two

parameters produced synaptic-depression of the ORN synapses.

While the total amount of synaptic-depression was constrained by

our benchmarking, the relative strengths of Svesdep versus Spresyn

were not constrained.

As an example of this lack of constraint, consider the following

benchmark: assume that we expect the average PN firing-rate

within the AL to saturate at a certain level mPN when stimulated

sufficiently by ORN input. What we found was that there is a

spectrum of possible AL architectures which could produce this

desired firing-rate mPN : (A) on one end of the spectrum is an AL in

which there is hardly any vesicle-depletion of the ORN synapses,

but for which the LNIs give rise to substantial presynaptic-

inhibition at these synapses. This type-A AL would be character-

ized by a large value of Spresyn and a small value of Svesdep. (B) on

the other end of the spectrum is an AL in which vesicle-depletion

is primarily responsible for synaptic-depression, and the presyn-

aptic-inhibition of the ORN synapses due to LNIs is negligible. For

this type-B AL Spresyn would be small and Svesdep would be large.

An example of this spectrum is given in Fig. 4. Given a fixed

value �mmPN for the saturated firing-rates of PNs in a strongly driven

glomerulus, there exists a 1-parameter family of values

Spresyn,Svesdep
� �

which corresponds to networks exhibiting satu-

rated firing-rates equal to �mmPN . This 1-parameter family of values

ranges from networks with high Spresyn and low Svesdep (i.e., type-A

networks) to networks with high Svesdep and low Spresyn (i.e., type-

B networks).

Shown in Fig. 4A are the mean stimulus-driven PN spike-counts

for several networks with varying values of Spresyn and Svesdep. To

construct this example we performed a systematic scan of

parameter space for our large-scale network model. We selected

a 2-dimensional array of parameter values for Spresyn,Svesdep,

ranging from Spresyn[ 4=3ð Þ{4
, 4=3ð Þ3

h i
and from Svesdep[

0:0,0:9½ �. For each fixed Spresyn,Svesdep within this array, we ran

a large-scale simulation using a panel of 9 odors, and we ran 64
trials per odor. The first eight of the odors used stimulated three

glomerular channels — the first glomerular channel was stimu-

lated strongly, and an odor-specific subset of two other glomerular

channels was stimulated weakly. The ninth odor only stimulated

the first glomerular channel strongly. We remark that the

simulations used to construct this array differ only in their values

of Spresyn and Svesdep. The architecture and connectivity of the rest

of the model network were fixed.

In Fig. 4A we show the mean spike-count of PNs in the first

glomerulus, for each pair of parameter-values Spresyn, Svesdep. The

mean spike-count is calculated as the mean of the number of

spikes/48ms time-bin averaged across all 64 trials, and further

averaged over the 128{512ms period following odor onset, and

further averaged across all 9 odors. Overlaid on top of the mean

spike-counts are contour lines for the spike-count. Each of these

contours represents a 1-parameter family of networks with a

different constant mean stimulus-induced spike-count. Note that,

as indicated in Fig. 4B, these contours extend from regions of high

Spresyn and low Svesdep to regions of low Spresyn and high Svesdep.

In this example Type-A networks correspond to the lower-left

corner of the array, and Type-B networks correspond to the

upper-right corner of the array. Thus, in Fig. 4A it can be seen

that mPN is constant along contours extending from type-A

networks (lower left) to type-B networks (upper right).

We observed two important systematic differences between the

candidate networks along these 1-parameter families. First, type-B

networks are more reliable than type-A networks. This can be

understood as follows. First consider the ORN inputs to PNs in a

type-B network (for which synaptic-depression is dominated by

vesicle-depletion). A typical odor stimulates many ORNs to fire at

a high rate. Each of the ORN synapses likely has a high quantal

release rate [11], implying that the fraction of active vesicles

remaining after several rapid ORN spikes is likely to be small.

Moreover, there are *30 such ORNs which converge onto each

PN within their target glomerulus [23]. Thus each PN within a

strongly stimulated glomerulus receives a large number of input

spikes from a large number of presynaptic ORNs, each firing with

a high rate, each synapse of which is likely to experience profound

vesicle-depletion. Moreover, the vesicle-depletion experienced by

the ORN synapses is only dependent on the ORN activity, and is

independent of the activity of the AL. Thus, we expect the ‘feed-

forward’ synaptic-depression observed within a type-B network to

always exhibit very similar dynamic transients from trial to trial,

with the only differences due to the variation in ORN spike-

sequences induced by the trial-to-trial variability of the Poisson

input to the ORNs [19]. Now, on the other hand, let us consider

the ORN inputs to PNs within a type-A network. In such a

network, synaptic-depression is primarily governed by ‘feedback’

from the AL in the form of presynaptic-inhibition. ORNs in a

type-A network rely on the odor-specific firing patterns of LNIs in

order to exhibit synaptic-depression, and therefore may receive

different amounts of presynaptic-inhibition from trial to trial (or

over disjoint time-windows within a single trial). Moreover, there

are only a few LNIs per glomerulus, and a given stimulus may not

cause all these LNIs to fire at high rates. A few extra LNI spikes
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induced on any one trial may substantially change the footprint of

synaptic-depression across the ORN synapses, thus leading to even

more extra LNI spikes later on, and so forth. This ‘feed-back’

mechanism allows the synaptic-depression observed within type-A

networks to exhibit quite different dynamic transients from trial to

trial. Put another way, the ‘feed-back’ structure within type-A

networks allows the trial-to-trial variability in LNI activity to affect

and magnify the trial-to-trial variability in ORN input to the AL.

In conclusion, we expect that ORN inputs to PNs in type-A

networks will be less reliable than the corresponding ORN input to

PNs for type-B networks when measured either (a) over multiple

trials, or (b) over different time-windows within a single trial.

The second systematic difference between networks along such

a 1-parameter family is that type-A network-dynamics is more

sensitive than type-B network-dynamics to subtle changes in ORN

input. To see why this might be true, let’s revisit the argument

used above. Consider a subtle change in ORN input which is only

large enough at first to shift PN and LN firing rates slightly. This

subtle change in ORN input will not create a large shift in the PN

input for type-B networks, yet the same subtle change in ORN

input may give rise to a few different LNI firing-events in the type-

A network, which may then presynaptically inhibit different

ORNs, giving rise to even more different type-A-network-activity,

and so forth. In other words, due to the feedback between the

type-A LNIs and the type-A ORNs, we expect the type-A system’s

dynamics to be more sensitive than the type-B network’s dynamics

to certain perturbations in input.

These systematic differences (i.e., type-A networks are less

reliable, but more sensitive to perturbations in input than type-B

networks) manifest within our large-scale model.

To quantify reliability for each network along such a 1-

parameter family, we measured the trial-to-trial standard deviation

Figure 4. A tradeoff between reliability and sensitivity within our large-scale model. We performed a systematic scan of our large-scale
network model, varying Spresyn and Svesdep (see the section entitled ‘‘An illustration of the tradeoff between reliability and sensitivity within a large-
scale model’’ in the main text for details). For each point in this parameter array we measured various features of the network dynamics (such as
mean PN spike-counts and reliability), as well as the performance of each of these networks on a 3-way odor discrimination task. [A] Shown is the
mean PN spike-count of PNs in the first glomerulus, for each pair of parameter-values Spresyn, Svesdep. Overlaid on top of the mean spike-counts are
contour lines for the spike-count. Four of these contours are highlighted in magenta, and will be referenced later. [B] Indications of the type-A and
type-B network regimes. [C] Shown are the standard deviation in PN spike-counts of PNs in the first glomerulus (see colorbar on far left). [D]
Reproduction of panel-C, along with the contours of panel-A. [E–H] Shown are contour plots associated with R0:4 Spresyn,Svesdep

� �
for various values of

Tobs. These panels use the colorbar shown to the far left. [I] Here we plot the standard-deviation in spike-count (taken from panel-D) as a function of
the distance along each of the contours indicated in panel-D, with values bi-linearly interpolated as necessary. [J] Here we plot the discriminability
values R0:4 Spresyn,Svesdep

� �
indicated in panel-E as a function of the distance along each of the contours shown in panel-D. The contours are indicated

using the colorcode from panel-I. [K–M] Similar to panel-J, except for Tobs~256ms, 512ms, and 1024ms respectively.
doi:10.1371/journal.pcbi.1002622.g004
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in PN spike-counts of PNs in the first glomerulus, for each pair of

parameter values Spresyn, Svesdep. The standard-deviation is

calculated as the standard-deviation of the number of spikes/

48ms time-bin across all 64 trials, averaged over the 128{512ms
period following odor onset, then further averaged across all odors.

The coefficient-of-variation in spike-counts is equal to the

standard-deviation in spike-count divided by the mean. Thus,

along contours of mPN (where the mean is constant) the

coefficient-of-variation in spike-count will be proportional to the

standard-deviation in spike-count. Shown in Fig. 4D are the

standard deviation in PN spike-counts along with the 4 contours

highlighted in Fig. 4A. These four contours (labelled a,b,x,d) each

correspond to a 1-parameter family of networks exhibiting a fixed

mean spike-count, and are each associated with a different color

(black, red, green, cyan, respectively) on the colorbar to the far left.

In Fig. 4I we plot the standard-deviation evaluated along these

contours. Note that, since contour x is longer than contour b, the

graphs shown in Fig. 4I are not directly comparable. However,

there is a clear trend amongst all these graphs: As one moves along

the 1-parameter family of networks with constant mean stimulus-

induced spike-count from type-A networks to type-B networks the

standard-deviation in spike-count decreases as long as the mean

spike-count is sufficiently high (i.e., contours b,x,d). This is

equivalent to the statement that, along contours b,x,d, type-B

networks are more reliable than type-A networks.

Recall that, for each network (i.e., for each fixed value of

Spresyn,Svesdep), we ran 64 trials for each of 9 different odors. Using

this data, we can quantify the sensitivity of each of these networks

to input perturbations. For each odor trial we measure the 30-

component PN firing-rate vector averaged over the Tobs~1024ms
time-window including and immediately following a 512ms odor

presentation. We use these time-averaged firing-rate vectors to

perform each of the 84~
9

3

� �
3-way odor discrimination tasks,

and thus we obtained a distribution of discriminability rates for

each 3-way odor task (see the section entitled ‘‘Odor Discrimina-

tion’’ in the Methods). For each network we then record the 40th-

percentile of the distribution of discriminability rates (across

odors), denoted by R0:4. We chose to display R0:4, as this 40th-

percentile discriminability rate illustrates our conclusions most

clearly. However, our main results do not change if we choose

another percentile in the range ½10,60�. Higher percentiles, such as

the 70th-percentile, are usually all near 100% correct-classification,

since the set of odors used contain several rather distinct odors.

Note that R0:4 will depend on Spresyn and Svesdep. Shown in

Fig. 4H are the contour plots associated with R0:4 Spresyn,Svesdep
� �

for Tobs~1024ms. In Fig. 4M we plot these discriminability rates

along the contours shown in panel-A. For each of these contours

the maximum discriminability (when Tobs~1024ms) occurs at the

type-A end of the spectrum. This indicates that the discriminability

of type-A networks (using firing-rates measured over long

observation times) is superior to that of the type-B networks. This

is a reflection of the fact that type-A networks are more sensitive

than type-B networks to subtle changes in input.

A combination of vesicle-depletion and presynaptic-

inhibition is required to optimize discriminability over

short observation-times within a large-scale model. Within

our model network we have observed a further functional

consequence associated with the tradeoff between reliability and

sensitivity described above. Type-A networks are indeed more

sensitive than type-B networks to shifts in input, and this sensitivity is

reflected in the long time (or trial averaged) PN firing-rate vector

associated with any given input. As a result, type-A networks

outperform type-B networks in odor-discrimination tasks when the

discriminability rate is calculated using a long time observation (such

as Tobs~1024, as shown in Fig. 4H,M). However, type-A networks

are less reliable than type-B networks, and thus, if the observation-

time of any given odor stimulus is sufficiently short, the higher

variability associated with the single-trial short-time responses of

type-A networks will pollute the performance of any discrimination

task which uses only these short observations. On the other hand,

since type-B networks are rather reliable, shortening the observation-

time associated with a discrimination task will not affect the

discriminability rate associated with that task for a type-B network as

much. As demonstrated in our model network, if the observation-

time of any given odor trial is shortened from 1024ms (as shown in

Fig. 4H,M) to merely 128ms after odor onset, the decreased

reliability associated with type-A networks will drastically lower the

discriminability rate of the odor-discrimination tasks which use only

these short observations (see Fig. 4E,J). Moreover, since the type-B

networks are more reliable than type-A networks, the decrease in

discriminability associated with reducing the observation-time of the

discriminability task is lower for type-B networks than it is for type-A

networks (compare Fig. 4J,M). Most intriguingly, there is a midpoint

in the spectrum — a balance between vesicle-depletion and

presynaptic-inhibition — which gives rise to the maximum

discriminability rates using only short-time observations. This

optimal point depends on the length of the observation-time

associated with the discrimination-task. With long observation-times

type-A networks are optimal. With very short observation-times

type-B networks are optimal.

This feature is shown in more detail for our large scale model in

Fig. 4E,F,G,J,K,L, which illustrate the discriminability capabilities

of our model for a variety of observation times Tobs~128,256,512.

Note that, for any particular contour a,b,x,d, The point of

maximum performance occurs closer to the type-B extreme when

Tobs is small, and this maximum occurs closer to the type-A

extreme when Tobs is large. In other words, when Tobs is low, type-

B networks outperform type-A networks, whereas when Tobs is

large type-A networks outperform type-B networks.

In conclusion, we have demonstrated that for a particular set of

discrimination tasks the network which performs optimally lies in

between the type-A and type-B extremes. Moreover, as the

observation-time associated with this task increases (or decreases)

the optimal point shifts towards the type-A (or, respectively, type-

B) end of the spectrum. Although the details of Fig. 4 only pertain

to a particular discrimination task, we mention now that this

systematic dependence of the optimal point on observation-time is

actually a natural consequence of the fact that type-A networks are

more sensitive, and type-B networks are more reliable. Indeed, as

we will argue below (in a section entitled ‘‘A simple cartoon of

optimizing discriminability over short observation-times’’), this

feature is to be expected for a rather general class of discrimination

tasks in which estimates of the mean firing-rates (sampled over an

observation-time) are used to classify the input.

A simple analyzable cartoon of the tradeoff between

reliability and sensitivity. In this section we introduce a

simple deterministic 2-neuron model network which will allow us

to discuss various aspects of hypothesis-2. This simple network has

the property that the sequence of neuronal firing-events is a

sensitive function of the network’s initial conditions as well as the

input to the network and the source of synaptic-depression within

the network. The model itself consists of 2 LNIs, each driven by a

single ORN. Each LNI (labelled A and B) is modeled by a simple

phase-oscillator (similar to a current-based integrate-and-fire

neuron), and each ORN is modeled by a fixed input-current

(i.e., gA and gB). This input current indicates the rate at which
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each neuron would fire if there were no presynpatic-inhibition or

vesicle-depletion.

In this system the strength of presynaptic-inhibition is modeled

by a constant parameter j. As j increases, the firing-events of each

neuron have a greater inhibitory effect on the input to the other

neuron. Specificially, whenever LNI A fires, the ORN input to

LNI B is shut off for j-time. Similarly, whenever LNI B fires, the

ORN input to LNI A is shut off for j-time. To ensure that both

neurons fire, we assume jvmin 1=gA,1=gBð Þ. As the amplitudes

gA,gB of the ORN processes are constant, the vesicle-depletion in

this system is assumed to attain a steady state, and is modeled via a

single constant parameter m§1, which reduces the ORN input to

both A and B.

In keeping with the description above, the membrane potentials

for LNI A and B obey the differential equations

dVA tð Þ
dt

~gA=m:HA tð Þ~gA=m: 1{

ðt

t{j

X
k

d s{TB
k

� �
ds

" #

dVB tð Þ
dt

~gB=m:HB tð Þ~gB=m: 1{

ðt

t{j

X
k

d s{TA
k

� �
ds

" #
,

ð1Þ

and whenever the potential VA reaches VT~1, we say that LNI A

fires, and reset VA to VR~0. The kth spiketime of neuron A is

recorded as TA
k . Similarly, whenever VB reaches 1, we say that

LNI B fires, and record the kth spiketime of neuron B as TB
k . The

term HA~1{
Ð t

t{j

P
k d s{TB

k

� �
ds is equal to 1, unless neuron B

has fired within j of the current time, in which case HA~0.

Similarly, the term HB~1{
Ð t

t{j

P
k d s{TA

k

� �
ds is equal to 1,

unless A has fired within j of the current time, in which case

HB~0. Note that, since jvmin 1=gA,1=gBð Þ, the terms HA and

HB are each either 0 or 1 at each time.

This simple network is easy to analyze, and the firing-rates

mA,mB of each LNI in the network, as well as the interspike-

interval-distributions (ISIA, and ISIB) can be directly calculated in

terms of the inputs to the network gA,gB and the sources of

synaptic-depression j, and m. See the section entitled ‘‘A simple

model illustrating the tradeoff between reliability and sensitivity’’

in the Methods for more details.

An example of such calculations is shown in Fig. 5. If we fix

m~1, then the firing-rates of the two neurons is a decreasing

function of j for small j (see Fig. 5A). As expected, this decrease in

firing-rate corresponds to the two neurons interfering with and

slowing down one another. However, this interference causes the

firing-events of each neuron to occur at irregular intervals, and

hence the variance in the ISI-distributions of these neurons is a

monotonic increasing function of j for small j (see Fig. 5B). Thus, as

j increases from 0, the neurons fire less, and have a lower trial-to-

trial reliability.

If we fix j, then the firing-rates of the two neurons are

decreasing functions of m. Thus, there is clearly a 1-dimensional

family of synaptic-depression parameters which gives rise to

networks exhibiting the same mean firing-rates for any fixed set of

inputs. This 1-parameter family ranges from type-A networks (with

high j and low m) to type-B networks (with low j and high m) – see

Fig. 5C. We can index networks along this 1-parameter family

using j, assuming that m(j) is chosen so that the average firing-rate

�mm is maintained (see Fig. 5D).

Intuitively, one expects that for an extreme type-B network (i.e.,

j~0) the activity should be perfectly regular: each neuron fires

independently of the other neuron. On the other hand, for an

extreme type-A network (i.e., jw0), each neuron fires in spurts,

constantly disrupting the periodicity of the other neuron’s activity.

This interplay between the neurons (resulting from presynaptic-

inhibition) gives rise to a greater variability in the ISI-distributions

of the neurons within the type-A networks. This increased

variability implies that the neurons in the type-A networks have

a lower trial-to-trial reliability than the analogous neurons within

the type-B networks (assuming that different trials have different

initial conditions).

This same intuition can be extended to see that, in the type-A

network, there is a ‘rich-get-richer’ phenomenon: the neuron

which gets more input will slow the other neuron down more than

it is slowed down by the other neuron. Thus, the presynaptic-

inhibition j magnifies the sensitivity of the type-A networks,

increasing the difference in firing-rates between the two neurons

when the input to these neurons is similar. In other words, the

firing-rates produced by the type-A network should be more

sensitive than those produced by the type-B network to small

differences in inputs.

This intuition is borne out by analysis. When constraining m,j
so that the mean firing-rate �mm is constant, we see that as j
increases from 0 the network becomes more sensitive (i.e., the

difference in firing-rates mA{mB increases) and less reliable (i.e.,

the variance of the ISI-distributions of the two neurons increases).

These functions are plotted in Fig. 5D,E. Thus, for this simple

system, we can show analytically that hypothesis-2 holds: type-A

networks are more sensitive, and type-B networks are more

reliable. See the section entitled ‘‘A simple model illustrating the

tradeoff between reliability and sensitivity’’ in Methods for more

details.

A simple cartoon of optimizing discriminability over

short observation-times. As postulated above, and illustrated

for both a large-scale and idealized network architecture, we

expect there to be a 1-parameter family of networks with the same

mean firing-rate for any fixed set of inputs. This 1-parameter

family ranges from type-A networks (with significant presynaptic-

inhibition, lower reliability and higher sensitivity) to type-B

networks (with significant vesicle-depletion, higher reliability and

lower sensitivity). It turns out that, under rather general

conditions, the networks which perform best on discriminability

tasks with finite observation-times are the networks in the middle

of this spectrum (i.e., networks with a combination of presynaptic-

inhibition and vesicle-depletion).

To illustrate this principle, we will use the network architecture

discussed in the section entitled ‘‘A simple analyzable cartoon of

the tradeoff between reliability and sensitivity’’. It should be noted

however, that the argument we will present here is not specific to

the 2-neuron architecture discussed above, and a modified version

of this argument will hold for any 1-parameter family of networks

ranging from the type-A to the type-B extremes discussed above.

To begin, let us consider the following discriminability task.

Assume that a simple 2-neuron network (of the type described in

the section entitled ‘‘A simple analyzable cartoon of the tradeoff

between reliability and sensitivity’’) is driven by one of two inputs

— either (O1) neuron A is driven at rate �ggzDg=2 and neuron B is

driven at rate �gg{Dg=2, or (O2) A is driven at �gg{Dg=2 and B is

driven at �ggzDg=2. The steady-state ISI distributions ISIA O,m,jð Þ
and ISIB O,m,jð Þ will depend on the unknown input O, as well as

the known system parameters m,j. By performing a measurement

of the system, is it possible to tell which input (i.e., either O1 or O2)

is driving the system? Let us assume that our measurement process

consists of 2 steps. First, we estimate the mean of ISIA O,m,jð Þ by

drawing Tobs samples from ISIA O,m,jð Þ. For example, we can

either measure A within a single system for a long time, or we can

measure multiple systems from an ensemble. The longer a single
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system is measured for, the larger the effective number of samples

Tobs is, assuming that measurements of the system that are

sufficiently well-separated in time are effectively independent. We

use the notation Tobs rather than Nobs to draw analogy with the

observation-time discussed in the section entitled ‘‘A combination

of vesicle-depletion and presynaptic-inhibition is required to

optimize discriminability over short observation-times within a

large-scale model’’. Let us denote by SISIATTobs
this estimate for

the mean of ISIA. Second, we assume that our measurement

process includes some external noise modeled by a random

variable XE . For the sake of presentation, let’s assume that XE is

drawn from N 0,sEð Þ (i.e., a Gaussian distribution with mean 0

and variance s2
E ). Thus, our final measurement of the mean of

ISIA O,m,jð Þ is some estimate SISIA O,m,jð ÞTTobs
zXE .

Our goal is to determine from this measurement

SISIA O,m,jð ÞTTobs
zXE whether the input to the system is O1

or O2. By analyzing the signal to noise ratio of this measurement

process (see the section entitled ‘‘Analysis of signal-to-noise ratio in

Figure 5. A simple analyzable cartoon of the tradeoff between reliability and sensitivity. In this example gA~1:1, and gB~0:9. In panels
A and B the vesicle-depletion parameter m:1. In panels C,D,E and F, the vesicle-depletion parameter m~m jð Þ, such that the mean firing rate
�mm~ mAzmBð Þ=2&0:594 is held constant. [A] Graphs of mA (solid), mB (dashed), �mm~ mAzmBð Þ=2 (gray), and Dm~mA{mB (gray dashed), as
functions of j, for the case m:1. [B] Graphs of var ISIAð Þ (solid) and var ISIBð Þ (dashed) as functions of j, for the case m:1. [C] Graph of m as a
function of j, subject to the constraint that �mm remain constant. The constant value of �mm chosen (essentially arbitrarily) in this case is the value of
�mm&0:594 shown in panel A for j~2=gA{1=gB. Other choices of �mm yield similar results. Note that this graph is monotonically decreasing, implying
the existence of a 1-parameter family of networks possessing the same �mm — ranging from type-A networks with low m and high j, to type-B networks
with high m and low j. [D] Graphs of mA jð Þ (solid), mB jð Þ (dashed), �mm jð Þ (gray), and Dm jð Þ (gray dashed), for the case m~m jð Þ. [E] Graphs of var ISIAð Þ
(solid) and var ISIBð Þ (dashed) as functions of j, for the case m~m jð Þ. [F] Graph of the optimal choice of j (implying a vesicle-depletion parameter of
m jð Þ) for which discriminability is maximized, as a function of the sample number Tobs. The notion of discriminability is described in the section
entitled ‘‘A simple cartoon of optimizing discriminability over short observation-times’’. In this case the observation error sE is fixed at sE~0:01. Note
that for low Tobs, discriminability is maximized for a type-B network. However, as Tobs increases, discriminability is maximized by type-A networks.
The graph shown plots jopt for Tobs[ 1,40½ �, as for this particular simple example the derivative of jopt Tobsð Þ reaches a vertical asymptote at Tobs*40.
doi:10.1371/journal.pcbi.1002622.g005
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a general discrimination task’’ in Methhods), we can show that the

discrimination error E Tobs,m,jð Þ associated with the best linear-

classifier for this problem is well-approximated by:

E Tobs,m,jð Þ&1{erf
1

2
ffiffiffi
2
p : Dl m,jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 m,jð Þ=Tobszs2
E

q
0
B@

1
CA, ð2Þ

where Dl m,jð Þ is the difference in the means of ISIA O1,m,jð Þ and

ISIB O1,m,jð Þ, and s2 m,jð Þ is the average variance of

ISIA O1,m,jð Þ and ISIB O1,m,jð Þ. Because erf is monotonic

increasing, E Tobs,m,jð Þ is minimized when the ratio

Dl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=Tobszs2

E

q
is maximized. Recall the structure of the

simple 2-neuron networks described above — both Dl m,jð Þ and

s m,jð Þ are monotonically increasing functions of j, and m jð Þ can

be defined implicitly through j (by fixing �mm) as a monotonically

decreasing function of j. For these simple networks, when

Tobs&1, this discriminability error is minimized when Dl is as

large as possible, and the maximum Dl is achieved when m,j
correspond to a type-A network. Conversely, when Tobs*1, then

the discriminability error is minimized for m,j corresponding to a

network in between the type-A and type-B extremes. In this case,

one can show that if Dg,sE are sufficiently small, then the optimal

jopt (for which the error E Tobs,m jð Þ,jð Þ is minimized) increases as

Tobs increases. (see Fig. 5F, which displays jopt Tobsð Þ for the case

�gg~1, Dg~0:2, sE~0:01).

As we mentioned earlier, The argument given in this section is

quite general, and similar reasoning can be applied whenever any

measurement is made by sampling from a distribution and adding

an observation error XE . Given a 1-parameter family of networks

indexed by a, and a measurement of any dynamical feature l, with

sensitivity described by Dl að Þ and reliability described by s2 að Þ,
the error associated with the best linear-classifier can be

approximated by an equation similar to Eq. 2, where Tobs

increases as the observation-time of the measurement increases.

A population-dynamics approach towards verifying

Hypothesis 2 within more general networks. In the

preceding sections we have described in detail a specific 2-neuron

network which exhibits the phenomena associated with hypoth-

esis-2. However, the reasoning used in these sections cannot

readily be applied to more complicated heterogeneous networks

composed of more realistic model neurons. Indeed, while there

exist networks for which hypothesis-2 holds (e.g., the large-scale

networks described earlier on), there also exist networks for which

hypothesis-2 does not hold. A natural question is: given a specific

network architecture, what dynamic phenomena will that network

exhibit? In the remainder of this section we will apply a rather

general method [24,25] which can be used to assess the

equilibrium dynamics of pulse-coupled networks, and which can

be used to determine which network architectures exhibit

phenomena associated with hypothesis-2 (e.g., the tradeoff

between reliability and sensitivity discussed above). With this

analysis we will able to see that hypothesis-2 holds for a rather

large class of networks, and in particular holds for a class of sparse

randomly connected networks, provided that the network size is

sufficiently large.

For the purposes of illustration, let us consider a network of N
discrete-state glomeruli (LNIs), each driven by a different ORN.

We will model each ORN-LNI pair as a discrete-state discrete-

time Markov process which is as simple as possible, while still

retaining the following features: (i) each LNI generates spikes, (ii)

each ORN input spike contributes to the vesicle-depletion of that

ORN?LNI synapse, and (iii), each LNI spike gives rise to

presynaptic-inhibition of some subset of ORN?LNI synapses.

This model does not take into account excitatory interactions; PNs

and LNEs are not included. While these excitatory interactions

certainly contribute to hypothesis-2, they do not substantially

change the following analysis, and we delay discussion of their

effects until the end of this section.

Within this simple network model we will model the jth ORN-

LNI pair using the state-variables Vj tð Þ, mj tð Þ and jj tð Þ which

represent LNI membrane-potential, ORN vesicle-depletion and

ORN presynaptic-inhibition, respectively. The architecture of the

model is determined by the connectivity matrix Djk which encodes

the presynaptic-inhibitory coupling between ORN-LNI pairs. The

other parameters of the model include the feedforward input rates

gj to each ORN-LNI pair, as well as the overall strength of vesicle-

depletion km and the overall strength of presynaptic-inhibition kj.

The details of the model are given in a section entitled ‘‘A discrete

state model used to analyze hypothesis-2 within general networks

with arbitrary architecture’’ in Methods (see Eq. 16).

We are interested in how the dynamics of such a network

depends on the connectivity matrix D, and also on other

parameters such as the inputs gj , the vesicle-depletion strength

km and the presynaptic-inhibition strength kj. For reference, let us

specify precisely what we mean by ‘hypothesis-2’. Let us say that

the jth LNI satisfies ‘hypothesis 2.0’ if there exists a 1-parameter

family of small variations in kj,km which maintain the firing rate of

the jth LNI (denoted by mj ), such that this 1-parameter family

ranges from high kj and low km (i.e., type-A) to low kj and high km

(i.e., type-B). Let us say that the jth LNI satisfies ‘hypothesis-2.1’ if,

given a small increase in kj along this 1-parameter family, the

reliability of the jth LNI decreases (i.e., var ISIj

� �
increases as the

network parameters are shifted towards a type-A network). Finally,

let us say that the jth LNI satisfies ‘hypothesis-2.2’ if, given a small

increase in kj along this 1-parameter family, the sensitivity of the

jth LNI to its own input increases (i.e., Lgj
mj increases as the

network parameters are shifted towards a type-A network).

Let us assume that we have some large network in which

gj~�gg~0:5 (i.e., the input to each LNI is the same), and that D is

given (but otherwise arbitrary). One can readily show that

hypothesis-2.0 holds — namely, for sufficiently small kj, each

ORN-LNI pair with at least one presynaptic-inhibitory input has

the property that there exists a 1-parameter family of parameters

(ranging from high kj and low km to low kj and high km) for which

the firing rate mj remains fixed. This is simply because, as either kj

or km increases, the firing rate mj decreases (i.e., Lkj
mj and Lkm

mj

are both negative) as long as kj is sufficiently small.

In the rest of this section, we will analyze reliability (i.e.,

hypothesis-2.1). Let us concentrate on a single ORN-LNI pair

(say, the jth such pair) embedded within this larger network, and

assume for the moment that the jth ORN is presynaptically-

inhibited by the kth LNI (with k=j). If we were to increase the

strength of the presynaptic-inhibitory connection between LNI k
and ORN j (i.e., if we were to increase Djk) without decreasing the

strength of vesicle-depletion km, then the firing rate mj would drop.

If, instead, we were to increase Djk while decreasing km

simultaneously so as to maintain mj (as required by hypothesis-

2.1), then the ISI distribution of the jth LNI would change (but the

firing rate mj would remain constant by construction). In thi case

the differential shift in the ISI distribution of the jth LNI associated

with increasing the strength of connection Djk (while appropriately

decreasing km) gives rise to an increase in var ISIj

� �
. Thus, if

coupling strengths are sufficiently weak, then the derivative of
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var ISIj

� �
with respect to increasing Djk (while appropriately

decreasing km) is positive. Using population-dynamics techniques

from [24,25], this reasoning can be systematically extended to

consider every connection in the network, not merely the

connection Djk.

Formally speaking, this analysis is nothing more than a Taylor-

expansion of var ISIj

� �
in terms of the coupling strengths of the

network. Namely, var ISIj

� �
depends on many parameters (e.g.,

D, gj , kj, km), and if we assume that km is implicitly dependent on

kj,D in such a way that mj is constant, then we can Taylor-

expand var ISIj

� �
in terms of kj and the components of D. If we

retain all terms up to second order, such an expansion has the

form

var ISIj

� �
~azkjbjjDjjzkj

X
k=j

bjkDjkzk2
jcjjjjD

2
jjzk2

j

X
k=j

cjkjkD
2
jk

zk2
j

X
k=j

cjjjkDjjDjkzk2
j

X
k=j

cjkkjDjkDkjzk2
j

X
k,l,j distinct

cjkjlDjkDjl

zk2
j

X
k,l,j distinct

cjkklDjkDklzk2
j

X
k=j

cjkkkDjkDkk,

ð3Þ

where a is a 0th-order contribution, each b term corresponds to a

1st-order contribution, and each c term corresponds to a 2nd-order

contribution. Each b and c term is a correction to var ISIj

� �
associated with a particular subnetwork containing the jth LNI (see

Fig. 6 for an example). For example, the term kjbjj corresponds to

the subnetwork in which the jth LNI (see Fig. 6 for an example). For

example, the term kjbjj corresponds to the subnetwork in which the

jth LNI presynaptically-inhibits its own ORN (the jth ORN) — kjbjj

is the differential correction to var ISIj

� �
associated with increasing

the connection strength Djj , while appropriately decreasing km. This

correction kjbjj is actually negative (i.e., if one were to increase Djj ,

then the jth LNI would become more reliable). As another example,

the term k2
jcjkjl (with k,l,j distinct) corresponds to the subnetwork in

which both the lth LNI and the kth LNI presynaptically-inhibit the

jth ORN. If both Djk and Dkl were to increase, then the change in

var ISIj

� �
would be well-approximated by the change in the terms

kjbjkDjkzkjbjlDjlz2k2
jcjkjlDjkDjl (in this manner, the 2nd-order

correction k2
jcjkjl captures the change to var ISIj

� �
which is not

accounted for by kjbjk and kjbjl ). Indeed, given any specific

network containing the jth ORN-LNI pair, one can determine the

effect of increasing kj (or, equivalently, increasing all of the

components of D simultaneously) by dissecting the specific network

and determining the contributions made by the various comprised

subnetworks to var ISIj

� �
. See Fig. 7 for an illustration of this

technique.

By analyzing the various terms in this expansion, one can

determine that by increasing the strength of certain elements of

D, it is possible to actually lower var ISIj

� �
, and make the jth

LNI more reliable. For example, by exclusively strengthening

Djj without increasing the other Djk, the reliability of the jth

LNI would increase, in seeming contradiction to hypothesis-

2.1. However, in a typical random network (containing many

ORN-LNI pairs, and many presynaptic-inhibitory connec-

tions), the subnetworks which increase var ISIj

� �
dominate

those that lower var ISIj

� �
, and thus a uniform increase in kj

will increase var ISIj

� �
. By analyzing the magnitudes of the

various a,b,c terms in Eq. 3, one can quantify this statement for

any particular class of networks. For example, consider a

random network of N neurons for which each gj~�gg, and each

element of D is independently chosen to be either 1 or 0 with

probability p and 1{p respectively (i.e., a Erdos-Renyi random

graph with sparsity coefficient p). For any fixed LNI j, which

does not presynaptically-inhibit its own ORN, there will be

approximately Np subnetworks of the form Djk, Np2 subnet-

works of the form DjkDkj , Np2 subnetworks of the form DjkDkk,

N2p2 subnetworks of the form DjkDjl , and N2p2 subnetworks of

the form DjkDkl (where we assume k,j,l are distinct). If kj and

km are modified for such a network so as to maintain mj , then as

kj is increased var ISIj

� �
will increase as well (since the

reduction in var ISIj

� �
caused by the subnetworks of the form

Figure 6. An example of subnetworks which come into play when considering the sensitivity or reliability of the jth LNI. On the left in
panel-A we show a particular network, with various ORN-LNI pairs (shown as ovals and circles respectively) connected via presynaptic-inhibitory
connections. We will adopt the convention that the jth ORN-LNI pair is fixed (highlighted in dark gray), whereas the indices k,l are not fixed, but are

considered distinct from j and from each other. Several dynamic features associated with the jth LNI can be determined by considering an expansion
of the dynamics of this full network in terms of subnetworks. Shown on the right in panels-B,C,D are 0th-order, 1st-order and 2nd-order subnetworks of
the full network which are relevant for determining the sensitivity and reliability of the jth LNI. The 0th-order subnetwork consists of the jth ORN-LNI
pair alone. The two 1st-order subnetworks shown are those incorporating a single presynaptic-inhibitory connection — namely Djk (top) and Djj

(bottom). The full network has embedded within it three 1st-order subnetworks of the form Djk , and one 1st-order subnetwork of the form Djj . The

five 2nd-order subnetworks shown are those incorporating two presynaptic-inhibitory connections. Listed in reading order, these subnetworks are
denoted by DjjDjk , DjkDkj , DjkDjl , DjkDkl , and DjkDkk . The full network has embedded within it 3, 1, 3, 1 and 2 of these subnetworks, respectively.
doi:10.1371/journal.pcbi.1002622.g006
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DjkDkl and DjkDkk is more than cancelled out by the

subnetworks of the form DjkDjl ). If, on the other hand, the jth

LNI presynaptically-inhibits its own ORN, then in addition to

the various subnetworks mentioned in the previous case, there

will be a single subnetwork of the form Djj , and approximately

Np subnetworks of the form DjjDjk. If N,p are not sufficiently

large, then the contribution to var ISIj

� �
will be dominated by

the Djj subnetwork, and increasing kj (while decreasing km to

maintain mj ) will actually reduce var ISIj

� �
. An example of the

critical N below which hypothesis-2.1 fails is shown in Fig. 8,

which illustrates that hypothesis-2.1 holds with high likelihood

for all LNIs within Erdos-Renyi random networks obeying the

dynamics specified in Eq. 16 (assuming that each gj~�gg), so long

as N is sufficiently large.

This type of approach can also be used to analyze hypothesis-

2.2. Using similar techniques as above, one can readily show

that hypothesis-2.2 holds with high likelihood for all LNIs in an

E-R random network of any size regardless of whether or not

those LNIs presynaptically-inhibit their own ORNs, as long as

their ORNs are presynaptically-inhibited by at least one other

LNI.

Through the application of the above analysis, one can show that

all sufficiently large E-R random networks obeying the dynamics of

Eq. 16 have a high likelihood of satisfying the three properties

associated with hypothesis-2 — namely, (0) there exists a

1-parameter family of network parameters ranging from type-A to

type-B for which the firing rate of any particular LNI is maintained,

(1) as the network parameters are shifted along this 1-parameter

family in the type-A direction, that LNI’s reliability decreases, and

Figure 7. An example of subnetworks which influence reliability. In this example we assume a network of the form explained in the section
entitled ‘‘A population-dynamics approach towards verifying Hypothesis 2 within more general networks’’. The input to each LNI gj~�gg~0:5 is
constant, and the strength of vesicle-depletion km~4. Note however, that we do not assume that the connectivity D is fixed. We adopt the

convention that j,k,l are distinct indices. [A] Here we illustrate the shift in the ISI-distribution of the jth LNI (i.e., ISIj ) that would occur (up to 2nd-

order) if the connectivity Djk were increased while decreasing km so as to maintain the firing-rate of the jth LNI (denoted by mj ). The ISI-distribution of

the jth LNI when uncoupled from the rest of the network is shown with a dotted-line for reference. The rate at which ISIj changes with respect to an
infinitesimal increase in the coupling strength Djk is shown with a dashed-line. This rate is magnified by a factor of 100 for visibility. The sum of this
rate and the uncoupled ISIj is shown with a solid-line for a qualitative representation of the new ISIj that would occur if the connectivity Djk were
increased by 1. The inset shows this same data (dotted and solid lines) with time plotted on a logarithmic scale for ease of view. For this particular
term in the subnetwork-expansion, as Djk increases (and the dotted ISIj shifts to more closely resemble the solid ISIj ) the var ISIj

� �
increases. The

rate at which var ISIj

� �
increases as Djk is increased is approximately 10{3 for this system (as indicated by the legend ‘var(ISI)+E-3’). A separate

calculation can be performed which shows that the rate at which the sensitivity of the jth LNI (i.e., Lgj
mj ) changes as Djk is increased is approximately

10{2 (as indicted by the legend ‘snstvty+E-2’). Thus, by strengthening the presynaptic-inhibitory connections from several other LNIs onto the jth

ORN-LNI pair (while simultaneously reducing km so as to maintain mj ), we can readily show that, to 2nd-order, these shifts collectively increase both

var ISIj

� �
and the sensitivity Lgj

mj . [B–G] In these panels we show similar plots illustrating the influence of various other subnetworks on the reliability

of the jth LNI. These plots use axes identical to those shown on the inset in panel-A. Listed in reading order, these subnetworks are denoted by Djj ,

DjjDjk , DjkDkj , DjkDjl , DjkDkl , and DjkDkk . Note that the contribution of the autapse Djj actually decreases var ISIj

� �
, and the contributions of the 2-

edge subnetworks all decrease the sensitivity Lgj
mj (albeit with magnitudes that are dwarfed by the contribution of the 1-edge subnetwork Djk).

doi:10.1371/journal.pcbi.1002622.g007
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(2) as the network parameters are shifted along this 1-parameter

family in the type-A direction, that LNI’s sensitivity to its dedicated

ORN channel increases. For the class of networks considered in

Fig. 8 the critical N above which hypothesis-2 holds is roughly

Ncrit*100. Although this critical value obtained from our idealized

model should not be compared quantitatively with the number of

LNIs in the real fly AL, we expect that a similar qualitative result

should hold for more realistic models — namely that hypothesis-2

should hold for any model as long as the presynaptic-inhibitory

network includes sufficiently many inter-glomerular connections

and the number of LNIs is sufficiently large.

This type of subnetwork analysis can also be used to probe the

relationship between connectivity and dynamics that exists in

more complicated heterogeneous networks, including scale-free

and small-world networks, as well as networks in which the

different neurons are governed by different equations. In each

case, one can use the distribution of subnetworks within the larger

network to determine dynamical features associated with neurons

inside that network. For example, one can easily show that, for a

scale-free network obeying the dynamics specified in Eq. 16, if the

jth ORN-LNI pair has low incoming-degree and is presynaptical-

ly-inhibited by ORN-LNI pairs with high incoming degree, then

Figure 8. An analysis of sparsely-coupled Erdos-Renyi random networks, using a 2nd-order subnetwork-expansion. Given a network of
the form described in the section entitled ‘‘A population-dynamics approach towards verifying Hypothesis 2 within more general networks’’, with

gj~�gg and km fixed, one may ask if, for the jth LNI, the reliability of this LNI would decrease if the presynaptic-inhibitory strength kj were to be

increased (while simultaneously decreasing km so as to maintain the firing-rate mj ). Let us denote this condition by ‘hypothesis-2.1’. By analyzing the

terms in the 2nd-order subnetwork-expansion, one can readily conclude that hypothesis-2.1 holds if the jth LNI does not presynaptically-inhibit its

own ORN, and there is at least one other LNI which does presynaptically-inhibit the jth ORN. However, if the jth LNI presynaptically-inhibits its own
ORN, then hypothesis-2.1 holds only if the size of the network is sufficiently large. This critical network size Ncrit (above which hypothesis-2.1 holds
with high probability) is a function of the background firing-rate of the ORNs gj , the strength of vesicle-depletion km, and the sparsity-coefficient p of

the random network. In panel-A we plot Ncrit �gg,km,p~0:125
� �

, where we have calculated Ncrit such that, for values of N§Ncrit, a randomly selected
LNI within an E-R random network generated with sparsity-coefficient p~0:125 is highly likely (probability w75%) to obey hypothesis-2.1, given that
the LNI in question presynaptically-inhibits its own ORN. Values of Ncrit are displayed according to the colorscale shown on the right. In the remaining
panels B–F we plot Ncrit �gg,km,p

� �
for different values of p. Note that, unless km is small and �gg is large, it is highly likely that hypothesis-2.1 holds (even

for LNIs which presynaptically-inhibit their own ORNs) for all LNIs within an E-R random network of size §100.
doi:10.1371/journal.pcbi.1002622.g008
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the jth LNI is likely to violate hypothesis-2.1. This is simply

because there will be an overwhelming number of subnetworks of

the form DjkDkl , which each contribute to the decrease of

var ISIj

� �
when kj is scaled up (assuming as before that km is

appropriately decreased to maintain the firing-rate mj ).

Finally, before we conclude, we address the effect of excitatory

interconnectivity in the AL, which was not taken into account in

the simple model analyzed above. Let’s assume for a moment that,

in the above model, we had added excitatory cells (say, LNEs)

which were also affected by the ORN input channels. When

analyzing the effect of modifying kj on the LNIs, the excitatory

interactions associated with the LNEs only come into play at the

2nd-order. For example, if indices j,k correspond to LNIs and

index l corresponds to an LNE, the simplest coupling terms by

which LNE-l can affect LNI-j are of the form DjlDlk. Similar to the

2nd-order contributions shown in Fig. 7, The contributions of this

term are dwarfed by the contributions of the LNI-LNI terms Djk

and Djj . When analyzing the effects of modifying kj on the LNEs

themselves, the situation is similar, with excitatory interactions

playing a secondary role to the dominant contribution of first-

order presynaptic-inhibitory connections. Thus, as long as the

number of LNIs which affect each AL-neuron is not much less

than the number of LNEs which affect that neuron (and as long as

excitation and inhibition have effects of comparable magnitude),

we expect the analytical results of this section to hold for networks

which include both excitatory and inhibitory neurons.

Discussion

Using our large-scale model for the fly antennal lobe, we have

been able to put forth two hypotheses which concern the

functional role played by synaptic-depression at the ORN synapses

within the fly AL. The first of these hypotheses is that ORN?AL

synaptic-depression may contribute to a form of variance coding

when ORN firing-rates are high. The second hypothesis is that

two network mechanisms which both give rise to synaptic-

depression (namely presynaptic-inhibition and vesicle-depletion)

participate in establishing a balance between the network’s

reliability and sensitivity.

The first hypothesis hinges on the fact that, as ORN firing-rates

increase beyond the value at which PN firing-rates saturate, the

corresponding increase in ORN?PN synaptic-depression dimin-

ishes the postsynaptic impact of each individual ORN firing-event.

In many situations (e.g., when many ORNs stimulate each PN,

and different ORNs fire independently of one another), this

scenario directly implies that, as ORN firing-rates increase, the

ratio between the variance in input to the PNs and the mean input

to the PNs decreases. If the ORN?PN synaptic-depression is

sufficiently large, the variance in input to the PNs can actually

decrease as ORN firing-rates increase, while the mean input to the

PNs remains the same. When the variance to the PNs decreases

sufficiently, the PNs behave as though they are driven by an input

current. This current-like drive typically gives rise to very regular

(periodically firing) PN dynamics. This first hypothesis is very

general, and evidence of this hypothesis manifests in our

simulations for a wide range of parameter values. As mentioned

above, synaptic-depression (including vesicle-depletion and pre-

synaptic-inhibition) is just one of several mechanisms which could

contribute to this variance-coding effect.

One of the most straightforward predictions of our first

hypothesis is that, within the real AL, the trial-to-trial variability

of PN responses should decrease as ORN activity increases beyond

the point where PN firing-rates have saturated. This should be

measurable at the level of individual PN responses, as long as the

odor stimuli are chosen at the appropriate concentrations (see,

e.g., [18]). Many of the experimental protocols which are currently

employed are sufficient to test this prediction.

If such a variance code is indeed found in the fly AL, then the

next question is whether or not the fly makes use of it. There are

many ways in which an appropriately constructed downstream

neuronal system could discriminate between two different stimuli

that give rise to PN activity with similar firing-rates but differing

degrees of regularity. For example, a downstream neuron may be

wired to a subset of PNs in a given glomerulus in such a manner

that (i) the steady nearly-periodic sequence of PN firing events

associated with low-variance high-firing-rate PN activity (observed

when mORN is very high) does not stimulate the downstream

neuron sufficiently to induce firing, whereas (ii) the occasional

clusters of PN firing-events which occur during high-variance

high-firing-rate PN activity (observed when mORN is not quite so

high) do stimulate the downstream neuron to fire. This is one of

many potential ‘readout’ mechanisms that could serve to

discriminate amongst stimuli which generate high ORN firing-

rates. Such a readout mechanism may be at work within Kenyon

cells, which have been observed to act like coincidence detectors

[26–28]. A Kenyon cell that has a ‘high-threshold’ for firing may

function as a coincidence detector, while also responding

preferentially to spike-clusters within high-variance high-rate PN

activity, but not to low-variance high-rate PN activity. An

illustration of this principle is given in Fig. 2H. There are many

other potential readout mechanisms that could serve to detect

changes in the variance of PN activity, and effective readout

mechanisms are likely nonlinear in nature [29,30].

Our first hypothesis may have significance for concentration-

coding within the fly olfactory system. As an odor’s concentration

increases there are two typical changes to the ORN activity

induced by that odor: (i) the number of activated ORN classes

increases, and (ii) the ORN firing-rates within each activated class

increase and eventually saturate [18,31,32]. It has been proposed

that the firing-rates of the PN population across many glomeruli

can collectively encode both stimulus identity and stimulus

intensity [32–34], but it is still unclear how such a population

firing-rate code could be deciphered by a downstream network

within the fly. Our first hypothesis suggests an alternative to such a

population firing-rate code, as the activity of a single glomerulus

can also encode information regarding stimulus intensity, even

when the glomerular firing-rates are saturated. Thus, a down-

stream decoder need not necessarily integrate information from

multiple glomeruli in order to assess the intensity of a stimulus. In

cases where a pair of high-concentration odors do in fact saturate

the responses of most of the glomeruli which they target, typical

readout mechanisms designed for rate-coding may not serve to

discriminate these odors [35], and variance-coding mechanisms

relying on transient bursts of activity (as mentioned above) may be

more useful (see, for example, [36]).

The second hypothesis contains two statements. The first is that

feedback-dominated synaptic-depression (i.e., presynaptic-inhibi-

tion) within type-A networks allows type-A networks to be more

sensitive than type-B networks to shifts in input. Thus, type-A

networks outperform type-B networks at odor-discrimination tasks

when long observation-times are allowed. This statement seems to

be true within our model network over a wide range of parameter

values. The second statement is that feedforward-dominated

synaptic-depression (i.e., vesicle-depletion) within type-B networks

allows type-B networks to be more reliable than type-A networks

(over multiple presentations of the same odor). This seems to be

true within our large-scale model when (i) the typical number of

ORN firing-events presynaptic to each PN within a glomerulus is
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larger than the typical number of LNI firing-events presynaptic to

the ORNs which target that glomerulus, (ii) the vesicle-depletion

experienced by the ORN synapses is relatively well stereotyped

across ORN firing-events, and (iii) the presynaptic-inhibitory

network includes many ‘inter-glomerular’ connections. These

three conditions seem to hold for the fly AL [12], but in other

situations these conditions may be violated, and the converse of

this second statement may hold. For example, we conjecture that

in a hypothetical system containing (i9) very many high-firing-rate

LNIs and PNs driven by only a few low-firing-rate ORNs and (ii9)

a vesicle-depletion mechanism that is highly variable from one

ORN firing-event to the next, it is likely that LNI?ORN

presynaptic-inhibition can control the ORN input to the PNs

much more reliably than vesicle-depletion of the ORN synapses

could. In this hypothetical system type-B networks would be quite

unreliable. Furthermore, even in a system with many ORNs and

few LNIs, if (iii9) the presynaptic-inhibitory network is dominated

by strong intra-glomerular connections (between LNIs and ORNs

associated with the same odorant channel), then the subnetwork

analysis carried out above indicates that type-A networks would

actually be more reliable than type-B networks.

Obviously, the real AL for any given fly has a fixed architecture,

and it does not seem likely that a fly could vary the effect of vesicle-

depletion and presynaptic-inhibition on the ORN synapses to take

advantage of a tradeoff between reliability and sensitivity.

However, the hypothesis above does apply to the fly AL in the

sense that fly physiology may be balanced to achieve some optimal

compromise between gain (i.e., responsivity), reliability, sensitivity

and discriminability over short observation-times.

Suggestions for future study
The intuition gained in this study may be useful for

understanding the coding properties of olfactory systems in other

insects, or even in mammals, many of which also exhibit synaptic-

depression.

In the olfactory system of many other insects, such as the locust

and honeybee, the antennal lobe activity is characterized by

oscillations which develop soon after the onset of stimulus. These

oscillations are thought to be a key feature of the AL-response in

these animals [26,33]. Since such oscillations do not manifest

quickly in the fly [17], the dynamical regimes studied in this paper

are not of this nature. However, we can retune our computational

model to produce oscillations by increasing the density of lateral

connectivity within the AL (thus, bringing our model closer in

structure to that of [33]). The analytical techniques used in this

paper may also be useful for studying some of the phenomena

associated with such an oscillatory regime.

Within certain mammals, such as the mouse, primary olfactory

input to the olfactory bulb can be presynaptically inhibited by

interneurons [37–39]). Because the architecture of the mammalian

olfactory system is different from that of the fly, the hypotheses

investigated in this paper may not directly apply. For example, in

the mouse it has been found that inhibitory neurons in the

olfactory bulb strongly presynaptically-inhibit the olfactory sensory

neurons stimulating their own glomerulus, but not those stimulat-

ing other glomeruli [40], a situation markedly different from the

presynaptic-inhibitory network of the fly AL [12]. Thus, as hinted

in (iii9) above, one might expect type-A networks to be both more

sensitive and more reliable than type-B networks in the mouse. The

extra coding power afforded by ‘feedback-induced’ synaptic-

depression in this scenario may be necessary for an animal which is

forced to sample it’s olfactory environment using short observation

times (e.g., nose-pokes and sniffs). This sort of speculation begs for

a more detailed investigation of the structural and dynamic

mechanisms at work in the mammalian olfactory system.

Materials and Methods

Overview of large-scale point-neuron model
In this section we describe the point-neuron model we used to

investigate the dynamics of the fly AL. This model incorporates 5
glomerular channels, each with 6 PNs, 6 LNEs, 6 LNIs and 60
ORNs, and incorporates presynaptic-inhibition as well as vesicle-

depletion (see Fig. 1). Each PN, LNE, LNI and ORN is modeled

using single-compartment Hodgkin-Huxley type kinetics using

standard sodium and potassium currents that give rise to fast

sodium spikes [22] similar in shape to those observed experimen-

tally [41].

Model synaptic currents. ORN, PN and LNE excitatory

synapses and LNI GABAergic synapses are modeled by fast-

activating synaptic currents [34,42]. Excitatory and GABAergic

transmission are both modeled via stereotyped instantaneous

neurotransmitter release in response to a presynaptic action

potential, with ORN synapses experiencing vesicle-depletion.

Although there is evidence for a slowly activating inhibitory

current in the honeybee [43], we are not aware of any similar

evidence for such slowly activating inhibitory current in the fly AL.

There is, however, evidence for both long-timescale GABA-B type

inhibitory currents, as well as short-timescale GABA-A type

inhibitory currents in the fly AL [11]. To account for these two

timescales, both a long- and short-timescale inhibitory current are

incorporated into this model — the relevant synaptic currents

include fast excitation (nAch-type, timescale 5–10 ms), fast

inhibition (gabaA-type, timescale 10–15 ms) and slow inhibition

(gabaB-type, timescale 100–400 ms).

Model connectivity. Experimental observations indicate that

all the ORNs that express the same odorant receptor gene have

similar odor responses and project to the same glomerulus in the

brain [18,44]. Each PN receives direct ORN input from a single

glomerulus [6], and thus all the ORNs and PNs corresponding to a

given glomerulus constitute a discrete processing channel. We

have designed the architecture of our model to reflect these

experimental observations — our model ORNs and PNs only

project to PNs and LNs associated with their own glomerulus.

Experimental observations also indicate that glomeruli are

interconnected by a network of local interneurons. There have

been several experimental results implying that the lateral

connectivity between glomeruli in the AL has a strong inhibitory

component, and that this inhibitory component is partly due to

presynaptic-inhibition (i.e., LNIs synapsing on the ORN axons

presynaptically) [12,13,41]. It has also been revealed that ORN-

PN synapses are quite strong, and likely experience substantial

synaptic-depression through vesicle-depletion [11]. Our computa-

tional model reflects these observations, and model LNEs and

LNIs project to neurons both within and outside their own

glomerulus. In addition, the model LNIs only affect the ORNs

presynaptically. That is, deposition of neurotransmitter from LNIs

onto ORNs only suppresses the efficacy of the synapse at the ORN

axon (without suppressing the membrane potential at the ORN

soma). In order to model vesicle-depletion, the efficacy of the

synapse associated with each ORN is depleted each time that

ORN fires [22].

There is debate as to whether or not there is a functionally

relevant large-scale structure to the lateral connections within the

AL, such as center-surround excitation/inhibition, or chemotopy

[7,45]. The lateral connectivity in our model network is structured

so that the interconnections between ORNs, PNs, LNEs and LNIs
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are sparse and randomly determined. Thus, the results of our

model may be expected to generalize to a variety of networks with

a degree-distribution similar to that of an Erdos-Renyi random-

graph. The connectivity of the network is encoded by a matrix D,

with Dij[ 0,1f g labelling the existence of a connection between cell

j and cell i. Each entry in the connectivity matrix D is randomly

chosen to be either 0 or 1 independently, with connection

probabilities specific to the cell types and glomerular channel

assignments of neurons i and j. Both the connection probabilities,

as well as the coupling strengths are chosen in a manner consistent

with the literature (details given in the sections regarding

benchmarking below).

Model odor input. The model ORNs themselves are each

stimulated by Poisson input. In background (i.e., in the absence of

an odor stimulus) the Poisson input rate is 350 Hz, and the input

strength is low enough that the ORN background firing-rate is

1{5Hz, and the corresponding PN background firing-rate is

1{2Hz (consistent with experimentally observed firing-rates —

[6,41]). Odor presentation within this network is modeled by

stimulating the ORNs corresponding to a subset of glomerular

channels (typically around half of the glomerular channels) with

additional high-rate Poisson input, in addition to the background

Poisson input (consistent with experiments which indicate that an

odorant typically activates multiple ORN types and triggers

activity in *1=3 to 1=2 of the glomeruli — [18,20,46,47]). In this

manner, a model odor is represented in a combinatorial fashion —

an odor is defined by the degree to which that odor drives the

various ORN input channels. To simulate odors of different

chemical composition, we stimulate different subsets of ORN

input channels, whereas to simulate odors of the same chemical

composition (but of differing concentration) we stimulate the same

input channels to differing degrees, as motivated by the

observation that varying the concentration of a given odor tends

to modulate the firing-rates of responding ORNs in vivo [45,48–

50]. The odor-dependent noisy input signal is sufficient to drive

individual ORNs strongly stimulated by the odor to firing-rates of

20{30Hz. We choose a time-course of the odor-specific ORN

current stimulus that is comparable to the time-course observed

experimentally [18]. Specifically, at the time of ‘odor onset’ we

increase the input-specific drive to the ORNs slowly (over

*400ms), and at odor offset we decrease the input-specific

ORN drive even more slowly (over *1000ms). While there is

some evidence of more complicated odor-specific temporal

structure to ORN odor response, we will model only the

temporally simplistic ORN response detailed above, so as to focus

on emergent dynamics within the AL which manifest solely as a

result of AL interconnectivity.

Benchmarking the model
We have tuned the model so that, with a single set of

parameters, the model exhibits a dynamic regime that is consistent

with a variety of experimentally observed phenomena.

We attempted to ensure that the model network architecture is

consistent with the literature. For example, motivated by [13], We

chose the inhibitory postsynaptic coupling strengths from

LNIs?PNs so that the lateral inhibitory IPSC to a PN has both

a fast and slow component (in our model IPSCs incorporate

*50% fast (gabaA type) and *50% slow (gabaB type) inhibition).

Similarly, we chose the inhibitory postsynaptic coupling strengths

from LNIs?LNEs and LNIs?LNIs to be 100% fast-type. As

another example, motivated by [41], we have chosen LNE?PN

intra-glomerular coupling to be sparse enough (*15%-25%) to

align with the fact that direct LN?PN connections are rarely

observed. Nevertheless, LNE?PN inter-glomerular coupling is

dense enough that lateral excitatory input is still observed between

most pairs of glomeruli [8,9]. The lateral excitation between

glomeruli is sufficiently strong that, even when ORNs belonging to

a particular glomerulus are removed, some PNs and LNs within

that glomerulus can still fire after odor presentation.

Stimulus driven dynamic transients reflect PN reliability

and saturation. We tuned the ORN?PN connection proba-

bilities and connection strengths in our model so as to produce

stimulus-triggered dynamic transients which are qualitatively

similar to experiment. This stimulated set of ORNs directly

activates a corresponding subset of glomeruli. As the glomeruli

respond to the ORN input, the glomerular activity pattern shifts

and spreads to include other glomeruli not directly stimulated by

the odor.

As shown in Fig. 9, the stimulus triggered firing-sequence of a

typical model PN is more reliable than the corresponding

sequence for a typical ORN associated with the same glomerulus,

and the PN PSTH typically peaks after *200ms but before the

ORN PSTH peaks (consistent with [20]). The sensitivity and

reliability of PN activity within our model is critically dependent

on three features: (i) the convergence ratio of ORNs to PNs must

be sufficiently high that any given PN receives strong reliable input

(summed over ORNs) immediately after odor onset, (ii) there must

be some synaptic-depression at the ORN synapses, otherwise the

PN activity does not peak before the ORN activity peaks (rather,

the PN activity saturates and remains constant), and (iii) the

combination of ORN activity and synaptic-depression at the ORN

synapses must give rise to essentially ‘mean-driven’ (i.e., low-

variance super-threshold) input to the PNs during odor presenta-

tion. These three network mechanisms seem to be necessary and

sufficient to give rise to high-firing-rate PN activity which peaks

prior to the peak in ORN activity, and which is more reliable than

any single ORN’s activity. We note that the source of synaptic-

depression is not constrained by this particular phenomena —

either vesicle-depletion or presynaptic-inhibition (generated by the

recruitment of LNIs in other glomeruli) can give rise to mean-

driven ORN?PN input, and hence to reliable PN firing

sequences. As shown in Fig. 10, the PN firing-rate is a nonlinear

function of ORN firing-rate when averaged across odors and trials

and PN/ORN pairs within any given glomeruli, as is consistent

with experiment [20].

PNs are more broadly responsive to odors than their

ORN class would indicate. Experimentally, it has been

observed that most PNs respond to multiple odors [45,51], and

are more broadly responsive than their input ORNs [9,20] —

there are many different PNs which respond to odors that do not

stimulate their respective ORNs, and there are PNs which do not

respond very strongly even when their respective ORNs are

strongly stimulated. Thus, due to the lateral connectivity within

the AL, the total set of activated glomeruli corresponding to a

particular odor is generally not in one-to-one correspondence with

the set of activated ORN olfactory receptors stimulated by that

odor. Many believe that the inter-glomerular crosstalk is critically

important for redistributing the glomerular activity within the AL

([41], but also see [7,45]). It has been postulated that this re-

expression of the odor at the glomerular level is advantageous for

the fly, as the combinatorial code linking different odors to

different glomerular subsets serves to separate similar odors more

efficiently than the corresponding combinatorial code at the

olfactory receptor level [20].

We tuned the lateral connection probabilities and connection

strengths within our model to produce a dynamic regime capable

of rich glomerular activation patterns which are qualitatively

similar to experiment. As shown in Fig. 11, the lateral connectivity
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in our model is sparse enough that oscillations do not develop

during the initial odor-response, and yet strong enough that the

activity of PNs and LNs within each glomerulus is not in direct

correspondence with the activity of their respective ORN inputs.

This lack of correlation between PN response and ORN response

across odors can be quantified by measuring the PN-PN and PN-

ORN rank-correlation, which is in good qualitative agreement with

experiment [20]. In our model, as in experiment, LN activity is

similar to PN activity (data not shown). For example, LN firing-rate

can get quite high, and typically peaks shortly after odor onset [13].

ORN?PN induced EPSCs attenuate as frequency of
ORN synapse activation increases. Our model of vesicle-

depletion and presynaptic-inhibition is phenomenological, and is

intended to allow us to qualitatively reproduce and investigate

the functional role of synaptic-depression at the ORN synapses.

We have chosen a parsimonious model for vesicle-depletion,

involving only one timescale of *400ms, and one parameter

Svesdep. Similarly, our model of presynaptic-inhibition involves

only the timescales of synaptic inhibition and a coupling strength

Spresyn (see the section regarding vesicle-depletion and presyn-

aptic-inhibition below). In order to ensure that our phenome-

nological model of synaptic-depression at the ORN synapses (a

combination of vesicle-depletion and presynaptic-inhibition) was

qualitatively accurate, we followed the experimental paradigm of

[11]. We constructed a numerical experiment to measure the

attenuation timescale of ORN?PN input (see Fig. 12). We first

forced the ORN synapses to activate periodically at 8Hz (to

simulate ORN background firing-rates), and then once the

system equilibrated to this periodic input, we increased the

frequency of ORN stimulation (to vHz) and measured the input

current to each PN as a function of time. For a larger given

frequency v, the attenuation of the PN EPSC will occur more

quickly. We tuned the coupling strengths Spresyn,Svesdep so that

the attenuation time scale (as a function of v) qualitatively

matched experimental observations [11]. Our modeling work

indicates that the attenuation time-scale match experiment as

long as Spresyn and Svesdep are sufficiently high (the exact ratio of

Spresyn to Svesdep is not strongly constrained by this particular

experiment).

A further constraint on our model of synaptic-depression can be

obtained by considering the correlation between total ORN

activity, and reduction in subthreshold voltage observed at any

given PN [12]. To obtain a roughly linear relationship between

ORN activity and PN inhibition (as shown in Fig. 13), our model

requires Spresyn
w0.

Details pertaining to Neuronal Model
The membrane potential of each ORN is governed by

equations of the form

Figure 9. PNs are more reliable than their individual ORN inputs. Shown are averaged response curves for a typical model PN (magenta,
solid) and model ORN (green, dashed) associated with the same glomerulus in our model. The grey overlay indicates the 512ms odor presentation
period. Spikes were counted in 48ms bins. The mean spike-count per 48ms bin (averaged over 16 trials) is shown on the left. The standard-deviation in
spike-count per 48ms bin is shown in the center, and the coefficient of variation (standard deviation7mean) is shown on the right. Note that,
qualitatively similar to experiment [20], the model PN activates more quickly, has higher firing-rates, and is more reliable than the ORN.
doi:10.1371/journal.pcbi.1002622.g009

Figure 10. The relationship between ORN firing-rates and PN
firing-rates is nonlinear. Shown is a scatterplot of model PN and
model ORN firing-rates associated with a typical glomerulus in our
model. Spike rates were measured during the 96ms epoch during which
PN firing-rates peak following odor presentation. Note that, qualita-
tively similar to experiment [20], the model PN firing-rates saturate for
relatively small values of ORN firing-rates.
doi:10.1371/journal.pcbi.1002622.g010
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Cm
dV

dt
~{gL(V{EL){INa{IK{Istim,

with stimulus current described in a section entitled ‘‘Odor

Stimulation’’ below. The membrane potential for each PN, LNE

and LNI is governed by equations of the form:

Cm

dV

dt
~{gL(V{EL){INa{IK{Iexcitatory{IGABAA{IGABAB :

The parameters for the passive leak current are Cm~1:0 mF ,

gL~0:3 mS, EL~{64 mV .

Intrinsic currents. The intrinsic currents for each neuron

consist of fast sodium and potassium currents INa and IK . These

currents obey equations of the following form:

INa~gNam3h(V{ENa), IK~gK n(V{EK )

The maximal conductances are gNa~120 mS, and gK~3:6 mS.

The reversal potentials are ENa~40 mV , EK~{87 mV .

The gating variables m,h,n take values between 0 and 1 and

obey equations of the following form:

dm

dt
~am Vð Þ 1{mð Þ{bm Vð Þm,

dh

dt
~ah Vð Þ 1{hð Þ{bh Vð Þh,

dn

dt
~an Vð Þ 1{nð Þ{bn Vð Þn

INa and IK are described in [52]:

Figure 11. PNs exhibit broader odor responses than their associated ORNs. [A] Shown are trial-averaged firing-rate curves for various
model PNs (magenta, solid) and associated model ORNs (green, dashed) in response to various model odors. Note that, qualitatively similar to
experiment [12], the activity of the model PNs does not necessarily reflect the activity of the associated model ORNs. [B] Shown are the PN-ORN
(green) and PN-PN (red) Spearman rank-correlation histograms for the model PNs and associated model ORNs (averaged over all PN and ORN pairs
associated with each given glomerulus, and then further averaged over glomeruli — see [20] for the statistical methods used). Note that, qualitatively
similar to experiment, the mean of the PN-ORN histogram is closer to 0 than the mean of the PN-PN histogram, indicating that, while PNs associated
with a given glomerulus tend to respond to the same odors, they do not necessarily respond to the same set of odors which stimulate their
associated ORNs.
doi:10.1371/journal.pcbi.1002622.g011

Figure 12. Synaptic-depression at the ORN synapses. Shown are current traces associated with a model PN in response to direct current
stimulation of the model ORNs associated with that PN. Analogous to experiment [11], the model ORNs associated with the model PN have been
stimulated by periodic 8Hz input current prior to the epoch shown in the figure. At the start of the epoch shown in this figure, the ORN stimulation is
increased to 8Hz, 16Hz, 32Hz, or 64Hz. The trial-averaged model PN EPSCs in response these different stimulations are plotted (over a time interval
of 550ms). Above each EPSC curve, we show the envelope of the response in gray. This envelope is calculated by fitting a piecewise linear function to
the maxima of the EPSC response sampled at the rate of stimulation. Note that, similar to experiment, the envelope of the PN EPSC attenuates more
quickly when stimulated at 64Hz than when stimulated at 8Hz.
doi:10.1371/journal.pcbi.1002622.g012
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am~0:1 {exp {0:1 Vz35ð Þð Þ½ �= 1{exp {0:1 Vz35ð Þð Þ½ �

bm~4:0 exp { Vz60)=18ð Þð Þ

ah~0:07 exp { Vz60ð Þ=20ð Þ

bh~1:0= 1:0zexp {0:1 Vz30ð Þð Þ½ �

an~0:01 {exp {0:1 Vz50ð Þð Þ½ �= 1{exp {0:1 Vz50ð Þð Þ½ �

bn~0:125 exp { Vz60)=80ð Þð Þ:

Synaptic currents. Given two connected neurons in the

network, the synaptic conductances of the postsynaptic neuron are

increased whenever the presynaptic neuron’s membrane potential

rises above a threshold of VT~0mV (i.e., when the intrinsic

currents of the presynaptic neuron generate an action potential).

The excitatory-synaptic current associated with the ith neuron in

the network is governed by an equation of the following form:

I
excitatory
i ~

X
j

½Sexcitatory
i,j Di,jO

excitatory
j �(Vi{Eexcitatory), ð4Þ

I
GABAA
i ~

X
j

½SGABAA
i,j Di,jO

GABAA
j �(Vi{EGABAA

), ð5Þ

with the excitatory reversal potential Eexcitatory~0mV . The

efficacy of the excitatory-type synapse O
excitatory
j associated with

the jth neuron obeys the equation:

dO
excitatory
j tð Þ

dt
~{

O
excitatory
j tð Þ
texcitatory

z

X
k

Asynd t{ T
spike,j
k ztdelay

h i� �
1{ lim

t
0?t{

O
excitatory
j t

0� �" #
:dj ,

where texcitatory~5ms, the times T
spike,j
k are the spiketimes of the

jth neuron, tdelay~0:125ms, and Asyn~1:5 (adapted from

[33,34,53,54]). The term dj represents synaptic-depression at the

ORN synapses, and is used to model both vesicle-depletion and

presynaptic-inhibition at these synapses. This term dj is identically

1 if j corresponds to a PN, LNE or LNI. The dynamics of dj when

j corresponds to an ORN will be discussed later. The differential

equation Eq. 6 is structured so that 0ƒO
excitatory
j tð Þv1 for all

time, and in the absence of firing O
excitatory
j tð Þ?0z. The synaptic

GABA-A current for the PNs, LNEs and LNIs obeys equations

analogous to Eqs. 4,6, with EGABAA
~{70mV . The efficacy of

the GABA-A-type synapse O
GABAA
j associated with the jth neuron

obey the equation

dO
GABAA
j tð Þ

dt
~{

O
GABAA
j tð Þ
tGABAA

z

X
k

Asynd t{ T
spike,j
k ztdelay

h i� �
1{ lim

t
0?t{

O
GABAA
j t

0� �" #
,

with tGABAA
~15ms. The synaptic GABA-B current for the PNs,

LNEs and LNIs obeys an equation of the following form:

I
GABAB
i ~

X
j

½SGABAB
i,j Di,j

~OO
GABAB
j �(Vi{EGABAB

),

with inhibitory reversal potential EGABAB
~{95 mV . The

quantity ~OO
GABAB
j for the jth neuron obeys the equation:

d ~OO
GABAB
j tð Þ

dt
~{

~OO
GABAB
j tð Þ
~ttGABAB

zO
GABAB
j tð Þ,

with ~ttGABAB
~400ms. The efficacy of the synapse O

GABAB
j for the

jth neuron obeys an equation analogous to Eq. 7, with

tGABAB
~30ms. Thus, the slow GABA-B type synaptic current

has a rise and decay time-scale, whereas the fast excitatory and

GABA-A type synaptic currents only have decay time-scales (again

adapted from [33,34,53,54]).

The synaptic coupling strengths S
excitatory
i,j , SGABAA

i,j , and SGABAB

i,j

depend only on the cell types of neurons i and j, and are chosen so

that only presynaptic ORNs, PNs and LNEs give rise to

excitatory-type currents, and only LNIs give rise to GABA-A

and GABA-B-type currents. The strengths are given by the

following arrays:

Figure 13. Presynaptic-inhibition is partly responsible for
ORN?PN synaptic-depression. Shown is a scatterplot displaying
the correlation between total ORN activity across all glomeruli in
response to various odors, and the suppression of spontaneous EPSPs
associated with a particular PN associated with a glomerulus which has
been ‘shielded’ (i.e., the odor stimulus chosen does not affect the input
drive to that glomerulus). In analogy with [12]. The PN suppression is
measured as the difference in integrated PN membrane potential
between (i) the scenario in which the PN receives spontaneous spikes
from its associated ORNs in the absence of any odor, and (ii) the
scenario in which the glomerulus associated with that PN is shielded
and an odor is presented, in which case the activity generated within
the other glomeruli reduce the effect of the spontaneous spikes
impingent on the PN, and the spontaneous EPSPs are absent or greatly
diminished. Note that, due to presynaptic-inhibition within the model,
the correlation between PN EPSP magnitude and total ORN activity is
qualitatively similar to experiment [12].
doi:10.1371/journal.pcbi.1002622.g013

(6)

(7)
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excitatory

fromORN

excitatory

fromPN

excitatory

fromLNE

GABA{A

fromLNI

GABA{B

fromLNI

toORN 0 0 0 Spresyn:0:0016 Spresyn:0:00035

toPN 0:052 0:001 0:025 0:0001 0:00005

toLNE 0:048 0:015 0:025 0:15 0

toLNI 0:130 0:001 0:030 0:0001 0:0001

ð8Þ

The parameter Spresyn varies between 0 (no presynaptic-

inhibition) and 10 (strong presynaptic-inhibition). Note that the

PN?PN and LNI?PN coupling strengths are all negligible, to

account for the experimental observations that PNs may not be

targeted by other PNs, or by local inhibitory interneurons.

However, we do allow for PNs to connect to LNEs (and LNIs),

as observed in [41]. If these strengths are set to 0 we can retune the

remaining connectivity strengths so that our major conclusions still

hold (data not shown).

Network connectivity. The intra-glomerular connection

probabilities are given by the array:

fromORN fromPN fromLNE fromLNI

toORN 0:00 0:00 0:00 0:85

toPN 1:00 0:50 0:15 0:50

toLNE 0:75 0:50 0:15 0:50

toLNI 0:25 0:50 0:50 0:50

ð9Þ

and the inter-glomerular connection probabilities are given by the

array:

fromORN fromPN fromLNE fromLNI

toORN 0:00 0:00 0:00 0:85

toPN 0:00 0:00 0:75 0:00

toLNE 0:00 0:00 0:15 0:25

toLNI 0:00 0:00 0:50 0:50

ð10Þ

Modeling vesicle-depletion and presynaptic-inhibition at

the ORN?PN and ORN?LN synapses. The ORNs in this

model do not directly experience synaptic conductances from

either the PNs or the LNEs. The excitatory-type from PNs and

LNEs onto ORNs is identically 0 (see the array shown in (8)

above). The GABA-A and GABA-B-type conductances associated

with an ORN (say, with index j) alter the term dj in Eq. 6, thus

affecting the efficacy of synapses from the jth ORN onto the AL.

The evolution of dj in our model is governed by two parameters:

Spresyn (described above), and Svesdep (described below). These two

parameters will allow us to consider a 2-parameter family of model

networks in which the strength of vesicle-depletion and presynap-

tic-inhibition can be altered independently (see Fig. 4). The

equations governing the evolution of dj are

dj~ 1{mj

	 

exp

{
X

k

½SGABAA
j,k Dj,kO

GABAA
k �{

X
k

½SGABAB
j,k Dj,kO

GABAB
k �

" #
,

with the vesicle-depletion parameter mj obeying the differential

equation:

dmj tð Þ
dt

~{
mj tð Þ

tm
z
X

k

Svesdepd t{T
spike,j
k

� �
lim

t
0?t{

mj t
0� �

{1

" #
,

with tm~400ms. The parameter Svesdep varies from 0 (no vesicle-

depletion, mj:0) to 1:0 (complete vesicle-depletion with each

firing-event). As the vesicle release rate per synaptic event is likely

quite high within the real fly AL [11], values of Svesdep[ 0:5,0:9½ �
are most reasonable from a physiological standpoint. Note that the

vesicle-depletion parameter mj is bounded between 0 and 1.

Odor simulation. The stimulus current to the jth ORN is

governed by the equation

Istim~
X

k

Sbkga t{T
bkg
j,k

� �
(Vj{Eexcitatory)

z
X

k

Sodora t{Todor
j,k

� �
(Vj{Eexcitatory),

where a tð Þ is a response-function such that a tð Þ~0 if tv0, and

a tð Þ~exp {t=tORNð Þ if tw0, with tORN~5ms. The spiketimes

T
bkg
j,k are drawn from a Poisson-process with rate vbkg~350Hz.

The strength of this background input is Sbkg~0:067. The

spiketimes Todor
j,k are drawn from a Poisson-process with rate

vodor
j tð Þ which depends on the time since odor onset, the odor

being presented, as well as the ORN under consideration. Typical

values for vorn
j range from 0 (when the odor does not directly

stimulate the jth ORN) to 150Hz (when the jth ORN is being

strongly stimulated by the odor). The strength of this odor-specific

input is Sodor~0:027.

The time-dependence of the odor-specific input-rate vORN
j tð Þ is

governed by the factor

vORN
j tð Þ! 1{exp {tt{tonsets=triseð Þ½ �:exp {tt{toffsets=tdecay

� �
,

with tonset and toffset representing the onset and offset times of the

odor stimulus (respectively), and with trise~400ms,

tdecay~1000ms. A typical odor (stimulation of the ORNs within

*1=2 of the glomerular channels) activates *2=3 of the PNs,

which fire at about 50{150Hz. Not all of the PNs exhibit

increased activity upon odor stimulation — a given odor will

typically cause a few PNs which are not directly stimulated to

actually decrease in activity (as a result of inter-glomerular

inhibition). On presentation of a typical odor, the typical PN

PSTH rises very quickly, and peaks after *200ms, before the

ORN PSTH peaks (at *500ms by construction). The typical PN

PSTH decays more quickly than the ORN PSTH (*200{300ms
vs *1000 ms). Due to lateral connectivity, PNs respond to a

broader selection of odors than their ORN inputs and most PNs

have a ‘rank order’ of odors that is different from the rank order of

their ORN inputs. Note that PNs exhibit a rise in firing-rate after

odor offset only very rarely. This is a consequence of the fact that

the current model only incorporates odors which increase the

firing-rate of the stimulated ORNs. It has been observed that some

odors actually decrease the firing-rate of certain ORN types, with

perhaps a resurgence of ORN firing-rates after odor offset (as

shown in DL1 response to cis-3-hexen-1-ol, cyclohexane and ethyl

acetate — [20]). These types of inhibitory Odor?ORN responses

could potentially give rise to richer PN dynamics (potentially
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triggered by PNs/LNs which fire greatly after odor offset), and

these phenomena will be studied in more detail in future work.

Odor discrimination. In order to estimate the model

network’s ability to discriminate different odors, we measure the

odor-dependent probability distribution of each PN’s firing-rate, and

use standard methods from classification theory [55]. For complete-

ness we describe our procedure applied to firing-rate vectors.

Assume that we are estimating the network’s ability to

discriminate between 2 different odors. For each i[ 1,2f g, we

perform multiple trials of odor i, and estimate the probability

distribution

Pi
k zð Þ~P the kth PN fires z times during a single trial of odor i

� �
:

Once the Pi
k are sufficiently well estimated, we perform and

classify individual odor trials. A single trial of odor i (randomly

chosen to be either 1 or 2 with 50% probability) will give rise to a

vector ~pp such that pk is the number of firing-events produced by

the kth PN during that trial. By looking at a fixed k and comparing

P1
k pkð Þ and P2

k pkð Þ, we can use the kth PN to identify a possible

candidate stimulus (either odor 1 if P1
k pkð ÞwP2

k pkð Þ, or odor 2 if

P1
k pkð ÞvP2

k pkð Þ). This process can be performed for each k, and

in this way each PN ‘votes’ for a candidate stimulus. We tally these

votes, weighting each one by the log of the information ratio

associated with each PN. We use the weighting

log Ak=Bkð Þ,

where Ak is the ‘hit-rate’ associated with the kth PN:

Ak~
1

2

X?
z~0

max P1
k zð Þ,P2

k zð Þ
� �

,

and Bk~1{Ak is the ‘error-rate’. This particular weighting is

chosen so that N votes for stimulus 1 with error-rate B have the

same combined weight as a single vote for stimulus 2 with a far

smaller error-rate of BN= BNz 1{Bð ÞN
h i

. The sum of the

weighted votes is compared to determine the candidate stimulus

underlying this particular trial. If the candidate stimulus matches

the true stimulus, the trial is classified correctly. If not, the trial has

been classified incorrectly. By going through this process with

multiple trials, we can generate a probability that any given trial

will be classified correctly. To perform N-way discriminability

tasks, we go through an analogous procedure, performing all

N

2

� �
pairwise discriminability tasks for each sample observation,

and ultimately selecting the candidate stimulus corresponding to

the majority (with ties automatically counted as incorrect).

We have chosen this particular procedure because it allows us to

take advantage of components of the firing-rate vector which carry

substantial information (as measured by the information ratio),

without requiring an estimate of the joint distribution of firing-

rates (across PNs) for any particular odor. Thus, this measure of

discriminability is more sensitive than typical linear discriminators

which use the Euclidian distance between firing-rate vectors (see

[20]), but does not succumb to the curse of dimensionality

associated with the large number of distinct PNs.

An idealized model used to illustrate variance coding
Here we describe in detail the idealized model used in the

section entitled ‘‘A simple cartoon of variance coding’’ in the main

text. This model includes a single conductance-based integrate-

and-fire PN, driven by a set of 4 ORNs, each endowed with a

simple model of synaptic-depression. Each of the 4 ORNs is

modeled as a Poisson process with fixed rate g (0Hzƒgƒ180Hz).

The coupling strength SPN/ORN between the ORNs and the PN

is modulated by a term m tð Þ (0vmv1), which is intended to model

vesicle-depletion at the ORN synapses. As each ORN fires, this m
term will give rise to synaptic-depression between the ORNs and

the PN.

The membrane potential V and conductance GE for this single

PN obey the following differential equations:

dV=dt~{GLEAK V{VRð Þ{GE V{VEXð Þ

dGE=dt~{GE=tGE

z
X
j,k

SPN/ORN 1{ lim
t
0?t{

m t
0� �" #

d t{T
ORNj
k

� �
,

where GLEAK~1=20ms, VR~0 is the reset potential, VEX ~14=3
is the excitatory reversal potential, and tGE

~2ms is the

conductance time-constant. The voltage V evolves continuously

until V reaches a threshold V~VT~1, at which point the PN

fires, and V is reset to VR. The conductance GE evolves

continuously except when an ORN (say, the jth ORN) spikes, at

which point GE jumps. The time T
ORNj
k is the kth spiketime of the

jth ORN, and SPN/ORN 1{ lim
t
0?t{

m t
0� �h i

is the coupling

strength associated with the jth ORN at time t. If m~1, the

synapses between the jth ORN and the PN are 100% exhausted. If

m~0, the synapses between the jth ORN and the PN are

completely refreshed. For this simple model SPN/ORN~0:75, and

the equation for m tð Þ is given by:

dm tð Þ
dt

~{m tð Þ=tmz
X
j,k

km 1{ lim
t
0?t{

m t
0� �" #

d t{T
ORNj
k

� �
,

where tm~400ms is the time-constant associated with vesicle-

depletion. The term m decays to 0 continuously, except when the

jth ORN fires at some time T , at which point m jumps by an

amount proportional to km 1{ lim
t
0?T{ m t

0� �h i
(the limit

lim
t
0?T{ m t

0� �
is used since m Tð Þ is not technically defined).

The parameter km~0:1325 governs the relative increase in m

associated with each spike T
ORNj
k , and hence m is bounded

between 0 and 1. The parameters GLEAK , tGE
and tm are chosen

to be consistent with typical point-neuronal models, and the

parameter km is chosen essentially arbitrarily (different choices for

km do not qualitatively change the results).

A simple analyzable cartoon of variance coding
As a simple cartoon which illustrates Hypothesis 1, consider a

single PN modeled by a conductance-based integrate-and-fire

neuron [22], driven by a single ORN modeled as a Poisson process

(with firing rate g). The state variables of the PN are the

membrane-potential V , the excitatory conductance GE , and the

vesicle-depletion parameter m. The equations governing the state

of the PN are
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dV tð Þ
dt

~{GLEAK V tð Þ{VRð Þ{GE tð Þ V tð Þ{VEXð Þ

dGE tð Þ
dt

~{
GE tð Þ
tGE

z
X

k

1

lim
t
0?t{

m t
0� � d t{TORN

k

� �
dm tð Þ

dt
~{

m tð Þ
tm

z
X

k

kmd t{TORN
k

� �
,

ð11Þ

where GLEAK is the leakage conductance, VR~0 is the reset

potential, VEX w1 is the excitatory reversal potential, and tGE
is

the conductance time-constant. The voltage V evolves continu-

ously until V reaches a threshold V~VT~1, at which point the

PN fires, and V is reset to VR. The conductance GE decays to 0

continuously except when the ORN fires. The time TORN
k is the

kth spiketime of the ORN, and is produced by a Poisson process

with rate g., The conductance GE jumps by

lim
t
0? TORN

k

h i{ m t
0� �2

4
3
5

{1

at time TORN
k (the limit is used since

m TORN
k

� �
is not technically defined). The vesicle-depletion

parameter m decays to 0 continuously with time-constant tm,

except when the ORN fires, at which point m jumps by km. In this

simple model the vesicle-depletion parameter m and conductance

GE are both bounded to lie within 0,?ð Þ. As the vesicle-depletion

parameter m increases, the effect of ORN spikes on the PN

conductance decreases. It should be noted that the functional form

for the ORN?PN synapse — in this case modeled by 1=m — is

chosen to make the subsequent analysis easier, and is not

particularly realistic (as very small values for m imply a very

strong ORN?PN synapse). Nevertheless, the general picture

implied by this cartoon holds for more realistic models of vesicle-

depletion (see the section entitled ‘‘A simple cartoon of variance

coding’’ in the main text).

The simple model Eq. 11 can be analyzed by considering the

long-time evolution of the PN. For sufficiently small tGE
, tm, km

and sufficiently large g (with kmg fixed), it can be shown [56] that

the equilibrium-distribution of m (collected by sampling over a

sufficiently long time interval) is well-approximated by a Gaussian,

with mean �mm and standard-deviation sm given by:

req mð Þ!exp {
m{�mm

2s2
m

" #
, �mm~tmkmg, s2

m~
tmk2

mg

2
:

It can also be shown that, under these conditions, the equilibrium-

distribution of GE is also well-approximated by a Gaussian, with

mean �GGE and standard-deviation sGE
given by:

req GEð Þ!exp {
GE{�GGE

2s2
GE

" #
, �GGE~tGE

1

�mm
g, s2

GE
~

tGE
g

2�mm2
:

Using the expression for �mm, the expressions for �GGE and sGE
can be

simplified to

�GGE~
tGE

tmkm
, s2

GE
~

tGE

2t2
mk2

mg
:

Thus, for a sufficiently small km, as g?? the variance s2
GE

of

equilibrium-distribution req GEð Þ shrinks to 0, and the mean �GGE

remains constant. Thus, as g??, the long-time conductance-

distribution becomes sharply peaked around �GGE~tGE
=tmkm; so

much so that, for sufficiently large g, the PN effectively has a fixed

excitatory-conductance �GGE and will fire perfectly regularly with a

period of

DT~
1

GLz�GGE

log
GLVRz�GGEVEX

� �
= GLz�GGE

� �
GLVRz�GGEVEX

� �
= GLz�GGE

� �
{VT

" #
:

The excitatory conductance GE is, in this case, independent of the

activity of the PN because the ORN input is only affected by

vesicle-depletion, and not by presynaptic-inhibition. Nevertheless,

the conclusions we draw from this simple model are quite general,

and will hold for more realistic models of synaptic-depression.

Note also that synaptic-depression is critical to hypothesis-1

within this model. If m were fixed to be 1 (i.e., no synaptic-

depression of the ORN synapses), and g were sufficiently large,

then the equilibrium-distribution of GE would be Gaussian with a

mean and variance that grow unbounded as g??.

A simple model illustrating the tradeoff between
reliability and sensitivity

In this section we analyze the model used in the section entitled

‘‘A simple analyzable cartoon of the tradeoff between reliability

and sensitivity’’.

To analyze the solutions of Eq. 1, let’s assume for the moment

that m~1, and gAwgB (i.e., neuron A fires more frequently than

neuron B). If j~0, then A and B do not affect one another. The

steady-state firing-rate mA of neuron A is gA, and the steady-state

firing-rate mB of neuron B is gB. Let us define cA~1=gA and

cB~1=gB. Since both A and B are perfect phase-oscillators, A and

B fire perfectly regularly every cA and cB time-units (respectively).

If there is a difference in ORN inputs to these two neurons (say,

gA{gB~Dgw0), then the difference in firing-rates is Dm~Dg.

Thus, if j~0, this system is perfectly reliable (in the sense that the

ISI distribution of A and the ISI distribution of B both have 0
variance), and somewhat sensitive to shifts in the input (in the sense

that any difference Dg in input is reflected in the difference Dm of

the output firing-rates).

If jw0, then A and B affect one another with several

consequences: (i) the steady-state firing-rates mA and mB will be

lower than gA and gB (respectively), (ii) the ISI distributions of A
and B will have nonzero variance, and (iii) the difference in steady-

state firing-rates Dm will be greater than Dg. Indeed, as j increases

away from 0 the system becomes less reliable while becoming

more sensitive to shifts in the input. More specifically, for a given

fixed jw0, the system will settle down to a steady-state dynamics

in which neuron A fires either t cB{jð Þ= cA{jð Þs or

t cB{jð Þ= cA{jð Þs{1 times in between each pair of B-firing-

events. The steady-state sequence of spike-times is independent of

the initial state of the network and, while not generally periodic,

can be solved for explicitly.

To show why this is true, we consider the return-maps fA and

fB. We define the return-map fA VAð Þ as follows: given a spike of

neuron B (say, TB
1 ), let TA be the first spike of neuron A which

occurs after TB
1 , and let TB

2 be the first spike of neuron B which

occurs after TA — we define fA VA TB
1

� �� �
~VA TB

2

� �
. Similarly,

given a spike TA
1 of neuron A, let TB be the first spike of neuron B

after TA
1 , and let TA

2 be the first spike of neuron A after TB — we

define fB VB TA
1

� �� �
~VB TA

2

� �
. For the return map fA, we can also

define the numbers NA and NB as follows: NB is the number of

times B fires in between TB
1 and TA, and NA is the number of
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times A fires in between TA and TB
2 . Similarly, for the return map

fB, we can define NA as the number of times A fires in between TA
1

and TB, and NB as the number of times B fires in between TB and

TA
2 . See Fig. 14 for an example of these return maps.

Recall that, without loss of generality, we have assumed gAwgB.

By considering the return maps fA and fB, one can easily show that

the maximum and minimum of fA are 1 and jgA, respectively, and

that the maximum and minimum of fB are gB=gA and jgB,

respectively. Moreover, fA maps the interval IA~ jgA,1½ � into IA.

Similarly, fB maps the interval IB~ jgB,gB=gA½ � into IB. It is

straightforward to show that the image of IA under fA is composed

of 2 sub-intervals: (i) an interval of length lA
1 for which

NA~t cB{jð Þ= cA{jð Þs, and (ii) an interval of length

lA
2 ~ 1{jgAð Þ{lA

1 for which NA~t cB{jð Þ= cA{jð Þs{1. Sim-

ilarly, the image of IB under fB is composed of 2 sub-intervals: (i)

an interval of length lB
1 for which NA~t cB{jð Þ= cA{jð Þs, and

(ii) an interval of length lB
2 ~ gB=gA{jgBð Þ{lB

1 for which

NA~t cB{jð Þ= cA{jð Þs{1. Letting

�NN~t cB{jð Þ= cA{jð Þs, ð12Þ

one can show that the lengths lA
1 and lB

1 are given by

lA
1 ~gA=gB{jgA{ �NN 1{jgAð Þ

lB
1 ~1{gB cAz �NN{1ð Þ cA{jð Þð Þ:

ð13Þ

For both the sub-maps fA : IA?IA and fB : IB?IB the number of

extra spikes NB~0. These observations allow us to conclude that

the steady-state ISI distribution for neuron B (i.e., ISIB DTð Þ) has a

peak of magnitude lA
1 = lA

1 zlA
2

� �
at DT~cBz �NNz1ð Þj, and a

peak of magnitude lA
2 = lA

1 zlA
2

� �
at DT~cBz �NNj. Similarly, the

steady-state ISI distribution for neuron A (i.e., ISIA DTð Þ) has a

peak of magnitude �NNlB
1 z �NN{1ð ÞlB

2

� �
= �NNlB

1 z �NN{1ð ÞlB
2 z1

� �
at

DT~cA, and a peak of 1= �NNlB
1 z �NN{1ð ÞlB

2 z1
� �

at DT~cAzj.

The steady-state firing-rates associated with these ISI-distributions

can be expressed in closed form and directly computed:

mA~
�NNlB

1 z �NN{1ð ÞlB
2

�NNlB
1 z �NN{1ð ÞlB

2 z1
cA½ �z

1
�NNlB

1 z �NN{1ð ÞlB
2 z1

cAzj½ �
� �{1

mB~
lA
1

lA
1 zlA

2

cBz �NNz1ð Þj½ �z lA
2

lA
1 zlA

2

cBz �NNj½ �
� �{1

:

ð14Þ

Similarly, the means and variances associated with these steady-

state ISI-distributions can be expressed in closed form (see Fig. 5).

By considering these expressions for small j, one can see that

the steady-state return-map fA : IA?IA consists of segments of

length gA=gB{1ð Þ and 2{jgA{gA=gBð Þ, corresponding to

inter-spike-intervals for neuron B of length cBz2j and cBzj,

respectively. Thus, ISIB has 2 distinct peaks (at cBzj and

cBz2j, respectively), and as j increases the distance between

these two peaks increases. As a consequence, as j increases, the

variance in ISIB increases. In effect, a larger j implies that extra

spikes from A have a larger effect on the ISI of B. A similar

argument applies to fB : IB?IB and ISIA, and one can also

show that, as j increase the difference in firing rates

Dm~mA{mB also increases (see Fig. 5). Thus, within this

simple network, presynaptic-inhibition between the neurons

disrupts their natural regularly-firing behavior, and increases

the variance of their ISI distribution (thus decreasing their

reliability).

In the discussion above, we assumed that m~1. If we assume

m§1, we can express the system firing-rate �mm~ mAzmBð Þ=2 in

closed form as a function of m,j (simply by replacing cA with mcA

and cB with mcB in Eqs. 12,13,14). By requiring the system firing-

rate to be constant, we can define m implicitly (as a function of

j,gA,gB and the system firing-rate �mm). Thus, we can directly

compute the 1-parameter family of networks which, for fixed

gA,gB, attain a fixed system firing-rate �mm. As shown in Fig. 5, this

1-parameter family of networks does indeed range from type-A

networks (with high j and low m) to type-B networks (with low j
and high m). Moreover, as one moves along this 1-parameter

family of networks by increasing j (and decreasing m appropri-

ately), the variance in ISIA and ISIB increases, and the sensitivity

Dm~mA{mB also increases. In conclusion, this simple network

illustrates that presynaptic-inhibition is capable of increasing the

variance of the ISI distributions of the neurons within that

network (hence reducing their reliability), while at the same time

increasing the sensitivity of the neurons’ firing-rates to subtle

shifts in input.

Analysis of signal-to-noise ratio in a general
discrimination task

In this section we provide details regarding the analysis in the

section entitled ‘‘A simple cartoon of optimizing discriminability

over short observation-times’’. Our goal is to determine from a

measurement SISIA O,m,jð ÞTTobs
zXE whether the input to the

system is O1 or O2. Let us denote by lO m,jð Þ and s2
O m,jð Þ the

mean and variance of ISIA O,m,jð Þ. As long as Tobs is sufficiently

large, the estimate SISIA O,m,jð ÞTTobs
can be considered to be

drawn fromN lO,sO=
ffiffiffiffiffiffiffiffiffi
Tobs

p� �
. Thus, as long as Tobs is sufficiently

large, the measurement SISIATTobs
zXE can be considered to be

drawn from N lO,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
O=Tobszs2

E

q� �
(since N 0,að Þ ?N 0,bð Þ~

N 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

q� �
). If we attempt to discriminate between the two

possible inputs by using a linear-classifier, then the error E m,jð Þ
associated with the best linear-classifier is simply given by the overlap

of the distributions N lO1
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
O1
=Tobszs2

E

q� �
and

N lO2
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
O2
=Tobszs2

E

q� �
. Because ISIA O1,m,jð Þ~ISIB O2,m,jð Þ

and ISIA O2,m,jð Þ~ISIB O1,m,jð Þ for this simple scenario, and the

variance of these ISI distributions is very similar for jvcA{cB=2
(see Fig. 5), the error E Tobs,m,jð Þ is well-approximated by

Figure 14. A simple analyzable cartoon of the tradeoff between reliability and sensitivity. [A] Shown is a schematic of the simple
network, consisting of 2 ORN?LNI pairs, each of which presynaptically inhibits the other. [B] Shown on top are sample voltage-traces for the two LNIs
(represented by VA and VB) for the case j~0. Shown on the bottom are sample voltage-traces for the two LNIs in the case that j is nonzero. Note
that after LNI A fires, VB is constant for j-time. Similarly, after LNI B fires VA is constant for j-time. A pair of voltages for LNI B are circled. This pair of
voltages VB TA

1

� �
,VB TA

2

� �	 

corresponds to a point on the graph of the return map fB, namely fB VB TA

1

� �� �
~VB TA

2

� �
. For this point on the graph of

fB, NA~2, and NB~0. [C] Shown on the top and bottom are return maps fB Vð Þ for the values j~0:65=gA, and j~0:85=gA, respectively. [D] Shown
on the top and bottom are return maps fA Vð Þ for the values j~0:65=gA , and j~0:85=gA, respectively.
doi:10.1371/journal.pcbi.1002622.g014
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E Tobs,m,jð Þ&1{erf
1

2
ffiffiffi
2
p : Dl m,jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 m,jð Þ=Tobszs2
E

q
0
B@

1
CA,

where Dl m,jð Þ is the difference in the means of ISIA O1,m,jð Þ and

ISIB O1,m,jð Þ, and s2 m,jð Þ is the average variance of ISIA O1,m,jð Þ
and ISIB O1,m,jð Þ.

A discrete state model used to analyze hypothesis-2
within general networks with arbitrary architecture

In this section we describe the point-neuron model used in the

section entitled ‘‘A population-dynamics approach towards

verifying Hypothesis 2 within more general networks’’. This

model is a stripped down version of the fly AL, consisting of N
discrete-state LNIs, each driven by a different ORN. We will

model each ORN-LNI pair as a discrete-state discrete-time

Markov process which is as simple as possible, while still retaining

the following features: (i) each LNI generates spikes, (ii) each ORN

input spike contributes to the vesicle-depletion of that ORN?LNI

synapse, and (iii), each LNI spike gives rise to presynaptic-

inhibition of ORN?LNI synapses. We will model the jth ORN-

LNI pair using the state-variables Vj tð Þ, mj tð Þ and jj tð Þ which

represent LNI membrane-potential, ORN vesicle-depletion and

ORN presynaptic-inhibition, respectively.

At each discrete time, each state variable is either 0 or 1, thus, at

each time, the jth ORN-LNI pair is in one of s~8 states. The

input from the jth ORN to the jth LNI is modeled as a bernoulli-

random-variable Ij tð Þ, which is 1 with probability gj (and 0

otherwise). The state-variables undergo transitions of the following

form: P jj tz1ð Þ~xDjj tð Þ~y
� �

~ Lj
j

h i
x,y

,

P mj tz1ð Þ~xDmj tð Þ~y
� �

~ L
m
j

h i
x,y

,

P Vj tz1ð Þ~xDVj tð Þ~y
� �

~ LV
j

h i
x,y

, where

L
m
j tð Þ~ 1{Ij tð Þ

� � 1 1= 1ztm

� �
0 tm= 1ztm

� �
" #

z

Ij tð Þ
1{l km

� �
1{l km

� �� �
= 1ztm

� �
l km

� �
tmzl km

� �� �
= 1ztm

� �
" #

,

Lj
j tð Þ~

1{l kj

P
k DjkVk tð Þ

� �
1{l kj

P
k DjkVk tð Þ

� �� �
= 1ztjð Þ

l kj

P
k DjkVk tð Þ

� �
tjzl kj

P
k DjkVk tð Þ

� �� �
= 1ztjð Þ

" #
,

LV
j tð Þ~ 1{Ij tð Þ

� � 1 1

0 0

" #
z

Ij tð Þ
1zmj tð Þzjj tð Þ
� �

= 2zmj tð Þzjj tð Þ
� �

1

1= 2zmj tð Þzjj tð Þ
� �

0

" #
,

ð15Þ

and the function l xð Þ is the logistic function

l xð Þ~1= 1zexp {xð Þð Þ:

For this system tm and tj are the typical persistence times of the

mj~1 and jj~1 states (respectively), and we will assume that

tm~tj~1. The Vj~1 state is considered a ‘firing’ state for LNI j.

If Vj tð Þ~1, then Vj tz1ð Þ always equals 0. If Vj tð Þ~0 and the jth

LNI does not receive input (i.e., Ij tð Þ~0), then Vj tz1ð Þ~0.

However, if Vj tð Þ~0 and Ij tð Þ~1, then Vj may transition to the

firing state. Given that Ij tð Þ~1, the probability of Vj transitioning

from 0 to the firing-state is typically 1=2, but is lowered if either

mj~1 or jj~1. The vesicle-depletion parameter mj is likely to

transition to the m~1 state whenever the jth LNI receives input

(i.e., Ij~1). The presynaptic-inhibition parameter jj is likely to

transition to the j~1 state whenever many other LNIs in the

network fire. Note that the connectivity matrix Djk encodes the

connectivity of the network, and can be chosen to encode many

different network architectures (e.g., a densely connected homo-

geneous network, or a sparsely connected heterogeneous network).

If Djk is nonzero, then the kth LNI presynaptically-inhibits the jth

ORN, making it more likely that jj~1, and thus less likely that

ORN input from the jth ORN to the jth LNI will cause the jth LNI

to fire. For this model km:kj are the overall strengths of vesicle-

depletion and presynaptic-inhibition. As km increases, the likeli-

hood of mj transitioning to the 1 state increases. Similarly, as kj

increases, the likelihood of jj transitioning to the 1 state increases

as long as Djkw0 for some k. Ultimately, we will assume that the

probability that the jth neuron will transition from the state

vy = {Vj tð Þ~yV , mj tð Þ~ym, jj tð Þ~yj} at time t to the state

vx = {Vj tz1ð Þ~xV , mj tz1ð Þ~xm, jj tz1ð Þ~xj} at time tz1 is

given by

Lj

	 

vy,vx

~ LV
j

h i
xV ,yV

L
m
j

h i
xm,ym

Lj
j

h i
xj,yj

: ð16Þ

Note that Lj is an s|s state-transition matrix which depends on

the state of the kth neuron in the system as long as Djkw0.

Analysis of reliability and sensitivity using a subnetwork
expansion

This section reviews a diagrammatic approach to analyzing

network dynamics, and presents the salient calculations relevant to

analyzing ISI-distribution and firing-rate (which can then be used

to analyze reliability and sensitivity, respectively). One way to

understand the equilibrium dynamics of a network such as Eq. 15

is to first picture the network as a point in phase-space V, with the

network’s current state determined by the collection of parameters

v~ v1,v2, . . . ,vNf g~ V1,m1,j1, . . . ,VN ,mN ,jNf g

at the current time, where we denote by vj the state of the jth

ORN-LNI pair. As time passes this network will trace out a

trajectory v tð Þ in phase-space, and this trajectory will depend on

the network’s architecture (i.e., gj , Djk, km, kj). If one could

determine the ‘typical’ phase-trajectories exhibited by this network

(over very long times) then, in particular, one could determine this

network’s spike-time reliability. If one could determine how this

network’s typical trajectories shift as the input gj changes, then one

could determine this network’s sensitivity. The typical trajectories

of a network can be determined by considering both the evolution-

operator of the network L, and the frequency r with which the

network visits each part of phase-space (i.e., the network’s

equilibrium-distribution). The full evolution-operator Lv̂v,v is the

probability that the network moves from state v to state v̂v over

one timestep. In this case L is an Ns|Ns matrix such that each

entry has the form
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L½ �v̂v,v~ P
j~1,...,N

Lj

	 

v̂vj ,vj

:

The probability that the network will be in state vh at time t0zh,

given that the network was in state v0 at time t0 is

P vh,t0zhDv0,t0ð Þ~
X

v1,...,vh{1

P
1

j~h
Lvj ,vj{1

: ð17Þ

Eq. 17 can be thought of as an integral over all possible paths in

state-space connecting v0 to vh (i.e., each path traverses the

system-states v0, v1, …, vh in sequence). The equilibrium-

distribution r is an eigenfunction of L with eigenvalue 1 —

namely

r~Lr,

and in this case r is an Ns|1 matrix (i.e., an Ns-dimensional

vector). In this discussion we will assume that r is unique (i.e,. L
only has a single equilibrium-distribution). Note that both L and

r are functions of the network’s architecture.

Given both L and r, one can determine many properties of the

network’s equilibrium dynamics. For example, the probability that

the jth neuron fires at any given time (i.e., the steady-state firing-

rate of the jth neuron) is given by

mj~fj
:r,

where fj is a 1|Ns operator such that fj

	 

v
~0, except for states

in which Vj~1, in which case fj

	 

v
~1 (i.e., fj

	 

v
~dVj ,1).

Similarly, the probability that the jth neuron fires at times t and

tzh, without firing at any intermediate times (denoted by j?hj½ �)
is given by

j?hj½ �~fj
:L: I{FT

j

� �
:L

� �h{1
:FT

j
:r,

where FT
j is a Ns|Ns operator such that FT

j

h i
v̂v,v

~dV̂Vj ,1dVj ,1.

The sensitivity of the network’s firing-rates can be calculated via

the N2 derivatives Lgj
mk. The reliability var ISIj

� �
of the jth

neuron in the network can be characterized by calculating the

variance of j?hj½ � (considered as a distribution with respect to h).

Ideally, one might wish to determine how dynamic sensitivity

(i.e., Lgj
mk) and reliability (i.e., var ISIj

� �
) vary as functions of a

network’s architecture. Unfortunately, the explicit functional

dependence of mj and j?hj½ � on architectural parameters (such

as g, D, km, kj) cannot be directly determined for most typical

networks. However, it is possible to approximate these quantities

by considering a weak-coupling expansion of L and r in terms of

kj.

If kj~0, then each ORN-LNI pair is independent from the rest

of the network, and the full state-evolution operator L 0½ � can be

constructed by taking an operator-direct-product of the various Lj ,

where Lj is the s|s-dimensional state-evolution operator associ-

ated with the jth ORN-LNI pair shown in Eq. 16 (note that if

kj~0, then each Lj is independent of all other neurons). Similarly,

if kj~0 the full equilibrium-distribution r 0½ � can be constructed by

taking the product of the various rj , where rj is the s-dimensional

equilibrium-distribution of the jth ORN-LNI pair (note that rj is

the eigenvector of Lj with eigenvalue 1). Both Lj and rj only

depend on gj and km. The sensitivity and reliability for this

uncoupled kj~0 network can be determined simply by comput-

ing the sensitivity and reliability for individual (uncoupled) ORN-

LNI pairs.

If kj is small, then the network’s full state-evolution operator L

is no longer a direct product of the Lj (and r is no longer a product

of the rj ). Nevertheless, by taking a Taylor-expansion of L in

terms of kj (around kj~0) one can approximate L and r via a

series

L&L 0½ �zkjL 1½ �zk2
jL 2½ �z � � �

r&r 0½ �zkjr 1½ �zk2
jr 2½ �z � � � :

It can be shown that the M th-order terms in these series

(corresponding to L M½ � and r M½ �) incorporate subnetworks of the

original network spanning up to Mz1 ORN-LNI pairs [24,25].

Specifically, the 0th-order terms capture the equilibrium dynam-

ics of each single ORN-LNI pair in the absence of the rest of the

network. The M~1 terms capture the first-order corrections

associated with a single presynaptic-inhibitory connection of the

form kjDjk. The M~2 terms capture both the second-order

corrections associated with a single presynaptic-inhibitory con-

nection (of the form k2
jD

2
jk), as well as the second-order

corrections associated with 2 presynaptic-inhibitory connections

(of the form k2
jDjkDj

0
k
0 ). In the main text (Fig. 7), we have

grouped the 2nd-order terms corresponding to only 1 presynaptic-

inhibitory connection with the 1st-order terms associated with

that connection. For example, when presenting the term

associated with the subnetwork Djj , we implicitly include both

the 1st-order term proportional to Djj , as well as the 2nd-order

term proportional to D2
jj . When presenting the term associated

with the subnetwork Djk, we implicitly include both the 1st-order

term proportional to Djk, as well as the 2nd-order term

proportional to D2
jk.

Using the series-expansion for L and r, one can compute a

series-expansion for many quantities of interest (e.g., firing rate

mk, autocorrelation j?hj½ �, sensitivity Lgj
mk or reliability

var ISIj

� �
) in terms of subnetworks of the original network.

One attractive feature of this approach is that the formal

series-expansion can be constructed without specifying the

connectivity matrix D. The terms of the series expansion can

then be analyzed to determine which connectivity matrices will

give rise to various dynamic phenomena. As an example, the

terms L 1½ � and L 2½ � in the series expansion for L can be written

as:

L 1½ �~
X

a,b distinct

Dab L
0
a6FR

b LbFT
b 6

z=a,b
Lz

� �
z

X
a

Daa FR
a L
0
aFT

a 6
z=a

Lz

� �
,
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L 2½ �~
X

a

D2
aa FR

a

L
00
a

2
FT

a 6
z=a

La

" #

z
X

a,b distinct

2DabDaa FR
a

L
00
a

2
FT

a 6FR
b LbFT

b 6
z=a,b

Lz

" #

z
X

a,b distinct

DbaDaa FR
a L
0
aFT

a 6L
0
b 6

z=a,b
Lz

� �

z
X

a,b distinct

DbbDaa FR
a L
0
aFT

a 6FR
b L
0
bFT

b 6
z=a,b

Lz

� �

z
X

a,b distinct

DabDab

L
00
a

2
6FR

b LbFT
b 6

z=a,b
Lz

" #

z
X

a,b distinct

DbaDab FR
a L
0
aFT

a 6FR
b L
0
bFT

b 6
z=a,b

Lz

� �
,

where we use the notation that Lj is equal to the s|s single-

neuron operator shown in Eq. 16, with kj:0, and L
0
j is the

derivative of Lj with respect to kj

P
k DjkVk tð Þ (the coupling

parameter which appears in Lj
j ). We also use the operator

FR
j

h i
v̂v,v

~dV̂Vj ,0dVj ,0,a Ns|Ns operator:

In the above representation of L 1½ � and L 2½ �, we use 6 to

denote an operator-direct-product, and 6 to denote an

accumulation of operator-direct-products (analogous to the

use of ‘z’ and ‘S’ respectively).
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