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Abstract: This study aimed to investigate if combining clinical characteristics with pre-therapeutic
18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography (PET) radiomics could predict
the presence of molecular alteration(s) in key molecular targets in lung adenocarcinoma. This non-
interventional monocentric study included patients with newly diagnosed lung adenocarcinoma
referred for baseline PET who had tumour molecular analyses. The data were randomly split into
training and test datasets. LASSO regression with 100-fold cross-validation was performed, including
sex, age, smoking history, AJCC cancer stage and 31 PET variables. In total, 109 patients were
analysed, and it was found that 63 (57.8%) patients had at least one molecular alteration. Using the
training dataset (n = 87), the model included 10 variables, namely age, sex, smoking history, AJCC
stage, excessKustosis_HISTO, sphericity_SHAPE, variance_GLCM, correlation_GLCM, LZE_GLZLM, and
GLNU_GLZLM. The ROC analysis for molecular alteration prediction using this model found an AUC
equal to 0.866 (p < 0.0001). A cut-off value set to 0.48 led to a sensitivity of 90.6% and a positive
likelihood ratio (LR+) value equal to 2.4. After application of this cut-off value in the unseen test
dataset of patients (n = 22), the test presented a sensitivity equal to 90.0% and an LR+ value of 1.35. A
clinico-metabolic 18 F-FDG PET phenotype allows the detection of key molecular target alterations
with high sensitivity and negative predictive value. Hence, it opens the way to the selection of
patients for molecular analysis.

Keywords: adenocarcinoma; FDG; lung cancer; molecular analysis; pet; radiomic

1. Introduction

Lung cancer is the leading cause of cancer death in France as well as the world [1]. It is
also one of the main worldwide indications of 18 F-fluorodeoxyglucose (18 F-FDG) positron
emission tomography (PET) in nuclear medicine departments [2] and a research topic of ma-
jor interest. Recently, many publications have explored the association of tumour mutations,
especially epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK),
Kirsten rat sarcoma viral oncogene homolog (KRAS), and ROS1 mutations, with 18 F-FDG
radiomics features for in vivo non-invasive diagnostic or prognostic purposes [3–5].

Meanwhile, in oncology genomics, next-generation sequencing (NGS) that allows
the detection of multiple anomalies on different genomics scales, especially mutations
and structural variations, supplanted traditional methods based on multiple tests. The
strength of NGS is its ability to be performed with a small amount of tissue from a single
biopsy [6], a single extraction, and a single test, which is both time- and cost-effective [7–9].
Although the whole genome sequencing remains a gold standard in oncology genomics,
large DNA-based NGS selected panels conducted on cancer tissue samples of patients
(and maybe in the near future on circulating cell-free DNA) have arisen as convenient
alternatives [10].
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These panels aim at identifying targetable molecular alterations helpful for the per-
sonalised treatment of patients. In non-small cell lung cancer (NSCLC), and specifically
in lung adenocarcinoma, the NGS is increasingly carried out at diagnosis, since the first
line of treatment depends on multiple molecular targets [11], but no consensus has been
reached until now. The current hot topic is to determine who will benefit from NGS panels
and when in the care timeline.

In this regard, the present study aimed to investigate the combination of usual clinical
characteristics (i.e., sex, age, smoking history, cancer stage according to the American Joint
Committee on Cancer (AJCC)) and pre-therapeutic 18 F-FDG PET radiomics. The purpose
was to find out if it could predict the existence of molecular alterations in key molecular tar-
gets in lung adenocarcinoma (namely EGFR, v-raf murine sarcoma viral oncogene homolog
B1 (BRAF), KRAS, neuroblastoma RAS viral oncogene homolog (NRAS), mesenchymal–
epithelial transition (MET), serine/threonine kinase 11 (STK11), phosphatidylinositol 3-
kinase catalytic alpha polypeptide (PIK3CA), ALK and ROS1) to screen patients who are
more likely to benefit from molecular testing.

2. Materials and Methods
2.1. Population

This non-interventional monocentric study had a retrospective design. The study
population included all patients with newly diagnosed lung adenocarcinoma who had
an NGS exploration of panel Colon and Lung Cancer Panel v3 (CLv3). The subjects were
selected from those patients who referred to our PET unit for their initial staging between
January 2018 and December 2019. Their sex, age, smoking history, and AJCC stage were
recorded. The institutional review board approved the study and waived the need for
informed signed consent. Following the European General Data Protection Regulation,
data collection for this study was approved by the national committee for data privacy,
with the registration code of N◦ F20210309115801.

2.2. Immunohistochemistry

Automated immunohistochemistry using a Ventana Bench Mark Ultra was performed
on 4 µm-thick paraffin sections of biopsy with clone D4D6 for ROS1 (pre-diluted). A
complementary fluorescence in situ hybridisation (FISH) was systematically performed in
case of positivity [12].

2.3. Next-Generation Sequencing Panel Colon and Lung Cancer Panel v3 Analysis [13]

Analyses were carried out using a fixed and included paraffin sample. The tumour
genomic DNA extraction was conducted with the Q1Aamp DNA FFPE Tissue Kit on
Q1Acube (Q1AGEN). The NGS was performed using an Ion Personal Genome Machine
(Life Technologies, Villebon sur Yvette, France). The average depth was >500X; on target
>90%. Bioinformatic analyses (alignment and call of variants and annotations):

− Life Technologies: Torrent Suite (version 5.6), Variant Caller (version 5.6), Ion Reporter
(version 5.6)

− Nextgene (version 2.4.1.2, Softgenetics, State College, PA, USA).

The copy number variant analysis was expressed as the ratio of mean depths to
amplicons ± 2. The detection limit was set to 3% for punctual mutation and 5% for
insertion/deletion for a minimum depth of 100X per amplicon. Variations of sequences
recognised as non-pathogenic were not mentioned.

2.4. Positron Emission Tomography Acquisition and Analysis

Patient care and 18 F-FDG administration (3.0 MBq/kg) were performed according to
the guidelines of the European Association of Nuclear Medicine for oncologic examina-
tions [14]. The PET acquisitions were acquired on 2 systems:
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(1) A TrueV analogic PET/CT (Siemens Healthineers, Erlangen, Germany) with three
iterations and 21 subsets with point spread function (PSF) reconstruction (2.0 × 4.0
× 4.0 mm3 voxels). The PET emission acquisition was performed from skull to mid-
thighs for 2 min and 40 s and 3 min and 40 s per bed position for normal-weight and
overweight patients, respectively.

(2) A Vereos digital PET/CT (Philips Medical Solutions, USA) with two iterations and
10 subsets with PSF reconstruction (2 mm3 voxels). The PET emission acquisition was
performed from the skull to mid-thighs for 2 min per bed position regardless of the
body habitus of the patients.

An experienced nuclear physician drew volumes of interest over the hypermetabolism
of the primary lung lesion using a gradient-based delineation, showing to outperform
threshold-based methods in terms of accuracy and robustness [15] (PET edge) on MIM soft-
ware (version 5.6.5, MIM Software Inc., Cleveland, OH, USA) and recorded as RTstruct files.
Afterward, the RTstruct files were uploaded in LifeX 6.3 software [16], and the automatic
close function (3D dilatation followed by erosion of 10 voxels) was systematically applied
to account for any hypo-metabolic area(s), such as necrotic parts of the tumour volume. No
other changes were made, especially freehand modifications. A small lesion size leading to
a volume of interest containing less than 64 voxels was an exclusion criterion according
the LifeX software procedural standards. Indeed, this is a well-known impairment for the
calculation of metabolic 18 F-FDG-PET heterogeneity [17].

The following parameters, fulfilling the Image Biomarker Standardization Initia-
tive [18], were extracted from PET images using an absolute resampling of 64 grey levels
and standardised uptake value (SUV) comprised between 0 and 30:

− Conventional parameters: SUVmean, SUVmax, metabolic tumour volume, and total
lesion glycolysis

− Histogram parameters: skewness_HISTO, kurtosis_HISTO, excessKustosis_HISTO entropy_
log2_HISTO, and uniformity_HISTO

− Shape parameters: sphericity_SHAPE and compacity_SHAPE
− Grey-Level Co-Occurrence Matrix (GLCM) parameters: inverse difference_GLCM,

angular second moment_GLCM, variance_GLCM, correlation_GLCM, joint entropy_GLCM,
and dissimilarity_GLCM

− Neighbouring grey-level dependence matrix (NGLDM) parameters: coarseness_NGLDM,
contrast_NGLDM, and busyness_NGLDM

− Grey-level zone length matrix (GLZLM) parameters: SZE_GLZLM, LZE_GLZLM, LGZE_GLZLM,
HGZE_GLZLM, SZLGE_GLZLM, SZHGE_GLZLM, LZLGE_GLZLM, LZHGE_GLZLM,
GLNU_GLZLM, ZLNU_GLZLM, and ZP_GLZLM

Detailed specifications for these parameters are available on the Image Biomarker
Standards Initiative website [19].

A post-reconstruction harmonisation was run using ComBaT for all PET parameters
found to be statistically significantly different between PET systems [20].

2.5. Statistical Analysis

The data are presented as mean values unless otherwise specified. The PET parameters
extracted from the 2 PET systems described above were compared using a Mann–Whitney
non-parametric test before and after ComBat harmonisation applying Bonferroni correction.
A process was used by randomly splitting the data in training (87 patients, 80%) and
test (22 patients, 20%) datasets. Instead of creating a separate validation dataset, a k-fold
cross-validation was used with the training dataset to tune model parameters.

To select features of interest and build a model of prediction, the LASSO regression
with a binary response variable (0: no molecular alteration, 1: at least one molecular
alteration) was performed on the training dataset of patients with 100-fold cross-validation,
including the following explanatory variables: sex, age, smoking history, AJCC stage
and all the previously described PET variables. The optimal pred.core cut-off value was
determined using the receiver operating characteristic curve. This pred.score cut-off value
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was then tested on the unseen test dataset. Sensitivity (also known as recall), specificity,
positive predictive value (also known as precision), negative predictive value, positive
likelihood ratio (LR+), negative likelihood ratio (LR−), and accuracy were reported. LRs
are defined as follows:

LR+ =
sensitivity

1 − speci f icity
(1)

LR− =
1 − sensititivy

speci f icity
(2)

The LR includes the sensitivity and specificity of a test into a single measure. The best
diagnostic test to detect the disease is the one with the larger LR+ [21,22].

Statistical analysis and graphs were made using XLSTAT software (version 2019: Data
Analysis and Statistical Solution for Microsoft Excel. Addinsoft). A p-value of less than 0.05
was considered statistically significant unless otherwise specified.

3. Results
3.1. Patients and Next-Generation Sequencing Characteristics of the Entire Data Population

In total, 111 patients were screened from January 2018 to December 2019. Two patients
were excluded due to the small volume of their lesions (3.0 and 1.4 mL). Finally, 109 patients
were included. The database was composed of 34 female and 75 male subjects (sex ratio
M/F = 2.2) with a median age of 66 years (range: 37–86). Moreover, 96 patients (88.1%) had
a history of smoking. There were 19 (17.4%), 37 (34.0%), and 53 (48.6%) patients at AJCC
stages of I or II, III, and IV, respectively.

In addition, 63 patients (57.8%) had at least one molecular alteration. Among them, 53,
8, and 2 patients had one (84.1%), two (12.7%), and three alterations (3.2%), respectively.
Figure 1 displays a detailed description. With regard to EGFR mutations, nine, three, and
two were in exon19, exon20, and exon21, respectively. The KRAS mutations were all in the
exon2 except for one patient. It is noteworthy that no HER2 mutation occurred.
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The median delay between the completion of the biopsy and the availability of the
results for all previously described mutations was 23 days. For 100 patients (91.7%), the
PET/CT examination was performed before the availability of the genetic results with a
median interval of 39 days. For 69 patients (63.3%), the PET/CT was even performed before
the biopsy with a median interval of 21 days. Table 1 summarises the clinical characteristics
of the training and test datasets of patients.

Table 1. Molecular and clinical characteristics of patients.

Training Group
(n = 87)

Test Group
(n = 22)

Variable Categories Frequencies % Frequencies %

Molecular alterations None 34 39.1 12 54.5
At least one 53 60.9 10 45.5

Gender Female 25 28.7 9 40.9
Male 62 71.3 13 59.1

Smoking history No 8 9.2 5 22.7
Yes 79 90.8 17 77.3

AJCC stage I or II 17 19.5 2 9.1
III 28 32.2 9 40.9
IV 42 48.3 11 50.0

3.2. Positron Emission Tomography Data Harmonisation

In total, 51 patients (46.8%) underwent their examinations on the TrueV analogic
system and 58 (53.2%) underwent their examinations on the Vereos digital system. None of
the conventional and histogram PET parameters were significantly different between PET
systems (Supplemental Table S1). The parameters found to be statistically different among
PET systems were compacity_SHAPE, variance_GLCM, correlation_GLCM, dissimilarity_GLCM,
coarseness_NGLDM, contrast_NGLDM, SZE_GLZLM, LZE_GLZLM, LGZE_GLZLM, SZLGE_GLZLM,
LZHE_GLZLM, and ZP_GLZLM. However, after ComBat harmonisation, only LZHE_GLZLM
remained different among PET systems (p < 0.0001, Table 2); therefore, this parameter was
not further considered.

Table 2. Comparison of TrueV and Vereos positron emission tomography quantitative variables
before and after the ComBat harmonisation process. The only variables found to be significantly
different between the TrueV and the Vereos systems before the ComBat harmonisation process are
presented here. To see the data for all variables, please refer to the exhaustive supplemental Table S1
(* according to Bonferroni correction, a p-value < 0.0016 was considered significant).

Variable Min Max Mean p Value * Min Max Mean p Value *
Shape parameters

Compacity | TrueV 0.735 8.699 2.401 0.492 7.707 3.058
Compacity | Vereos 1.311 11.225 4.439 <0.0001 1.027 7.727 3.048 0.963

GLCM parameters

Variance | TrueV 2.169 207.117 28.928 0.383 145.670 19.352
Variance | Vereos 1.019 60.837 10.932 <0.0001 −4.923 141.562 19.352 0.854

Correlation | TrueV 0.211 0.789 0.651 0.278 0.861 0.721
Correlation | Vereos 0.356 0.945 0.784 <0.0001 0.305 0.879 0.721 0.892
Dissimilarity | TrueV 0.952 10.475 3.422 0.839 8.457 2.815

Dissimilarity |
Vereos 0.715 6411 2.281 0.0002 0.685 8.429 2.815 0.839

NGLDM parameters

Coarseness | TrueV 0.001 0.070 0.018 −0.001 0.057 0.014
Coarseness | Vereos 0.000 0.054 0.009 0.001 0.002 0.070 0.014 0.674

Contrast | TrueV 0.014 0.878 0.198 0.000 0.664 0.141
Contrast | Vereos 0.008 0.618 0.091 <0.0001 0.014 0.942 0.141 0.774
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Table 2. Cont.

Variable Min Max Mean p Value * Min Max Mean p Value *
GLZLM parameters

SZE | TrueV 0.229 0.775 0.536 0.211 0.723 0.499
SZE | Vereos 0.230 0.704 0.466 0.0004 0.252 0.748 0.499 0.802
LZE | TrueV 4.368 18,386.635 1127.261 −13,631.716 635,105.336 25,996.822
LZE | Vereos 3.600 1,191,735.375 47,864.883 <0.0001 −8620.105 853,331.114 25,996.822 0.0002

LGZE | TrueV 0.004 0.225 0.034 0.002 0.166 0.024
LGZE | Vereos 0.001 0.087 0.016 <0.0001 −0.001 0.148 0.024 0.631
SZLGE | TrueV 0.003 0.103 0.013 0.002 0.076 0.010
SZLGE | Vereos 0.001 0.045 0.007 <0.0001 −0.001 0.080 0.010 0.353
LZHGE | TrueV 666.714 1,258,030.400 50,296.736 −155,560.617 43,339,050.699 156,236.634
LZHGE | Vereos 1793.265 55,736,935.663 2,889,821.717 <0.0001 −527,621.307 39,784,583.618 1,561,236.634 <0.0001

ZP | TrueV 0.033 0.616 0.255 −0.014 0.537 0.196
ZP | Vereos 0.007 0.625 0.144 <0.0001 0.054 0.695 0.196 0.839

3.3. Construction of Prediction Model Using a Lasso Regression with a Cross-Validation on the
Training Dataset (n = 87)

The model included 10 variables, namely age, sex, smoking history, AJCC stage,
excessKurtosis_HISTO, sphericity_SHAPE, variance_GLCM, correlation_GLCM, LZE_GLZLM,
and GLNU_GLZLM (Figures 2 and 3). The optimal lambda determined by cross-validation
was equal to 0.030, and the corresponding coefficients can be seen in Supplemental Table S2.
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3.4. Relationship between Variables Included in the Lasso Regression Model

Significant correlations were observed among PET variables of interest, which are sum-
marised in detail in Table 3. The strongest correlation was observed between variance_GLCM
and LZE_GLZLM with ρ = −0.702 and p < 0.0001. There was no correlation between age and
PET variables of interest (Table 3). Moreover, there were no differences in PET variables of
interest in terms of sex, smoking history, and AJCC stages (Table 4).

Table 3. Spearman correlations matrix for positron emission tomography variables of interest and
age. Values in bold are those that correspond to statistically significant results.

Variables Age ExcessKurtosis_ HISTO Sphericity_SHAPE Variance_GLCM Correlation_GLCM LZE_ GLZLM GLNU_GLZLM

Age 1 −0.176 0.059 −0.105 0.067 0.169 0.083
ExcessKurtosis_ HISTO −0.176 1 −0.344 −0.369 −0.075 0.401 −0.232

Sphericity_SHAPE 0.059 −0.344 1 0.212 −0.318 −0.307 −0.367
Variance_GLCM −0.105 −0.369 0.212 1 −0.153 −0.702 0.167

Correlation_GLCM 0.067 −0.075 −0.318 −0.153 1 0.362 0.574
LZE_ GLZLM 0.169 0.401 −0.307 −0.702 0.362 1 0.263

GLNU_GLZLM 0.083 −0.232 −0.367 0.167 0.574 0.263 1

Table 4. Comparisons of positron emission tomography variables of interest according to sex,
smoking history, and stage according to American Joint Committee on Cancer.

Variables ExcessKurtosis_ HISTO Sphericity_SHAPE Variance_GLCM Correlation_GLCM LZE_ GLZLM GLNU_GLZLM

Sex, mean
(SD)

Females
(n = 25)

1.849
(4.830)

0.904
(0.096)

20.010
(30.118)

0.743
(0.104)

35343.472
(133495.181)

19.109
(23.159)

Males
(n = 62)

0.967
(3.213)

0.936
(0.094)

20.979
(25.708)

0.722
(0.113)

30955.319
(145426.809)

44.254
(80.101)

p value 0.685 0.140 0.611 0.453 0.476 0.748
Smoking

history, mean
(SD)

No
(n = 8)

−0.270
(0.653)

0.930
(0.078)

19.039
(15.733)

0.744
(0.083)

−4966.920
(9276.960)

26.023
(27.943)

Yes
(n = 79)

1.372
(3.891)

0.927
(0.097)

20.869
(27.814)

0.726
(0.113)

35981.670
(147862.953)

38.143
(72.412)

p value 0.260 0.891 0.670 0.903 0.608 0.812
I

(n = 5)
4.180

(7.410)
0.969

(0.090)
14.265

(22.681)
0.574

(0.151)
−6434.922
(2239.339)

2.494
(1.497)AJCC stage,

mean (SD) II
(n = 12)

1.271
(3.842)

0.886
(0.083)

15.924
(15.299)

0.755
(0.095)

−6371.951
(8811.401)

44.015
(57.732)

III
(n = 28)

0.426
(2.868)

0.950
(0.084)

21.956
(30.266)

0.736
(0.120)

29371.230
(119,758.438)

41.815
(62.151)

IV
(n = 42)

1.384
(3.619)

0.918
(0.102)

21.995
(27.999)

0.733
(0.091)

49,739.528
(17,7486.562)

35.952
(80.746)

p value 0.092 0.186 0.862 0.066 0.329 0.195
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3.5. Comparison of Variables Included in the Lasso Regression Model between Patients with and
without Molecular Alteration(s)

There was no significant difference between patients without any molecular alterations
and patients with at least one molecular alteration in terms of age, excessKustosis_HISTO,
sphericity_SHAPE, variance_GLCM, correlation_GLCM, LZE_GLZLM, and GLNU_GLZLM
(Figure 3). There was no association between molecular status and AJCC stage (p = 0.102,
Figure 4).
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Sex and smoking history were significantly associated with the molecular status.
More molecular alterations were observed in females (84.0%) compared to males (51.6%)
(p = 0.005, Figure 3). The KRAS and EGFR mutations represented the great majority of
molecular alterations in females, as 56.0% and 28.0% of them had KRAS and EGFR mu-
tations, respectively. In addition, the only positive ROS1 translocation-related protein
expression was observed in a woman. A complementary FISH was performed confirming
the presence of an ROS1 translocation in 80% of the tumour cells visualised. In addi-
tion, in the training dataset, all non-smokers (n = 8) presented at least one molecular
alteration (p = 0.017).

3.6. LASSO Regression Model Diagnostic Performances for Molecular Alteration(s) Detection in
the Training Dataset (n = 87)

The receiver operating characteristic analysis for molecular alteration prediction using
this LASSO regression model in the training dataset of patients found an area under the
curve equal to 0.866 (95%CI = 0.792–0.941, p < 0.0001). The pred.score cut-off value (or
operating point) was chosen by optimising utility with the aim of optimising the sensitivity
of the test to lower the rate of false-negative cases (FN) as appropriate for a screening test.
A cut-off value set to 0.48 led to a sensitivity of 90.6%, a negative predictive value of 80.8%,
and an LR+ of 2.37 (specificity = 61.8%, positive predictive value = 78.7%, accuracy of
79.3%). It should be mentioned that in this configuration, 26 patients (29.9%) tested negative.
Among them, only five patients had FN results, and none of them had EGFR mutations
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(one ALK/KRAS, one KRAS, two STK11, and one PIK3CA). Among the 61 patients tested
positive, 49 (80.3%) were true positives. These true-positive patients had a median age of
69 years (range = 38–86), 56.3% were males, and 83.3% had smoking history.

3.7. Prediction Model Screening Performances on the Unseen Test Dataset (N = 22)

Applying this cut-off value in the validation dataset of patients, the test presented a
sensitivity of 90.0%, a negative predictive value of 80.0%, and an LR+ equal to 1.35 with one
FN result among the five negative tests (22.7%) concerning a KRAS mutation. There were
nine true-positive patients who had a median age of 66 years (range = 55–83), 22.2% were
males, and 77.8% had smoking history. Representative images of a true-positive patient are
shown on Figure 5.
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Figure 5. Representative maximum intensity projection (a) and axial (b) images of true-positive
patients with MET gene alteration and a pred.score equal to 0.92. Model variables were:
age = 70 years, sex = male, smoking history = yes, AJCC stage: IIIA, excessKurtosis_HISTO = 11.72,
sphericity_SHAPE = 0.83, variance_GLCM = 24.40, correlation_GLCM = 0.87, LZE_GLZLM = 9188.94,
GLNU_GLZLM = 76.81.

4. Discussion

Usage of a model based on clinical and PET radiomics appears to be a promising
strategy for screening at the time of diagnosis of lung adenocarcinoma patients who may
have a targetable molecular alteration. This could certainly reduce unnecessary costs by
avoiding the need to test patients for whom we could know that there is little chance of
finding molecular conditions. Moreover, it helps speed the management of these patients
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by eliminating the need to wait for the results of an unnecessary test. For instance, in the
present study, PET/CT was usually performed more than one month before the availability
of genetic analyses results (median = 39 days).

At our institution, somatic mutation detection using immunochemistry and NGS
Panel CLv3 and single tests for ROS1 and ALK mutations was performed for nearly all lung
adenocarcinoma patients at the time of diagnosis, and finally, almost half of them had neg-
ative findings (42%). It is worth noting that frequencies of molecular alterations observed
in our database are representative of those previously observed in a Western population
with lung cancer [23]. Therefore, it can be said that using the proposed regression model
would have avoided 31 molecular tests (26 in the training and five in the test datasets). In
other words, applying this strategy could spare almost 1/3 of molecular testing at the cost
of six false-negative tests (5.5%).

The included model was a mix of clinical characteristics (age, sex, smoking history, and
AJCC stage) and PET characteristics (excessKustosis_HISTO, sphericity_SHAPE, variance_GLCM,
correlation_GLCM LZE_GLZLM, and GLNU_GLZLM). In the sight of the LASSO regression coef-
ficients, the strongest predictive variables were tumour correlation_GLCM, sphericity_SHAPE,
sex, and smoking history. Sex and smoking history were significantly different between
patients with and without molecular alterations on univariable analysis with an increased
risk of molecular alterations in females and non-smokers. This is somewhat concordant
with the results of previous studies indicating the higher rate of EGFR mutations [24–26],
KRAS mutations [27,28], ROS1 gene fusion [29,30], and STK11 [31] expression in females.
Moreover, non-smokers with lung cancer (mostly adenocarcinomas) have more tumour
genetic mutations than smokers, according to the results of the sequencing-based stud-
ies [32–34]. To date, to predict whether a lung adenocarcinoma might harbour targetable
genetic alterations, the clinician considered the aforementioned factors related to the patho-
biology of smoke-associated tumours. Thus, it is interesting to note that in our patient
dataset, many of the patients with one or more molecular alterations tested positive by the
model were male and had a history of smoking. For example, in our training dataset, the
true-positive patients were males in 56.3% of cases and had a history of smoking in 83.3%
of cases. This supports the fact that the 18 F-FDG/PET signature may have additional value
over the already common clinical stratification criteria.

Correlation_GLCM represents the linear dependency of grey levels in GLCM and
sphericity is a measure of the roundness of the shape of the tumour region relative to the
sphere. It should be noted that correlation_GLCM was among the parameters that needed to
be harmonised between the two PET systems. This is in line with the results of previous
studies demonstrating the impact of reconstruction parameters on conventional PET metrics
and texture features in NSCLC [2,35] and hence, the need for harmonising standards.

Moreover, when it comes to the comparison of analogic and digital PET quantitative
variables analysis, it is important to point out that conventional and histogram parameters
were not found to be different from our systems in this reconstruction configuration. A
harmonisation process was needed only for some second- and third-order textural features
and only one failure of the process was observed with LZHGE_GLZLM.

These findings demonstrated for the first time that textural features extracted from
digital and analogic PET systems can be pooled using harmonisation strategies currently
under development [20,36]. However, it has been shown that applying a smoothing filter
with a large kernel as per EARL procedure [37] or using a larger voxel size can lead to the
loss of accuracy of radiomics metrics for tumour characterisation purposes [38].

The study had some limitations; first, these encouraging results need to be confirmed
by a larger multi-centre study. Furthermore, their extrapolation to other populations, for
which the repartition of histological subtypes and mutational status could be different,
needs to be investigated [39–41]. Moreover, to ensure its translation into clinical practice, a
worldwide harmonisation strategy is needed, and the development of dedicated software
for automatic computation of the model equation seems mandatory. Given the flourishing
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number of models of this type in the oncology literature for a multitude of hypotheses, this
axis of development should be carried out in the short term.

Secondly, since the great emulation in the framework of precision oncology and
genetics, our knowledge will surely be in constant evolution, and a strategy that works
today will have to be constantly adapted according to new discoveries in the field. Thirdly,
the molecular analysis was usually performed on biopsies with the risk of spatial tumour
heterogeneity and missing some tumour molecular alterations. For example, Swanton
et al. noted that many oncogenic alterations were only identified in specific tumour
locations generating tumour heterogeneity [42]. Similarly, Pelosi et al. micro-dissected
several tumour regions of different architectures from 20 adenocarcinomas and revealed
that 60% of these tumours had intra-tumour molecular heterogeneity [43]. Therefore, it is
possible to wonder if some tests considered as false-positive results in our study were not
linked to a biopsy sampling error. Indeed, metabolic tumour characterisation considers
the entire tumour volume and not just a sample. This can be a strength together with its
non-invasiveness.

Finally, spatiotemporal heterogeneity could also be considered. In this study, the
strategy was explored at diagnosis, but another time point during patient management
could be investigated, as no consensus has yet been reached [44]. The few patients with
false-negative tests at diagnosis might benefit from a molecular analysis at another time of
their treatment.

In conclusion, screening non-Asian lung adenocarcinoma patients at the time of
diagnosis by means of a model including clinical parameters and 18 F-FDG/PET radiomics
before performing a tumour molecular analysis seems to be an efficient strategy. It allows
predicting the existence of key molecular target(s) with high sensitivity.
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