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Abstract 

Background:  Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants 
associated with gene expression levels to understand what molecular mechanisms underlie genetic traits. The result‑
ant eQTLs might affect the expression of associated genes through transcriptional or post-transcriptional regulation. 
In this study, we attempt to distinguish these two types of regulation by identifying genetic variants associated with 
mRNA stability of genes (stQTLs).

Results:  Here, we presented a computational framework that takes advantage of recently developed methods to 
infer the mRNA stability of genes based on RNA-seq data and performed association analysis to identify stQTLs. Using 
the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, we identified a total of 142,801 stQTLs for 3942 genes 
and 186,132 eQTLs for 4751 genes from 15,122,700 genetic variants for 13,476 genes on the autosomes, respectively. 
Interestingly, our results indicated that stQTLs were enriched in the CDS and 3’UTR regions, while eQTLs are enriched 
in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs are more likely than eQTLs to overlap with 
RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our analyses demonstrate that simultaneous identi‑
fication of stQTLs and eQTLs can provide more mechanistic insight on the association between genetic variants and 
gene expression levels.
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Background
Quantitative trait loci (QTLs) are genomic loci that 
explain variation of a quantitative trait [1]. The most 
well investigated QTLs are eQTLs, which are associated 
with the expression level of gene transcripts [2]. Assum-
ing different regulatory mechanisms, eQTLs proximal 
to and distant from the transcription start site (TSS) of 
genes are called cis-eQTLs (< 1 Mb) and trans-eQTLs 
(> 5 Mb), respectively [3]. By combining high-throughput 
gene expression data, genetic variant profiles, and phe-
notype information, eQTLs can be identified system-
atically using a GWAS (genome-wide association study) 

approach [4]. It has been shown that genetic variants 
(single nucleotide polymorphisms) associated with com-
plex traits, including human diseases, are more likely to 
be eQTLs [5]. Genetic variants located in cis-regulatory 
elements (CREs), in particular, can influence the expres-
sion of targeted genes. Indeed, eQTLs are associated with 
many classes of CREs that are enriched in promoters, 
enhancers, insulators, transcription factor (TF) binding 
sites, and DNase hypersensitive sites (DHSs) [6–10].

Gene expression level is regulated at both the tran-
scriptional and post-transcriptional levels. At the tran-
scriptional level, TFs regulate the transcription rate of 
genes by interacting with their promoters and enhancers 
[11, 12]. TF binding and histone modification signals in 
the TSS proximal regions account for over 50% of vari-
ation of gene expression [13–15]. Genetic variants with 
functional impacts on TF binding motifs or promoter/
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enhancer accessibility are also expected to have effects 
on the transcription rate of related genes [16, 17]. On 
the other hand, at the post-transcriptional level, mRNA 
stability is under intensive regulation by microRNAs and 
RNA-binding proteins (RBPs) [18, 19]. Genetic variants 
can also affect mRNA stability by interacting with micro-
RNAs or RBPs. For example, the allele T of rs907091 
located in the 3’UTR of IZKF3 confers a miR-326 binding 
site, which leads to decreased mRNA stability and down-
regulation of the gene; however, this is not seen with the 
allele C [20]. Additionally, some intronic genetic vari-
ants may also affect gene expression by interacting with 
splicing factors or other types of RBPs [21]. Therefore, it 
is often difficult to precisely interpret the eQTLs identi-
fied from high-throughput analysis. Namely, for many 
eQTLs, it is difficult to determine whether they influence 
gene expression through affecting transcriptional rate 
or mRNA stability. This problem is further complicated 
by linkage disequilibrium (LD) between neighboring 
genetic variants. Although high-throughput technologies 
that measure mRNA decay rates have been developed 
[22–24], there are no QTL studies that identify genetic 
variants associated with mRNA stability due to a lack of 
matched stability and genotype data.

In many eQTL studies, gene expression was deter-
mined using exons aligned reads generated by RNA 
sequencing (RNA-Seq) experiments [25–27]. While the 
protocol was designed to generate cDNA fragments from 
mature mRNAs, there was also a significant proportion 
of reads captured from intronic sequences in RNA-seq 
data [25]. Several studies proposed that the intronic reads 
of RNA-Seq were related to nascent transcription and 
transcriptional activity [27–30]. Based on this concept, 
computational methods have been developed to calcu-
late mRNA stability based on RNA-seq data [27, 31, 32]. 
One method, proposed by Gaidatzis et al. [27], is called 
exon-intron split analysis (EISA) and discriminates tran-
scriptional and post-transcriptional regulation of gene 
expression. Given the RNA-seq data in two experiment 
conditions, EISA calculates changes in reads mapped to 
exons (Δexon) and introns (Δintron) for each gene. It was 
shown that Δexon-Δintron was significantly correlated 
with experimentally measured mRNA stability changes 
between ESCs and terminal neurons [27]. The EISA 
method was then further improved and implemented in a 
software package, REMBRANDTS, to measure the stabil-
ity of mRNAs more accurately [32].

Motivated by these methods, we developed a frame-
work to simultaneously identify genetic variants associ-
ated with gene expression (eQTL) or mRNA stability 
(stQTL). We then applied this framework to the lung 
tissue RNA-Seq data generated by the Genotype-Tissue 
Expression (GTEx) project [33, 34] as a demonstration. 

For this data, we estimated mRNA stability using REM-
BRANDTS and gene expression, and then performed 
association analysis to 15,122,700 genetic variants for 
13,476 autosomal genes. Next, we identified a total of 
186,132 eQTLs for 4751 genes and 142,801 stQTLs 
for 3942 genes. From our analysis, we found that both 
stQTLs and eQTLs are enriched in the 3’UTR and CDS 
regions while eQTLs are also enriched in the 5’UTR and 
upstream region of TSS. Compared to eQTLs, stQTLs 
more frequently overlapped with the binding sites of 
RBPs and miRNAs. To explore the role of stQTLs in 
mRNA stability, we took a few examples to investigate the 
effect of genetic variants on the binding of RBPs or TFs. 
Together, these results suggested that the simultaneous 
identification of stQTLs and eQTLs can provide a useful 
method to better understand the molecular mechanisms 
underlying genetic variants.

Results
Overview of this study
Figure 1 shows the rationale underlying this study. Dur-
ing gene expression, a gene is transcribed into a pre-
mRNA, after which the introns are removed while the 
exons are connected into the mature mRNA. The mature 
mRNA is under post-transcriptional regulation by miR-
NAs and other mechanisms. As shown, genetic variants 
can not only regulate mRNA splicing but also regulate 
gene expression-related traits by affecting transcrip-
tion rate or mRNA stability (stability QTL, denoted as 
stQTL hereafter). From RNA-seq data, we can deter-
mine the reads mapped to exonic regions to obtain gene 
expression levels. The mRNA stability can also be cal-
culated by combining the reads aligned to exonic and 
intronic regions using the REMBRANDTS [32] algo-
rithm. Genetic variants associated with gene expression 
are then identified to obtain eQTLs. As gene expression 
is controlled by both transcription rate and mRNA stabil-
ity, eQTLs are actually a mixture of QTLs affecting tran-
scription and stQTLs. Performing an association analysis 
of gene expression or stability on genetic variation can 
identify eQTLs and stQTLs, respectively. Simultaneous 
identification of eQTLs and stQTLs can provide a higher 
resolution to understand how genetic variants affect gene 
expression and will allow us to infer whether a genetic 
variant regulates gene expression by affecting transcrip-
tion activity or RNA stability. As a proof-of-concept, in 
this study, we applied this framework to GTEx data to 
simultaneously investigate the eQTLs and stQTLs in lung 
tissue as a demonstration.

Expression QTLs and stability QTLs of human lung tissue
To identify and explore stQTLs and eQTLs, we pro-
cessed the raw RNA-seq data for lung tissues generated 
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by the GTEx project [34]. After performing quality trim-
ming, alignment, and replicate merging from the same 
donors, we obtained the expression profiles of genes 
for a total of 289 subjects with matched genetic varia-
tion data. With REMBRANDTS, for each subject, we 
calculated the relative mRNA stability for 13,476 genes 
with intronic regions and constitutive exons. For QTL 
identification, we performed the association analysis on 
15,122,700 variant-gene pairs, including 7,014,861 vari-
ants located within 100Kb upstream of TSS and 100Kb 
downstream of TTS for 13,476 genes, using gene expres-
sion or mRNA stability as traits. We determined a dis-
tance of 100Kb instead of 1 Mb to focus on comparing 
eQTLs and stQTLs since SNPs that affect RNA stabil-
ity are theoretically more likely to be located near the 
transcription region. We identified a total of 142,801 
stQTLs (Additional  file  1 Table  S1) and 186,132 eQTLs 
(Additional  file  2 Table  S2) at the significance level of 
FDR < 5%. It should be noted that here we applied a low 
REMBRANDTS stringency (Table S1) in order to calcu-
late the stability for a large number of genes. A higher 
stringency indicates that the stability of the gene was esti-
mated based on a larger number of reads and therefore 
associated with a higher confidence level. The numbers of 

QTLs were summarized in Table 1 according to the loca-
tion of variants on each QTL’s corresponding genes.

Ideally, we would expect that all stQTLs are also 
eQTLs since a genetic variant that regulates RNA sta-
bility should also affect gene expression. However, in 
practice, the identification of different QTL types is 
complicated by multiple factors, including differential 
statistical power and LD between genetic variants. Nev-
ertheless, we still observed that there is a very high pro-
portion (70,105) of overlap between stQTLs and eQTLs 
(Fig. 2A). Out of these variants, 31,544 (45.0%) with alter-
nate alleles associated with higher gene expression were 
also associated with higher stability, and 36,278 (51.7%) 
with alternate alleles associated with lower expression 
were also associated with lower stability. Indeed, 96.7% of 
overlapped stQTLs/eQTLs have the same effect direction 
on both gene expression and RNA stability, indicating 
that at least some of these eQTLs affect gene expression 
through regulating mRNA stability. We also found that 
49% of stQTLs were also eQTLs (Fig.  2B), suggesting 
that nearly half of stQTLs do also significantly affect gene 
expression. On the contrary, only 37% of eQTLs were 
also stQTLs. This indicated that although a considerable 
part of eQTLs were derived from genetic variants that 

Fig. 1  The workflow for identification of stQTLs and eQTLs using RNA-Seq. A genetic variant may regulate gene expression by affecting 
transcription, splicing, or stability at different stages of the life cycle of an mRNA. Both gene expression and mRNA stability can be estimated 
from RNA-Seq. Therefore, both expression quantitative trait loci (eQTLs) and stability quantitative trait loci (stQTLs) can be identified with genetic 
variations using the association analysis. By comparing stQTLs and eQTLs, it is possible to distinguish the regulatory mechanisms underlying an 
eQTL
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significantly affect stability, more of them were regulated 
by genetic variants affecting other factors related to gene 
expression.

By investigating stQTLs and eQTLs together, it is pos-
sible to determine the regulatory mechanisms underlying 

an eQTL. For example, genetic variant rs3167757 is 
significantly associated with HMGN1 expression level 
(eQTL, FDR = 5e-18) with CC > CT/TT (Fig.  2C). As 
shown, this genetic variant is also associated with 
HMGN1’s mRNA stability (stQTL, FDR = 3.7e-30). 

Table 1  The summary of the stQTLs and eQTLs identification in GTEx lung tissue samples

The location indicates the genic position of the genetic variant in its corresponding gene in a QTL. The percentage was calculated from the number of QTLs at each 
location divided by the total number of QTLs

Location Number of stQTL (%) Number of eQTL (%) Number of variant-gene Average length

Upstream 50,109 (35.09%) 73,647 (39.57%) 5,591,610 99,984.82

5’UTR​ 3877 (2.71%) 5802 (3.12%) 350,293 204.94

CDS 3949 (2.77%) 4404 (2.37%) 143,915 1148.71

Intron 32,675 (22.88%) 37,232 (20.00%) 3,281,521 50,230.12

3’UTR​ 2506 (1.75%) 2411 (1.30%) 123,856 727.48

Downstream 49,685 (34.79%) 62,636 (33.65%) 5,631,505 99,960.72

Total 142,801 (100.00%) 186,132 (100.00%) 15,122,700 252,256.79

Fig. 2  The simultaneous identification of stQTLs and eQTLs using GTEx lung tissue samples shows highly overlapped QTLs and provides additional 
information for investigating regulatory effects of genetic variants. A The Venn diagram between eQTLs and stQTLs shows that 70,105 genetic 
variants are both eQTLs and stQTLs. B The bar plot shows the percentage of overlapped QTLs in stQTLs and eQTLs, respectively. CHMGN1-rs3167757 
is an eQTL and a stQTL. The expression level and RNA stability of HMGN1 will decrease as rs3167757 changes with CC > CT/TT. The rs3167757 is 
located on the binding sites of several RBPs in the 3’UTR region of HMGN1. DDDX11-rs34873612 is an eQTL but not an stQTL. The expression level, 
but not RNA stability, of the DDX11 will decrease as rs34873612 changes with GG > GA/AA. The rs34873612 overlaps the binding sites of several TFs 
in the 5’UTR region of DDX11. ESCYL3-rs1062976 is an stQTL but not an eQTL. The RNA stability of the SCYL3 will be affected by rs1062976, which 
is located in the 3’UTR region of SCYL3. The allele T of rs1062976 disrupts the binding motif of PTBP1 (destabilizer) but confers the binding motif of 
YBX1 (stabilizer)
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This result indicated that rs3167757 might regulate the 
expression level of HMGN1 by affecting its mRNA sta-
bility. Indeed, HMGN1-rs3167757 has also been reported 
as an eQTL in lymphoblastoid cell lines (LCLs) [35, 36]. 
The rs3167757 is located at the 3’UTR of the HMGN1 
gene and overlaps with binding sites of 20 different RBPs 
[37]. According to the analysis using RBPmap [38] (Addi-
tional file 3 Table S3), while the allele C of rs3167757 con-
fers a motif for eight RBPs (CUG-BP, HNRNPF, MBNL1, 
SFPQ, TRA2B, HNRNPL, SRSF3, and YBX2), the allele T 
disrupts the binding motifs of five of the RBPs (HNRNPF, 
MBNL1, SFPQ, TRA2B, and YBX2). Notably, among 
them, HNRNPF [39, 40], MBNL1 [41, 42], and YBX2 [43] 
are known to contribute to mRNA stabilization. This is 
consistent with the observation that genotype CC is asso-
ciated with higher stability of HMGN1 mRNA than CT 
and TT. As another example, genetic variant rs34873612 
is significantly associated with DDX11 expression level 
(eQTL, FDR = 2e-60) but not with DDX11 mRNA stabil-
ity (FDR > 0.1) with GG > GA/AA (Fig.  2D). This result 
suggested that rs34873612 might regulate the expression 
level of DDX11 by affecting the transcription rate rather 
than its mRNA stability. According to the PROMO pre-
diction [44], the rs34873612 is located at the 5’UTR of 
the DDX11 gene and overlaps with the binding site of 
three TFs: GR-alpha, GATA2, and GATA3. While the 
allele G contributes to the binding motifs of these TFs, 
the allele A disrupts the binding motif of GATA3, which 
potentially contributes to the decreased DDX11 expres-
sion seen in the GA and AA genotypes (Fig. 2D). mRNA 
stability only contributes partially to gene expression 
level; consistently, many genetic variants are found to be 
stQTLs but not eQTLs. For example, rs1062976 is sig-
nificantly associated with the mRNA stability of SCYL3 
(stQTL, FDR = 5e-07) but not its expression level (not 
an eQTL, FDR > 0.1) with CC > CT/TT (Fig. 2E). Overall, 
our results indicated that simultaneous identification of 
stQTLs and eQTLs can provide us with more detailed 
biological insights on the regulatory effects of genetic 
variants on a large scale.

Distributions of eQTLs and stQTLs across genic regions
stQTLs are associated with mRNA stability while eQTLs 
are associated with gene expression by affecting either 
mRNA stability or gene transcription. Therefore, we 
expect their distributions in genes to differ. To examine 
this, we looked at the distribution of eQTLs and stQTLs 
in the DNA regions surrounding TSS and TTS of genes. 
We found that eQTLs are more likely to be located 
upstream of TSS of their corresponding genes while 
stQTLs tend to be located downstream of TSSs (Fig. 3A). 
On the other hand, stQTLs are more likely to be located 
in the region from TTS to 10Kb upstream than eQTLs. 

Both stQTLs and eQTLs are more likely to be located in 
the upstream region of TTS rather than the genes’ down-
stream regions (Fig. 3B). Subsequently, we divided genic 
regions associated with genes into upstream, 5’UTR, 
CDS, Intron, 3’UTR, and downstream regions and then 
examined the distributions of eQTLs and stQTLs in 
these regions. Using the distributions of all genetic vari-
ants as the background, we calculated the enrichment 
ratio of stQTLs and eQTLs by using a hypergeomet-
ric test [45]. As shown in Fig.  3C, stQTLs are enriched 
by 2.89-fold in the CDS (P < 2e-308) and by 2.25-fold 
in 3’UTR (P = 2e-152) regions. This result is consist-
ent with the fact that genetic variants located in these 
regions may have functional impacts on mRNA stability 
by affecting RNA secondary/tertiary structure or RBP/
microRNA binding. stQTLs are also slightly enriched in 
intron regions (ER = 1.19 and P = 2e-150). In contrast, 
eQTLs are enriched in the CDS (ER = 2.22, P = 4e-274), 
upstream (ER = 1.10, P = 3e-65), 5’UTR (ER = 1.37, 
P = 5e-76), and 3’UTR (ER = 1.30, P = 6e-20, Fig.  3D) 
regions, respectively. The enrichment of eQTLs in these 
regions may be explained by how gene expression can be 
determined not only by transcriptional activity (genetic 
variants in upstream, 5’UTR, or CDS regions) but also 
by RNA stability (genetic variants in CDS or 3’UTR 
regions). We compared the enrichment ratios of stQTLs 
and eQTLs and found that stQTLs are more likely to be 
in the CDS, intron, and 3’UTR regions, while eQTLs are 
enriched in the upstream and 5’UTR regions (Fig. 3E).

It should be noted that the resolution of QTL analy-
sis is affected by linkage disequilibrium (LD) between 
neighboring genetic variants. Based on the genotype 
data for lung samples used in this study, we performed 
LD analysis and observed that many eQTL/stQTL loci 
were in high LD (r2 > 0.9) with each other (Additional 
file  3 Fig. S1A and S1B). Furthermore, we performed 
GARFIELD [46] to adjust the LD confounding to inves-
tigate the enrichment of stQTL/eQTL in histone modi-
fications (Additional file 3 Table S4), and we found that 
while both QTLs are depleted in the H3K27me3 (marks 
of polycomb repression), eQTLs are slightly more so 
compared to stQTLs. In addition, stQTLs are more 
enriched in H3K36me3 (marks of transcribed regions, 
odds ratio = 1.53, P = 1e-262) and H4K20me1 (enriched 
within transcribing gene bodies [47], odds ratio = 1.21, 
P = 3e-19) than eQTLs.

To best exclude the influence of LD on the genic dis-
tribution, we performed another association analysis 
that added 40 PEER factors (probabilistic estimation of 
expression residuals) [48] generated by the PEER pack-
age [49, 50]. The CAVIAR [51] was used as the fine-map-
ping step to define the 90% credible causal variants sets 
to identify a total of 108,412 stQTLs and 163,929 eQTLs 
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(Additional file 4 Table S5 and Additional file 5 Table S6). 
We investigated the genic distribution of the fine-mapped 
stQTL/eQTL and found both were more enriched in the 
5’UTR, CDS, intron, and 3’UTR regions than before LD 
analysis (Fig. 3F and G). When the distributions of causal 
stQTLs and eQTLs were directly compared, eQTLs were 
more likely to be in the upstream and especially 5’UTR 
regions than stQTLs (Fig. 3H), while stQTLs were more 
enriched than eQTLs in the CDS and 3’UTR regions. 

Additionally, we investigated the distribution of the 
stQTL/eQTL with LD filtering that selected the most sig-
nificant variant as the representative stQTL/eQTL within 
each determined LD block (r2 > 0.9), and we found that 
the distribution after LD filtering (Additional file  3 Fig. 
S2A and S2B) is consistent with that after fine-mapping 
(Fig. 3F and G). Similarly, stQTLs were also more likely 
to be in the CDS and 3’UTR regions than eQTLs (Addi-
tional file  3 Fig. S2C). The results suggested that the 

Fig. 3  There are biased distributions in different genic regions of eQTLs and stQTLs. A The distribution from the enrichment ratio of stQTLs and 
eQTLs to TSS. Plot has a bin size of 2000 bp and a sliding window of 50 bp. B The distribution from the enrichment ratio of stQTLs and eQTLs to TTS. 
Plot has a bin size of 2000 bp and a sliding window of 50 bp. C The enrichment ratio in different genic locations of stQTLs before LD fine-mapping. 
The upstream indicates the region of 100Kb upstream from TSS, and the downstream indicates the region of 100Kb downstream from TTS. (The 
following figs are the same) D The enrichment ratio in different genic locations of eQTLs. E The relative proportion of enrichment ratio in different 
genic locations between stQTLs and eQTLs. F The enrichment ratio in different genic locations of stQTLs after LD fine-mapping. G The enrichment 
ratio in different genic locations of eQTLs after LD fine-mapping. H The relative proportion of enrichment ratio in different genic locations between 
stQTLs and eQTLs after LD fine-mapping
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distribution of stQTLs and eQTLs differs possibly due to 
their potential biological functional differences.

stQTLs are significantly enriched in RBP binding sites
After demonstrating the enrichment of stQTLs in the 
3’UTR and CDS regions, we then examined whether 
stQTLs tend to locate in the binding sites of RBPs or 
miRNAs, many of which are known to be involved in 
post-transcriptional regulation of mRNAs. To this end, 
we investigated the binding sites of RBPs and miRNAs 
provided by Postar2 [37] and TargetScan [52], respec-
tively, to annotate the stQTLs identified in our analysis. 
Our results indicated that stQTLs (P = 3e-18, Fisher’s 
exact test) but not eQTLs (P > 0.1, Fisher’s exact test) 
are enriched in RBP binding sites. In fact, we found that 

26.81% (2770/10,332) of stQTLs overlap with the bind-
ing sites of at least one RBP, which is significantly higher 
(P = 7e-17, Fisher’s exact test) than 22.10% (2788/12,617) 
for eQTLs (Fig. 4A). In addition, we have also examined 
the overlap with miRNA binding sites and observed a 
higher proportion of stQTLs (0.19%, 20/10,332) than 
eQTLs (0.15%, 19/12,617) in the miRNA binding sites, 
although no statistical significance was detected due to 
very small genomic regions covered by miRNA bind-
ing sites (Fig.  4B). To investigate whether the overlap 
between stQTLs and RBP binding sites was a coinci-
dence, we examined the enrichment for stQTLs to all var-
iant-gene pairs in overall RBP binding sites in the 5’UTR, 
CDS, Intron, and 3’UTR regions, separately (Additional 
file  3 Table  S7). Compared with the variants located in 

Fig. 4  Enrichment of stQTLs and eQTLs in the binding sites of RBPs and miRNAs. A Proportion of overlap between stQTLs, eQTLs, and all genetic 
variants and RBP binding sites in mature mRNA. The statistical significance was calculated using Fisher’s exact test. The n.s. indicates not significant. 
B Proportion of overlap between stQTLs, eQTLs, and all genetic variants and miRNA binding sites in mature mRNA. The statistical significance 
was calculated using Fisher’s exact test. The n.s. indicates not significant. C The volcano plot shows nine RBPs (red points) whose binding sites 
were significantly (−Log10p-value > 4, 2-sides Fisher’s exact test) enriched (six RBPs, Log2 Enrichment-ratio > 0.3) or depleted (three RBPs, Log2 
Enrichment-ratio < −0.3) in stQTLs. D The volcano plot shows seven RBPs (red points) whose binding sites were significantly (−Log10 p-value > 4, 
2-sides Fisher’s exact test) enriched (four RBPs, Log2 Enrichment-ratio > 0.3) or depleted (three RBPs, Log2 Enrichment-ratio < − 0.3) in eQTLs
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RBP binding sites, stQTLs were enriched by about 2.47-
fold (P < 2e-308, hypergeometric test) in the CDS region 
and by 2.31-fold (P < 2e-308) in the 3’UTR region, but 
not in the 5’UTR (ER = 0.79, P > 0.1) and Intron regions 
(ER = 0.71, P > 0.1). This result indicated that stQTLs 
were likely not coincidentally overlapped with the RBP 
binding sites but have a potential biological function rela-
tionship with RBPs.

We also performed Fisher’s exact test to identify RBPs 
whose binding sites were enriched for stQTLs (Fig.  4C 
and Additional file  3 Table  S8) or eQTLs (Fig.  4D and 
Additional file  3 Table  S9). We identified a total of six 
significant RBPs (P < 1e-04) including SND1, YTHDC1, 
DDX3X, ATXN2, RPS3, and UPF1 (as shown in Table 2). 
Interestingly, SND1 [53–55], DDX3X [56, 57], ATXN2 
[58, 59], and RPS3 [60] were known to stabilize their 
bound mRNAs, while UPF1 is the key factor of the 
nonsense-mediated mRNA decay pathway [61–63]. 
Moreover, YTHDC1 is a well-known m6A (N6-Methyl-
adenosine) reader [64], which has been found to regulate 
mRNA splicing [65, 66], alternative polyadenylation [66], 
and stability [67, 68] through recognizing m6A. Similarly, 
we identified four RBPs whose binding sites were signifi-
cantly enriched for eQTLs (P < 1e-04, Table  3), among 
which the two most significant RBPs, DDX3X and SND1, 
were also enriched for stQTLs. Of the other RBPs whose 
binding sites were significantly enriched with eQTLs, 
NCBP3 can regulate gene expression by forming a cap 
binding complex that binds to the 5’cap of pre-mRNA 
to promote splicing, 3′-end processing, and mRNA 

exporting [69–71] while AGGF1 was found to repress 
the expression of pro-inflammatory molecules [72]. 
Although RBP regulation is affected by many factors such 
as the subcellular localization and RNA substrates [73, 
74], which makes it a challenging task to systematically 
investigate the degree of consistency between the regula-
tion of RBPs and QTLs, our results indicate that stQTLs 
or eQTLs located in the RBPs binding sites are likely to 
have regulations on RNA stability or expression by affect-
ing the RBP binding.

Sex‑specific stQTLs
Finally, we examined whether some genetic variants were 
associated with mRNA stability in a sex-specific manner 
and denoted them as sex-specific stQTLs. We divided 289 
samples into 187 males and 102 females, and then per-
formed association analysis with covariates to implement 
the Sex-specific stQTL classification. If a gene is specifi-
cally expressed in males or females, then an stQTL identi-
fication can only be performed in the corresponding sex. 
Therefore, we focused our analysis on 13,116 autosomal 
genes that are not differentially expressed (FDR > 0.05, 
t-test) between the sexes and then investigated a total 
of 14,987,511 variant-gene pairs that genetic variants 
located from 100Kb upstream to 100Kb downstream of a 
gene. Then, we defined male-specific QTLs as those that 
are significant in males (FDR < 0.05) but not significant 
in females (P > 0.1), and defined female-specific QTLs 
similarly. Finally, we identified 14,683 male-specific and 
2280 female-specific stQTLs (Additional file 6 Table S10). 
Of note, there were no stQTLs identified that were sig-
nificantly associated with RNA stability in both sexes 
but have opposite effects. As an example, the association 
between genetic variant rs397781453 and the RNA sta-
bility of SREBP2 is female-specific (Fig.  5A). As shown, 
we detected a significant association in females with 
FDR = 4e-04 but not in males (FDR ≥ 0.1). On the other 
hand, the association between AQP4 and genetic variant 
rs12954879 is male-specific (Fig. 5B). The RNA stability 
of AQP4 is significantly associated (FDR = 2e-05) with 
genetic variant rs12954879 in males but not in females 
(FDR > 0.1). Of note, both SREBP2 or AQP4 have similar 
expression levels between males and females (the right 
panel of Fig.  5A and B). In addition, we performed the 
association analysis including a genotype-sex interaction 
term (G × S) to investigate sex-biased stQTLs [75] and 
identified 499 sex-biased stQTLs at the G × S significance 
level of FDR ≤ 25%. For each sex-biased stQTL, we per-
formed sex-stratified stQTL analysis and identified 100 
male-specific stQTLs, 174 female-specific stQTLs, and 
198 sex-biased stQTLs that were significantly associated 
in both sexes with different allelic effect sizes at the sig-
nificance level FDR < 5% (Additional file 6 Table S11).

Table 2  RBPs whose binding sites were enriched for stQTLs

Six RBPs significantly overlap (Log2 Enrichment-ratio > 0.3 and p-value <1e-04, 
Fisher’s exact test) with stQTLs in mature mRNAs in lung. ER: Enrichment ratio

RBPs stQTL non-stQTL ER p-value FDR

SND1 64 1504 2.17 4E-08 5E-06

YTHDC1 100 2850 1.80 1E-07 7E-06

DDX3X 226 8348 1.39 3E-06 1E-04

ATXN2 436 17,911 1.25 7E-06 3E-04

RPS3 91 2923 1.59 3E-05 0.001

UPF1 198 7533 1.35 5E-05 0.002

Table 3  RBPs whose binding sites were enriched for eQTLs

Four RBPs significantly overlap (Log2 Enrichment ratio > 0.3 and p-value <1e-04, 
Fisher’s exact test) with eQTLs in mature mRNAs in lung. ER: Enrichment ratio

RBPs eQTL non-eQTL ER p-value FDR

DDX3X 250 8331 1.69 5E-14 1E-11

SND1 58 1509 2.15 2E-07 2E-05

NCBP2 60 1819 1.84 1E-05 6E-04

AGGF1 30 689 2.43 2E-05 6E-04
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Discussion
In this study, we systematically identified stQTLs that 
are associated with mRNA stability in lung tissues and 
compared them with eQTLs using GTEx RNA-Seq 
data. Out of the 151,227,000 genetic variants within 
100Kb upstream from TSS to 100Kb downstream from 
TTS of 13,476 corresponding genes, we identified a 
total of 186,132 eQTLs and 142,801 stQTLs. We found 
that stQTLs are mainly enriched in the 3’UTR and 
CDS regions, while eQTLs are enriched in the CDS, 
5’UTR, 3’UTR, and upstream regions (Fig.  3F and G). 
We also found that stQTLs are significantly located 
in the binding sites of RBPs (Fig.  4A). Moreover, the 

different stQTL/eQTL variants will change the motifs 
to affect the bound RBPs, which then regulate RNA sta-
bility or gene expression (Fig.  2C-E). Our results sug-
gest that stQTLs may significantly affect RNA stability, 
mostly because they are located in the 3’UTR [76, 77] 
and CDS [78, 79] regions that most often interact with 
other molecules. These results are consistent with pre-
vious studies, which have found that the codon usage 
and changes on CDS could affect mRNA stability [78, 
80–82]; studies have also shown that the sequence in 
the 3’UTR region affected mRNA stability as well since 
it includes RBP binding sites [83, 84]. On the contrary, 
eQTLs are a group that utilizes complex mechanisms 

Fig. 5  Sex-specific stQTLs identification. A The association between genetic variant rs397781453 and the RNA stability of SREBP2 is female-specific 
(stQTL, FDR = 4e-04), but this pattern does not occur in males (FDR ≥ 0.1). In the right panel, the expression of SREBP2 is not significantly different 
(P ≥ 0.1) between male and female samples. B The association between genetic variant rs12954879 and the RNA stability of AQP4 is male-specific 
(stQTL, FDR = 2e-05), but this pattern does not occur in females (FDR ≥ 0.1). In the right panel, the expression of AQP4 is not significantly different 
(P ≥ 0.1) between male and female samples
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and may regulate expression levels by affecting stability 
[85, 86], transcriptional activity [87–89], and even the 
addition of a 5’cap or a polyA tail [69]. Therefore, while 
eQTLs largely resemble stQTLs but are less enriched at 
the 3′ UTR and CDS regions, eQTLs are also enriched 
in the 5’UTR and upstream regions where the enhanc-
ers and promoters that regulate transcriptional activity 
are located [90–92].

In this study, we used lung tissue data from GTEx as 
an example to demonstrate that identifying stQTLs with 
computationally inferred stability profiles may provide 
additional insights for the eQTL study. Although this 
method can theoretically be extended to RNA-Seq data 
for other tissues, it is worthwhile to note that this frame-
work has obvious limitations. For example, the power of 
stQTL analysis is limited by the computational methods 
used for mRNA stability inference. Although previous 
studies have demonstrated that the EISA algorithm [27] 
and its improved REMBRANDTS package [32, 93, 94] 
used in this study achieve fairly high accuracy for mRNA 
stability evaluations, the accuracy of inferred mRNA 
stability may vary significantly between different genes. 
First, the differential expressed long noncoding RNAs 
(lncRNAs) [95, 96] or perturbated factors involved in 
intron degradation [27, 97] could cause the changes of 
difference in intronic read counts (Δintron) to affect the 
stability estimate. Adding the annotation of non-coding 
RNAs in the alignment of RNA-Seq may improve the 
accuracy of the mRNA stability inference. Second, it is 
difficult to accurately calculate stability for genes with 
low aligned read counts because the stability inference is 
based on the relative change of exonic and intronic reads 
(Δexon–Δintron) [32]. Of note, the REMBRANDTS pro-
vides a stringency parameter to filter genes with low read 
counts. In our study, we presented the results using a 
weak stringency of 0.01. At this setting, the stability for 
13,429 genes were calculated, compared to 2593 genes 
when a default stringency (0.9) is used. By lower the 
stringency, we are able to calculate the stability for more 
genes, but the genes with smaller number of reads are 
generally associated with higher level of noise. Indeed, 
41.88% (634/1514) of stQTLs with stringency ≥0.9 over-
lap with RBP binding sites, which is significantly higher 
(P = 6e-44, Fisher’s exact test) than 23.69% (1546/6527) 
of stQTLs with stringency ≤0.5. Finally, it should be of 
note that the mRNA stability calculated from RNA-Seq 
using REMBRANDTS is not an actual absolute value but 
a differential mRNA stability relative to the average of all 
samples for a given gene [32, 97, 98]. Due to these limita-
tions, it may be difficult to directly compare the stQTLs 
identified using different tissue data. Therefore, we sug-
gest that it is necessary to keep these limitations in mind 
before evaluating mRNA stability using RNA-Seq data.

The identification of stQTLs provides a higher reso-
lution to better understand the molecular mechanism 
of genetic variants regulating gene expression, and an 
accurate estimation of mRNA stability is very important 
for the identification of stQTLs. Although some high-
throughput technologies, such as BRIC-Seq [24, 99], have 
been developed to determine the decay rate of mRNA, 
these methods are often limited to only being used in cell 
culture conditions [32], and there are not enough sam-
ples available for QTLs research. Therefore, despite the 
limitations of computational approaches, such as Snap-
Shot-Seq [29], EISA, and REMBRANDTS, our analysis 
for mRNA stability inference using RNA-seq by REM-
BRANDTS shows that the stQTL genic distribution and 
overlap with RBP binding sites is indeed consistent with 
biological theories. Furthermore, computer algorithms 
based on RNA-Seq are still under continuous develop-
ment. For example, INSPEcT [97] was recently designed 
to calculate RNA kinetic rates based on time course 
RNA-seq data, or to estimate stability by calculating the 
difference between premature and mature RNA expres-
sion [100]. Going forward, stQTLs identified with more 
accurate mRNA stability profile estimations may further 
our understanding of how genetic variants regulate gene 
expression.

Conclusion
In conclusion, we present a large-scale identification for 
eQTLs and stQTLs using RNA-Seq data in lung tissues. 
Our results demonstrate that there are differential genic 
distributions, as well as interactions with RBPs or TFs, 
between eQTLs and stQTLs. We show in this study that 
simultaneous identification of eQTLs and stQTLs pro-
vides more biological insights for better understanding 
the regulatory mechanisms underlying genetic variants 
associated with gene expression.

Methods
Collection of datasets
The genotype data and RNA-Seq data of lung tissues pro-
duced by the Genotype-Tissue Expression project [33] 
(release 7) were used in this study. The genotype data 
(11,555,102 variants for 450 European descent donors) 
has been filtered by GTEx Consortium with the fol-
lowing criteria: imputation quality (INFO score) < 0.4, 
minor allele frequency (MAF) < 1%, and Hardy-Wein-
berg Equilibrium (HWE) p < 10− 6 [34]. RNA-Seq SRA 
files and genetic variants data were downloaded from 
NCBI dbGaP [101] (Study Accession: phs000424.v7.p2), 
and subject phenotypes were collected from the GTEx-
Portal (https://​www.​gtexp​ortal.​org/​home/​datas​ets). 
The data contains a total of 318 RNA-Seq runs and 404 
genetic variant samples from 289 different subjects. For 

https://www.gtexportal.org/home/datasets
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RNA-Seq analysis, the human reference genome and 
annotation were collected from Ensembl [102], version 
GRCh37.87. For RNA stability analysis, the annotation 
GTF files recording the coordinates of intronic and con-
stitutive exonic segments of genes was generated using 
the shell script modified from the first step of the https://​
github.​com/​csglab/​CRIES [32].

Processing of RNA‑Seq data
The 318 RNA-Seq SRAs were dumped into FASTQ files 
using SRA Toolkit (http://​ncbi.​github.​io/​sra-​tools). The 
read quality and retained adapters were checked with 
FastQC [103]; then, the adapters and low-quality reads 
were trimmed using Trimmomatic v0.39 [104]. The align-
ment was performed using HISAT2 v2.1.0 [105] with 
default parameters, and the alignment files from the 
same subjects were then merged. Read counts of introns 
or exons were extracted separately using the HTSeq-
count script of the HTSeq v0.12.4 [106] with the param-
eter --stranded = no. The RNA stability profiles for 289 
subjects were estimated using the REMBRANDTS [32] 
with the parameter of linear method and 11 different sta-
bility stringency setting from 0.01 to 0.99. The stringency 
determines the minimum read count required for a gene 
to be selected for stability calculation. Therefore, genes 
analyzed with higher stringency have higher confidence 
in their stability estimates. The stringency of each gene 
in the QTL analysis results was recorded in Table S1 and 
S2. The TPM (transcripts per million) [107] was used as 
the expression unit for measuring the expression levels of 
13,476 genes with stability profiles.

Identifying QTLs by associating genetic variants with traits 
derived from RNA‑seq data
For covariates construction, the plink [108] (version 1.90 
beta, https://​www.​cog-​genom​ics.​org/​plink/1.​9/) was per-
formed with the parameter --indep-pairwise 200,100 0.2 
to prune a subset of genetic variants. PCA analysis was 
performed after removing strand ambiguous variants 
(AT/CG) and genetic variants located in the MHC region. 
The first three PCs were selected as covariates with sex 
and age. To consider potential confounders in the gene 
expression data, the latent covariates for gene expres-
sion profiles (13,453 genes with ≥0.1 TPM and ≥ 6 reads 
in ≥20% samples) were estimated using the Probabilistic 
Estimation of Expression Residuals (PEER) method [47] 
with the PEER package [48, 49]. A total of 40 PEER fac-
tors were generated and then added into the regression 
model together with other covariates. For cis-QTL identi-
fication, genetic variants that were located within 100Kb 
upstream from the TSS (transcription start site) to 100Kb 
downstream from the TTS (transcription termination 
site) of Ensembl annotated genes (GRCh37.87) were 

selected. The expression profile was then converted with 
log10(TPM*100 + 1), and the linear regression model was 
performed as the association analysis between the dosage 
of each genetic variant and the value of expression or sta-
bility of each gene. The Benjamini-Hochberg Procedure 
[109] was implemented to calculate the false discovery 
rate (FDR), and genetic variants with the association of 
FDR less than 0.05 were regarded as QTLs.

Estimation of linkage disequilibrium effect
We performed the plink [108] to all genetic variants of 
289 subjects with the parameter (−-r2 --ld-window 50 
--ld-window-kb 100,000 --ld-window-r2 0.9) to estimate 
the linkage disequilibrium (LD) between each genetic 
variant. We then constructed LD blocks, in which r2 of 
LD between each genetic variant must be greater than 
0.9. To reduce the influence of LD on the gene distribu-
tion of QTLs, we selected the QTLs with the lowest FDR 
of the association analysis in each LD block and then per-
formed the enrichment analysis in different genic regions 
as demonstrated in the previous section.

Fine‑mapping analyses for QTLs
To exclude the influence of LD on the genic distribution, 
we used the CAVIAR (CAusal Variants Identification 
in Associated Regions) [50] as the fine-mapping step to 
identify the causal variants for each stQTL and eQTL. 
The CAVIAR was performed to all variants in each cor-
responding gene in each stQTL/eQTL using their LD 
profiles, and the Z-scores of the PEER factors included 
linear model with a threshold of ρ = 90% to identify the 
90% credible causal variants set for each QTL.

Enrichment analysis of QTLs in different genic regions
To determine whether eQTLs and stQTLs were evenly 
distributed in different genic regions, we performed the 
following analyses. Here, we use the stQTL as an example. 
First, we counted the number of all genetic variants in the 
TSS-upstream (from TSS to 100Kb upstream), 5’UTR, 
CDS, 3’UTR, intronic and TSS-downstream (from TTS 
to 100Kb downstream) regions. Let us use Nk to denote 
the number of all genetic variants in the kth region (k = 1, 
…, 6). We then counted the number of stQTLs in each 
of these regions and used Qk to denote the number in 
the kth region. Third, to determine whether stQTLs are 
enriched in region k, we consider the following numbers: 
Qk, Q(−k), Nk-Qk, and N(−k)-Q(−k), where (−k) indicates 
all regions other than k. Fisher’s exact test was then used 
to calculate the significance of enrichment. The enrich-
ment analysis was performed separately for stQTLs and 
eQTLs.

https://github.com/csglab/CRIES
https://github.com/csglab/CRIES
http://ncbi.github.io/sra-tools
https://www.cog-genomics.org/plink/1.9/
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Enrichment analysis of QTLs in different histone 
modifications
To explore the distribution of stQTLs and eQTLs in the 
genomic functional regions, we applied the GARFIELD 
(GWAS Analysis of Regulatory or Functional Informa-
tion Enrichment with LD correction) [46] method to 
investigate the enrichment of stQTL/eQTL in different 
histone modification peaks by adjusting confounding 
from LD. The P value profiles of association analysis were 
used as the input data of the GARFIELD. Combining the 
LD data, MAF data, TSS distance, and annotation data 
that was constructed by the GARFIELD, we performed 
the enrichment analysis on 55 Histone modification 
datasets (including 11 different Histone modifications) 
with the threshold of FDR < 0.05 for stQTLs and eQTLs. 
Stouffer’s Z-score method [110] was used to meta-ana-
lyze the enrichment results of the different datasets in the 
same histone modification type.

Identification of QTLs located at binding sites of miRNAs 
or RBPs
stQTLs and eQTLs were mapped to the binding sites 
of RNA binding proteins (RBPs) and microRNAs (miR-
NAs). RBP binding site data were retrieved from Postar2 
[37] (http://​lulab.​life.​tsing​hua.​edu.​cn/​postar/). miRNA 
binding site data were downloaded from targetScanHu-
man [52] (http://​www.​targe​tscan.​org/​vert_​72/). Both 
databases are based on the human genome reference ver-
sion GRCh38. To match our analysis, we performed Lift-
Over [111] (https://​genome-​store.​ucsc.​edu/) to convert 
genome coordinates into GRCh37. To evaluate QTLs that 
were located on the binding sites of RBPs or miRNAs, 
we selected stQTLs or eQTLs on mature mRNA to align 
with the binding sites data, and then used the Fisher’s 
exact test [112] to identify RBPs whose binding sites were 
enriched located.

Identification of sex‑specific stQTLs
To assess whether genetic variants are associated with 
mRNA stability in a sex-specific manner, 289 samples 
were divided into 187 males and 102 females. The asso-
ciation analysis was performed in males and females 
separately using the stability profiles of 13,116 autosomal 
genes that are not differentially expressed (FDR > 0.05, 
t-test) between sexes. Male or female specific stQTLs are 
defined as variants that are significantly related to mRNA 
stability in one sex (FDR < 0.05) but not in another 
(P > 0.1). As a supplement, the linear model with add-
ing the Genotype × Sex interaction terms (G × S) was 
also performed to identify sex-specific stQTLs [72]. The 
variants with a G × S significance level of FDR ≤ 25% in 
corresponding genes were selected, and the sex-stratified 

linear model was then performed using selected variant-
gene pairs to identify the male or female specific stQTLs 
at FDR < 5%.
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