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Abstract: Recent research on behavioral variant frontotemporal dementia (bvFTD) has shown that
personality changes and executive dysfunctions are accompanied by a disease-specific anatomical
pattern of cortical and subcortical atrophy. We investigated the structural topological network
changes in patients with bvFTD in comparison to healthy controls. In particular, 25 bvFTD patients
and 20 healthy controls underwent structural 3T MRI. Next, bilaterally averaged values of 34 cortical
surface areas, 34 cortical thickness values, and six subcortical volumes were used to capture single-
subject anatomical connectivity and investigate network organization using a graph theory approach.
Relative to controls, bvFTD patients showed altered small-world properties and decreased global
efficiency, suggesting a reduced ability to combine specialized information from distributed brain
regions. At a local level, patients with bvFTD displayed lower values of local efficiency in the
cortical thickness of the caudal and rostral middle frontal gyrus, rostral anterior cingulate, and
precuneus, cuneus, and transverse temporal gyrus. A significant correlation was also found between
the efficiency of caudal anterior cingulate thickness and Mini-Mental State Examination (MMSE)
scores in bvFTD patients. Taken together, these findings confirm the selective disruption in structural
brain networks of bvFTD patients, providing new insights on the association between cognitive
decline and graph properties.

Keywords: behavioral variant frontotemporal dementia; structural covariance network; graph
analysis; MRI

1. Introduction

Behavioral variant frontotemporal dementia (bvFTD) is the most common frontotem-
poral lobar degeneration (FTLD), accounting for more than 50% of patients with autopsy-
confirmed FTLD [1]. Characterized by a progressive impairment in social function and
personality [2], patients with bvFTD often show a focused atrophy in several cortical
and subcortical regions, such as the anterior cingulate, insula, prefrontal cortex, anterior
temporal regions, striatum, and thalamus [3–5]. Despite the typical clinical features and
anatomical changes, bvFTD remains difficult to diagnose, and may be confused with other
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neurological or psychiatric disorders [6]. Thus, the development of new biomarkers to
enhance the diagnostic validity of bvFTD is crucial, particularly in the early stages of the
clinical work-up and for the selection of participants to pharmacological and clinical trials.

In the last decade, neuroimaging studies have supported the idea that brain abnormal-
ities observed in several neurodegenerative diseases not only involve changes in discrete
brain regions, but are also characterized in terms of an altered organization in several
functionally and anatomically interconnected regions [7–9]. Graph theoretical methods
applied to resting state fMRI (rs-fMRI) and diffusion tensor imaging (DTI) data have also
allowed the modeling of the brain as a complex network, revealing important features of
global and local brain organization [10–13]. In this context, previous studies have revealed
that brain networks in healthy controls show a small-world topology, supporting both
specialized and integrated information processing [10,14]. Although small-world proper-
ties have also been observed in patients with several brain disorders, alterations in these
network measures have been reported in comparison with healthy controls [9,14–21].

In recent years, fMRI- and DTI-based brain connectivity measures have been comple-
mented by a novel class of measurements using the inter-individual or intra-individual
covariation in brain morphology (e.g., volume, thickness, or surface area) to characterize
structural connectivity between regions and define large-scale brain networks (i.e., struc-
tural covariance networks) [22–24]. A crucial assumption underlying this procedure is
that the morphological properties of interconnected brain regions would covary, since they
share common developmental and maturational influences [22]. Structural covariance
networks have demonstrated connectivity patterns similar to those detected in functional
and diffusion-based anatomical networks [25,26]. At the same time, their construction is
less sensitive to noise in comparison to those of functional and DTI-based networks [27,28],
and requires relatively lower computational loads [29]. Although several studies have used
brain structural covariance and graph analysis in neurodegenerative diseases [14,29–33],
the investigation of changes in global and regional network characteristics within patients
with bvFTD is still limited. To our knowledge, only one study has combined graph analysis
and gray matter intensities to examine intra-individual structural covariation of the brain
in bvFTD patients [34]. In that study, patients with bvFTD showed lower values of small-
world properties compared to healthy controls. Lower MMSE scores were also associated
with lower integration values in the right hippocampus.

In the current study, we used a new approach to human brain network mapping that
leverages the increasing ability to obtain multiple morphological features from cortical
and subcortical brain regions [33]. In particular, we used cortical thickness values, cortical
surface areas, and subcortical volumes to capture single-subject anatomical connectivity
and investigate network topology, applying a graph theory approach. We hypothesized
that the structural covariance networks of patients with bvFTD should have altered global
and local network properties compared to healthy controls. Considering the previously
reported functional alterations and pathological damages in bvFTD, we expected changes
in specific brain regions belonging to frontal and temporal circuits, which have been
associated with bvFTD. To test this hypothesis, we employed the following local graph
metrics: (i) a centrality measure (i.e., degree centrality), (ii) segregation measures (i.e.,
clustering coefficient), and (iii) integration measures (i.e., characteristic path length and
local efficiency).

2. Materials and Methods
2.1. Participants

We included 25 bvFTD patients (14 males/11 females; 66.92 ± 7.69 years) and 20 con-
trol subjects (seven males/13 females; 63.60 ± 5.90 years). All participants were referred
to the Neurodegerative Diseases Unit, Department of Clinical Research in Neurology of
the University of Bari “Aldo Moro” at “Pia Fondazione Cardinale G. Panico”. According
to Rascovsky’s criteria [2], patient diagnoses were based on a comprehensive evalua-
tion, including clinical history, neurological examination, and neuropsychological testing.
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Eligibility criteria included no history of other neurological or psychiatric illnesses, no
clinical or neuroimaging evidence of focal lesions, and no inflammatory, infectious, or
vascular diseases. The control group was selected according to ADNI-3 criteria (ADNI
Protocol v1.0: 24 May 2016, http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-
v2/documents/clinical/ADNI3_Protocol.pdf). None of the controls had a history of neu-
rologic or psychiatric illness. The Mini-Mental State Examination (MMSE) and Frontal
Assessment Battery (FAB) were administered to all participants as the screening assess-
ment [35,36]. All participants gave written informed consent. The study was conducted
according to the guidelines of the Declaration of Helsinki, and approved by the Institutional
Review Board (or Ethics Committee) of ASL Lecce (verbale n. 6, 25 July 2017).

2.2. MRI Acquisition and Processing

Neuroimaging data were acquired on a 3T scanner (Philips Ingenia 3T). Set acquisi-
tion was in the sagittal plane using a Fast-Field Echo (FFE) T1-weighted sequence with
the following parameters: repetition time = 8.2 ms, echo time = 3.8 ms, field of view =
256 × 256 mm2, 200 slices, flip angle = 8◦, and isotropic 1 mm3 voxels.

T1-weighted images were inspected visually to check for motion-related artifacts and
gross neuroanatomical alterations by a consultant neuroradiologist. Next, images were
analyzed using FreeSurfer (version 6.0) (http://www.nmr.mgh.harvard.edu/martinos) to
extract morphological features for cortical and subcortical brain regions [37–39]. Briefly,
the cortical surface for each participant was reconstructed from T1-weighted images by the
following steps: skull stripping, segmentation of cortical gray and white matter, separation
of the two hemispheres and subcortical structures, and, finally, construction of smooth
representation of the gray/white interface and the pial surface [37,39–41]. Next, all images
were checked for reconstruction cortical surface errors, and surface inaccuracies were
corrected with FreeSurfer’s editing tools. Then, the surface area was calculated using
triangular tessellation of the gray/white matter interface and white matter/cerebrospinal
fluid boundary (pial surface) [42]. Cortical thickness was also calculated based on the
distance between closest points, between gray and white matter surfaces [39]. Finally, we
used the FreeSurfer parcellation scheme based on the Desikan–Killiany Atlas to extract
the cortical thickness and surface area of 68 cortical regions from both hemispheres [43].
Subcortical volumetric analyses were also performed using an automated approach that
estimates the probability of structure classification based on prior templates in which those
structures were manually identified [44]. We considered 12 subcortical areas, including the
putamen, caudate, thalamus, pallidum, hippocampus, and amygdala, for each hemisphere.
A list of cortical and subcortical regions is given in Supplementary Materials (Table S1).

2.3. Network Construction

Cortical thickness, surface area, and volumetric values were bilaterally averaged
and corrected for age, sex, and individual brain size [33]. The resulting residuals were
then z-score transformed using the mean and standard deviation values of each brain
region calculated from healthy controls. Finally, a measure of joint variation between the
74 morphometric features (34 cortical surface area values, 34 cortical thickness values,
and six subcortical volume values) represented the edge weights of the network, and was
calculated using the following formula [33,45]:

1/exp{[(z-score value of ith region of interest) − (z-score value of jth region of interest)]2} (1)

2.4. Graph Theory Analysis

Estimation of the global and local network characteristics was performed by using the
Graph Theoretical Network Analysis (GRETNA) (www.nitrc.org/projects/gretna/) pack-
ages [46]. Small world measures and global efficiency (Eglob) were used to characterize the
global topological organization of the covariance structural networks in both controls and
patients with bvFTD. In particular, to examine the small-world properties of a network, the
normalized clustering coefficient γ = (Cpreal/Cprandom) and the normalized characteristic
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path length λ = (Lpreal/Lprandom) were first computed. Then, the small-world index was
calculated as the ratio of the normalized clustering coefficient and the normalized path
length (σ = γ/λ). Of note, Cpreal and Lpreal are the clustering and the characteristic path
length of the real network, respectively, and Cprandom and Lprandom represent, respectively,
the mean clustering coefficient and shortest path length of 1000 matched random networks
that preserve the same numbers of nodes, edges, and degree distribution as the real net-
work. A real network can be considered as a small-world network if it fulfills the following
criteria: small-world index σ = λ/ γ > 1.1 [47,48]. Compared to a random network, a
small-world network is thus characterized by a higher clustering coefficient. By contrast, it
exhibits a short characteristic path length comparable to that of a random network.

Regional network properties were assessed using degree centrality, the clustering
coefficient, local path length, and local efficiency [11,49–51]. Degree centrality is a local
graph measure that is able to quantify the relative importance of a node within a net-
work [51]. The clustering coefficient represents the ability of a node to communicate with
other nodes with which it shares a direct connection (segregation ability) [49]. Nodal effi-
ciency and characteristic path length, on the other hand, quantify the ability of information
propagation between a node and the remaining nodes in the network (integration ability).
Local efficiency is calculated as the global efficiency of the subgraph formed by the node’s
neighbors. A node with high nodal efficiency or low path length indicates high capability
of information transmission with other nodes. Detailed formulas and explanations of these
global and local metrics can be found in previous methodological reviews [13,21,50].

As graph measures are non-trivially dependent on the density of the underlying
graph [52], intra-individual structural covariance networks were thresholded in a network
density range of d = 0.10–0.40, with an interval of 0.01. Connectivity thresholding is
commonly used to remove noisy or spurious links, preserving the strongest structural edges.
The range of density was chosen to allow small-world network properties to be properly
estimated and the number of spurious edges in each network to be minimized [53,54]. Then,
the network parameters were computed for each network at each density. Finally, GRETNA
was used to calculate the area under the curve (AUC, i.e., the integral over the density
range) for each network measure to provide a scalar that does not depend on specific
threshold selection [55,56]. Of note, graph measures were calculated based on weighted
structural networks. In this way, we could characterize the relative importance of each
link between network nodes. The BrainNet Viewer (http://www.nitrc.org/projects/bnv/)
was used to visualize the regional brain network changes between patients and healthy
controls [57].

2.5. Statistical Analyses

The Shapiro–Wilk test was performed in either demographic, neuroimaging, and
neuropsychological variables (i.e., age, total intracranial volume, cognitive performance),
or graph measures to verify the normality of data distribution. Next, variables with a
normal distribution were compared between controls and bvFTD patients using pair-
wise t-tests. Non-normally distributed variables were compared between groups using
Wilcoxon–Mann–Whitney test. The chi-square test was used to test for differences in the
sex distribution between groups. The critical statistical threshold was set to p < 0.05. A
false discovery rate (FDR) correction procedure was employed to correct for multiple
comparisons in the global and local network analyses [58]. The relationships between
network metrics and clinical data (disease duration and cognitive performances) of patients
with bvFTD were tested using the Pearson correlation (p-value < 0.05). The correlations
were considered statistically significant if the relative p-values were less than 0.05 after
FDR correction.

http://www.nitrc.org/projects/bnv/
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3. Results
3.1. Demographic and Clinical Characteristics

No differences were found in age, sex, years of education, or intracranial volume
between the bvFTD patients and healthy controls (p > 0.05). Concerning clinical data,
patients with bvFTD had significantly lower MMSE and FAB scores compared with healthy
control participants (p-value < 0.001) (Table 1).

Table 1. Demographic, clinical, and neuroimaging data of sample.

HC (n = 20) bvFTD (n = 25) p-Value T/z

Demographic and clinical data

Age at exam (years) 63.60 ± 5.90 66.92 ± 7.69 0.08 −1.74

Sex (males/females) 7/13 14/11 0.16 1.97

Education (years) 10.50 ± 4.88 8.32 ± 5.18 0.08 1.72

MMSE 27.90 ± 1.68 20.80 ± 5.57 <0.001 4.78

FAB (z-score) −0.55 ± 0.95 −4.81 ± 3.60 <0.001 4.71

Duration (years) - 2.86 ± 1.78 - -

Neuroimaging data

Intracanial Volume (ml) 1406.2 ± 155.71 1431.8 ± 163.69 0.81 −0.23
MMSE, Mini-Mental State Examination; FAB, Frontal Assessment Battery; HC, healthy controls; bvFTD, behavioral
variant frontotemporal dementia patients.

3.2. Global Network Characteristics

The structural covariance network of controls and bvFTD patients demonstrated
small-world network architecture over the preselected density range (1.37 < σHC < 2.92;
1.25 < σbvFTD < 2.76). However, the small-world index was smaller in bvFTD patients
than in controls. Moreover, the normalized characteristic path length values in patients
were greater than those of controls (Table 2, p < 0.05, FDR corrected). Compared with
the healthy control participants, the bvFTD group also exhibited significantly less global
efficiency (Table 2, p-value < 0.001, FDR corrected). No significant difference was found in
the normalized clustering coefficient values between bvFTD patients and healthy controls.

Table 2. Main effect of the group in the global network metrics.

HC (n = 20) bvFTD (n = 25) p-Value T/z

σ 0.59 ± 0.04 0.55 ± 0.06 0.022 2.29
λ 0.42 ± 0.02 0.44 ± 0.02 0.008 −2.66
γ 0.86 ± 0.07 0.82 ± 0.09 0.09 1.70

Eglob 0.13 ± 0.01 0.12 ± 0.01 <0.001 4.42
All graph measure values are expressed as the area under the curve (AUC) across the density range; σ, small-world
index; λ, normalized characteristic path length; γ, normalized clustering coefficient; Eglob, global efficiency; HC,
healthy controls; bvFTD, behavioral variant frontotemporal dementia patients.

3.3. Regional Network Characteristics

At a local level, bvFTD patients displayed a reduced local efficiency in the cortical
thickness of the rostral and caudal middle frontal gyrus, pars opercularis, precuneus,
cuneus, transverse temporal gyrus, and rostral anterior cingulate (p-value < 0.05, FDR
corrected) (Figure 1, Table 3). Moreover, we observed a reduced clustering in the corti-
cal thickness of the inferior temporal gyrus in bvFTD patients compared with controls
(p-value < 0.001, FDR corrected) (Table 3). No significant differences were found in the
local properties of cortical surface areas and subcortical volumes between bvFTD patients
and controls.
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Figure 1. Regions showing decreased local efficiency in behavioral variant frontotemporal dementia (bvFTD) patients
compared to healthy controls (HC).

Table 3. Main effect of the group in the local efficiency and clustering coefficient.

Local Efficiency.

Node HC (n = 20) bvFTD (n = 25) p-Value FDR-Corrected T/z

Rostral middle frontal gyrus thickness 0.14 ± 0.03 0.08 ± 0.05 0.02 3.69

Pars opercularis thickness 0.13 ± 0.02 0.09 ± 0.05 0.03 3.21

Caudal middle frontal gyrus thickness 0.13 ± 0.03 0.09 ± 0.05 0.03 3.16

Precuneus thickness 0.13 ± 0.03 0.10 ± 0.04 0.03 3.12

Cuneus thickness 0.14 ± 0.04 0.12 ± 0.02 0.04 3.00

Transverse temporal thickness 0.12 ± 0.04 0.09 ± 0.04 0.04 2.95

Rostral anterior cingulate thickness 0.13 ± 0.03 0.10 ± 0.03 0.05 2.84

Clustering Coefficient

Node HC bvFTD p-Value T/z

Inferior temporal gyrus thickness 0.23 ± 0.01 0.20 ± 0.02 <0.001 4.60

All graph measure values are expressed as the area under the curve (AUC) across the density range. HC, healthy controls; bvFTD,
behavioral variant frontotemporal dementia patients.

3.4. Correlation between Connectivity Metrics and Clinical Data

Significant correlations were found in bvFTD patients’ MMSE scores with the local ef-
ficiency and nodal degree in the cortical thickness of the caudal anterior cingulate (Figure 2,
p-value = 0.01, FDR corrected).
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4. Discussion

In the present study, we applied graph analysis to investigate the topological organiza-
tion of structural brain networks in patients with bvFTD. We found altered graph metrics
both at a global and local level. More specifically, when compared to healthy controls,
bvFTD patients showed altered small-world properties (i.e., increased normalized path
length) and decreased global efficiency. At the local level, patients with bvFTD displayed
lower values of local efficiency in cortical thickness of the caudal and rostral middle frontal
gyrus, rostral anterior cingulate, and precuneus, cuneus, and transverse temporal gyrus.
Relative to controls, patients with bvFTD also displayed reduced values of clustering
coefficients in the thickness of the inferior temporal gyrus. Finally, a significant correlation
was found between the efficiency of caudal anterior cingulate thickness and the MMSE
scores in bvFTD patients.

Our findings provide new insights into our understanding of structural changes in
the organization of bvFTD brain networks. In particular, the reduced small-world index (σ)
observed in bvFTD patients suggests that the covariance networks of bvFTD patients tend
to have a more randomized configuration compared to the control group [53]. Moreover,
the disruption of both normalized path length and global efficiency is indicative of an
impaired functional integration of bvFTD networks, indicating a reduced ability to combine
specialized information from distributed brain regions [10,49]. In the past years, several
studies have investigated small-world property alterations in healthy individuals [58–60],
as well as in neurological and psychiatric disorders [17,19,32,61–65]. Neuroimaging studies
have demonstrated that the cognitive and memory declines in Alzheimer’s disease patients
are often associated with the disruption of the small-world structure [17,27,66,67]. Evi-
dence from graph theoretical studies have also observed reduced functional and structural
integrity in bvFTD brain networks when compared to healthy controls [16,17,34,68,69].
In line with these findings, the bvFTD-related global property alterations observed in
the present study are thus suggestive of an impaired functional integration, which might
contribute to impairments in the cognitive function of patients with bvFTD. This idea is
further supported by local property changes that we found in the frontotemporal regions
of bvFTD networks. Compared to controls, patients with bvFTD showed reduced local
efficiency and clustering coefficients in the cortical thickness of the middle frontal gyrus,
pars-opercularis, anterior cingulate, and temporal cortices. All of these regions represent
the most prominent sites of bvFTD-related focal atrophy [4,5,70]. Moreover, they play a
crucial role in executive control, working memory, and emotion processing that are often
disrupted in bvFTD [71,72]. Decreased values in the local properties (i.e., nodal centrality,
nodal strength) of frontotemporal regions were previously reported in functional and
structural networks of patients with bvFTD in comparison to controls [16,68,69]. In the
present study, the reduced ability in integration found in key regions of the frontotemporal
network further confirm a strong involvement of this network in bvFTD pathophysiology.
Furthermore, the local efficiency and centrality degree values of the cortical thickness in
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the caudal anterior cingulate were found to significantly and positively correlate with
the MMSE score, indicating that the anterior cingulate might play a key role in driving
cognitive deficits in bvFTD patients. Interestingly, we also found a reduced local efficiency
in the cortical thickness of the precuneus and cuneus. Although gray matter alterations
in these brain regions are not frequent in bvFTD patients, recent fMRI studies have re-
ported functional connectivity alterations in posterior cortical areas of patients with FTD
when compared to healthy controls, possibly reflecting reduced afferent input from limbic
regions [73,74].

The current study has some limitations that need to be addressed. We considered
a cohort of bvFTD patients without a histopathological confirmation. However, clinical
examination was performed according to the most recent diagnostic criteria for FTD. Sec-
ond, we examined a relatively small number of patients. Hence, a larger sample size is
required to replicate our results. Third, in the calculation of intra-individual structural
covariance networks, we used the bilaterally averaged values of cortical and subcortical
morphological features. Therefore, we were not able to explore the homologous connec-
tivity between the brain regions. However, bvFTD is traditionally associated with largely
symmetrical atrophy of the frontal and temporal lobes [5,68]. Fourth, network measures
are generally related to each other. Thus, it becomes difficult to say which of these mea-
sures is driving the others. The obtained results should therefore be interpreted with
caution. Fifth, longitudinal studies are required to assess whether topological changes in
the structural covariance network of bvFTD patients are predictive of clinical–pathological
progression. Finally, it remains to be determined whether the local property changes that
we found in the frontotemporal regions of bvFTD networks may represent a useful marker
in distinguishing between FTD subtypes.

5. Conclusions

Our study provides new evidence for the usefulness of combining several morpho-
metric measures to capture single-subject anatomical connectivity and then investigating
bvFTD-related network organization using a graph theory approach. Compared to controls,
patients with bvFTD showed altered graph metrics both at a global and local level. In
particular, bvFTD patients were characterized by lower local efficiency values in the cortical
thickness of several frontotemporal regions. These network alterations might contribute to
cognitive impairments often observed in patients with bvFTD, as suggested by correlations
between graph measures and MMSE scores.
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