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Abstract

The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of
unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella
enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice.
The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in
other Salmonella serovars. These regions have been denominated ‘‘regions of difference’’ (ROD). In this study we show that
ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous
excision by two independent recombination events, either under laboratory growth conditions or during infection of
murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing
inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of
excision depends on the environmental conditions found inside phagocytic cells.
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Introduction

S. Enteritidis is a Gram negative bacterium and the etiological

agent of several foodborne diseases in humans [1]. This bacterium

belongs to the subspecies I of the species Salmonella enterica, whose

members cause systemic diseases in warm-blooded animals [2,3].

The ability of S. Enteritidis to cause a systemic disease in the host is

due to its capacity to survive and replicate inside eukaryotic cells,

especially within epithelial and phagocytic cells [4]. This feature of

S. Enteritidis promotes the establishment of systemic disease in

mammals and birds after ingestion of contaminated food or water

[5].

As for many other Enterobacteria, the complete genome of S.

Enteritidis has been sequenced and analyzed [2]. That informa-

tion has allowed the identification of several genetic regions absent

in the genome of other Salmonella serovars, such as Typhimurium.

These distinctive gene clusters, denominated ‘‘Regions of

difference’’ (ROD), could have been acquired by means of lateral

gene transfer [2]. One of such regions is ROD21, a pathogenicity

island found only in the chromosome of S. Enteritidis, S.

Gallinarum and S. Dublin, but absent in other Salmonella serovars

whose whole genome has been sequenced [2,6]. Similar to other

pathogenicity islands described in Enterobacteria, ROD21 is

located next to a gene coding for a tRNA. Previous reports have

shown that genomic islands of Enterobacteria located near tRNA

genes are unstable, because they excise from the bacterial

chromosome [7–9]. For instance, it has been described that

pathogenicity islands SHI-1 and SRL of Shigella flexneri excise from

the bacterial chromosome in laboratory growth conditions [10], as

well as the high pathogenicity island of Yersinia pseudotuberculosis

[11,12]. In Salmonella, previous reports have shown that SPI-7 of

serovar Typhi, a 133 kb genomic island adjacent to a pheU tRNA

gene, excises from the chromosome and gets lost at low rate in

laboratory growth conditions [13]. In addition, it has been recently

described that the prophage-like element wSE14 of S. Enteritidis

(another S. Enteritidis ROD) also excises spontaneously from the

chromosome under standard culture conditions [14].

The few reports that have identified specific conditions that

promote the excision and transfer of genomic islands have focused

on bacteria infecting plants. For instance, the Pseudomonas syringae

pv. Phaseolicola genomic island 1 (PPHGI-1) excises from the

chromosome and is transferred to recipient strains at high rates
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during the infection of host plants [15]. In addition, the frequency

of transfer to different strains of the same species is enhanced in

vitro when plant apoplastic fluids are added to bacteria undergoing

transformation, suggesting that excision and transfer of this

genomic island can be influenced by components derived from

the host [15]. Also, it has been described that the density of the

bacterial population is another factor that influences the excision

rate of genomic islands, as it was observed for the symbiotic

bacterium Mesorhizobium loti [16]. Furthermore, there is one single

study in bacteria causing disease in animals describing that the

excision of the Vibrio Pathogenicity Island 2 from Vibrio cholerae can

be induced at low temperatures and after UV irradiation [17].

However, the conditions or signals responsible of promoting or

preventing the excision of unstable genomic islands in Salmonella

remain largely unknown. Furthermore, whether the excision of

these genetic elements contributes to pathogenicity is an important

question that requires to be addressed.

Here we show that ROD21 is an unstable Salmonella

pathogenicity island that can excise from the bacterial chromo-

some due to at least two different and independent recombination

events. However, only site-specific recombination could lead to

ROD21 loss, suggesting that this pathogenicity island may be kept

as an episomal element inside the bacterium. Of major importance

was the observation that the excision rate of ROD21 increases

when S. Enteritidis resides inside phagocytic cells, such as dendritic

cells and macrophages. These results suggest that the excision

frequency of ROD21 can be enhanced by specific environmental

conditions taking place inside phagocytic cells during the oxidative

stress response against intracellular bacteria.

Results

Characterization of ROD21 in the genome of S. Enteritidis
ROD21 is a 26,687 bp DNA fragment located between

coordinates 2,061,170 and 2,087,657 in the S. Enteritidis PT4

NCTC13349 genome. ROD21 is found in a region of the S.

Enteritidis chromosome that is common to the genome of S.

Typhimurium strains LT2 and 14028 (Fig. 1A). ROD21 is found

next to an asparagine tRNA gene (asnT-2 or attL) and at its right

end is delimited by 24 base pairs (bp), 22 of which are identical to

the 39 end of asnT (Fig. 1B). This element was denominated direct

repeated sequence (DRS or attR). Furthermore, near ROD21

there are other two asparagine tRNA genes located in the same

orientation as asnT-2 (asnT-1 and asnT-3 in this study). asnT-1 is

located 971 bp upstream of asnT-2, while asnT-3 is located

11,487 bp downstream of the DRS. A fourth asparagine tRNA

gene (asnW) is located 9,943 pb downstream of the DRS, but in

the opposite direction when compared to the other asnT genes.

ROD21 harbors 29 coding sequences that are similar to genes

previously described in other bacteria, or that have functions

already assigned in Salmonella (Table 1). Interestingly, some regions

of this pathogenicity island have a genetic organization similar to a

genomic island found in Uropathogenic Escherichia coli strain

CFT073 [18] (Table 1). One of the genes in ROD21 that has an

assigned function is SEN1975 (or tlpA), which encodes a virulence

protein that has a Toll/Interleukin-1 receptor (TIR) domain [19].

A previous report has described that this protein interferes with the

signaling derived from Toll-like receptor engagement and NF-kB

activity in epithelial cells. Furthermore, mutant strains of S.

Enteritidis lacking this gene cause a less severe disease in mice

[19]. ROD21 also contains the gene SEN1993, encoding a protein

homologous to HnsT from uropathogenic E. coli, which releases

the suppression of virulence genes in these pathogenic bacteria

[20]. Another gene found in this pathogenicity island is SEN1978

that encodes a putative type IV pilin protein. In addition, ROD21

harbors genes coding for proteins belonging to conjugation

systems: TraD (SEN1979) and MobA/MobL (SEN1980) (Fig. 1

and Table 1). Another CDS with assigned function is SEN1970,

which encodes a putative integrase sharing 74% similarity to the

integrase in prophage P4. Based on the presence of att sites and the

integrase gene found in ROD21, we hypothesized that this

pathogenicity island would excise from the S. Enteritidis

chromosome.

At least two different recombination events promote
ROD21 excision from the bacterial chromosome

Next, we tested whether ROD21 is able to undergo spontane-

ous excision from the bacterial chromosome. Because ROD21 is

flanked by three copies of asnT and delimited by the DRS, at least

two types of recombination events may take place: recombination

between asnT-2 and the DRS (excision type 1) and recombination

between asnT-2 and asnT-3 (excision type 2). Either one of these

recombination events might result in the complete excision of this

new pathogenicity island (Fig. 2).

To evaluate whether these potential recombinations can occur,

we performed a PCR reaction using primers that hybridize

upstream and downstream of asnT genes and the DRS. As shown

in Fig. 2B and 2C, these hypothetical excision events yield two

different attB and attP sequences, which could be detected by PCR

using several different primer combinations. To detect these

excisions, the genomic DNA of four S. Enteritidis strains was

obtained as described in materials and methods and tested by

PCR. Conventional PCR amplifications failed to produce

measurable amounts of the expected PCR products for each of

the attB and attP sequences in each of the S. Enteritidis strains

evaluated (data not shown). To increase the sensitivity of detection,

nested PCRs were performed as described in material and

methods and the expected sized amplicons were obtained: 591

and 657 bp for the chromosomal attB-1 and attB-2 respectively

(Fig. 3A) and 958 and 1058 for the episomal attP-1 and attP-2

respectively (Fig. 3B). To corroborate the specificity of these PCR

products, the DNA fragments obtained from S. Enteritidis PT1

were sequenced. As shown in Fig. 3, each of the obtained PCR

products matched the expected attB (Fig. 3A) and attP (Fig. 3B)

sequences. These data suggest that both recombination events

occurred at low frequency when bacteria grew to stationary phase

in LB medium.

Excision type 2 results in the loss of ROD21 from the
chromosome of S. Enteritidis

Then, we evaluated whether the excision of ROD21 results in

the loss of this pathogenicity island from the bacterial genome. To

evaluate this possibility, we inserted the genes tetA and tetR

downstream the gene SEN1975 in the strain of S. Enteritidis

Phagotype 1 (PT1), to generate the ROD21::tetRA strain (Fig. 4A).

The genes tetA and tetR confer resistance to tetracycline, but also

prevent the growth of tetracycline-resistant bacteria in a medium

containing zinc chloride and fusaric acid (BM medium), as

described previously [21]. Therefore, only those Salmonella strains

sensitive to tetracycline will grow in BM medium [21]. Nested

PCR reactions showed that excision type 1 and type 2 (Fig. 2A)

occurred in the modified ROD21::tetRA strain, as efficiently as

observed for the wild type (WT) strain (data not shown). To

evaluate if these excisions caused ROD21 loss, the ROD21::tetRA

strain was grown in LB medium and then seeded on solid BM

medium, as described in materials and methods. Bacteria were

incubated 36 h at 37uC to select for tetracycline sensitive bacteria.

Pathogenicity Island Excision in S. Enteritidis
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A total of 35 tetracycline sensitive colonies out of 137 seeded plates

were tested by PCR to evaluate ROD21 loss. We observed that

only 6 out of the 35 colonies isolated had lost ROD21 from the

chromosome, indicating that the frequency of ROD21 loss is

4.3861028. Further, PCR reactions showed that only the attB

sequence generated by excision type 2 could be detected in the

genome of all isolated S. Enteritidis strains (Fig. 4B), suggesting

that excision type 2 was responsible of ROD21 loss in all isolated

CFUs. With regard to the other 29 colonies that lost tetracycline

resistance without excising ROD21, it is possible that they might

had undergone other type of mutations resulting in tetracycline

sensitivity, such as mutations in tetA or tetR genes [22,23] or

changes in cell membrane permeability. However, further

research would be required to clarify this issue.

S. Enteritidis strains that have lost ROD21 show reduced
virulence

To evaluate the impact of ROD21 loss in the virulence of S.

Enteritidis, groups of C57BL/6 mice were orally infected with

either WT S. Enteritidis or one of the isolated strains of S. Enteritidis

lacking ROD21 (DROD21). After infection, the survival rate of

mice was evaluated on a daily basis. As shown in Fig. 4C, mice

infected with the DROD21 strain survived longer than did mice

infected with the WT S. Enteritidis strain. However, 15 days after

the infection, over 80% of the mice in both groups had died due to

Salmonella infection. These data suggest that the loss of ROD21

causes an apparent mild reduction of the S. Enteritidis virulence in

mice. To further study the attenuation of the DROD21 strains, we

performed in vivo competition assays consisting of either oral or

intravenous infection of mice with a mixture of WT and DROD21

strains (at a ratio equal to 1). After 72 h of infection, colonizing

bacteria were recovered from spleens and livers of infected mice to

evaluate the ratio of WT/DROD21 in these organs. As shown in

Fig. 4D and 4E, the WT strain was recovered in larger proportions

in spleens and livers of infected mice 72 h after infection, as

compared to the DROD21 strain. Because similar data were

obtained independently of the route of infection (orally or

intravenously), it is likely that the genes encoded by ROD21 might

be required for the systemic phase of Salmonella infection.

ROD21 excision is induced during infection of phagocytic
cell

To determine whether the rate of ROD21 excision changes

during infection, quantitative real time PCR assays were

performed to measure the number of bacteria that underwent

excision type 1 under different growth conditions. Because an

important step in S. Enteritidis infective cycle is the invasion and

survival in phagocytic cells, ROD21 excision frequency was

determined for S. Enteritidis while infecting phagocytic cells, such

as macrophages and dendritic cells (DCs). Genomic DNA was

obtained from S. Enteritidis PT1 strain recovered at different steps

during a gentamicin protection assay, as described in materials

and methods. Then, the copy number of the attB sequence for

each sample was quantified by using quantitative real time PCR

(qPCR). In these assays, the copy number of attB sequences

represents the amount of bacterial chromosomes that underwent

ROD21 excision. qPCR data were normalized based on the total

amount of DNA for each sample. Further, the copy number of the

Figure 1. Schematic representation of ROD21 in the chromosome of S. Enteritidis. (A) Representation of the genetic location of the genes
coding for the asparagine tRNA (asnT-1, -2 and -3) in the chromosome of S. Typhimurium and S. Enteritidis and the exact location of ROD21 in the
chromosome of S. Enteritidis. Black and dark gray arrows represent those genes shared between both serovars and light gray arrows represent genes
found only in ROD21 of S. Enteritidis. Numbers next to each scheme are coordinates in the chromosome of S. Typhimurium and S. Enteritidis. DRS
stand for Direct Repeated Sequence (attR). (B) The alignments of DRS and asnT-1, asnT-2 (attL) and asnT-3 show that the DRS is identical to the last
22 bp of the asnT genes.
doi:10.1371/journal.pone.0026031.g001
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Table 1. Open reading frames (ORFs) in ROD21 Pathogenicity island and comparison with serU island of the UPEC CFT073.

ORF Size Location Hypothetical role

serU island of
the UPEC
CFT073 % identity

SEN1970 1275 2061363–
2062637

Integrase. P4-like integrase. c2392 25

SEN1971 252 2062709–
2062960

Exported protein (S. Dublin) Identities: 100% - -

SEN1972 838 2063439–
2064276

Pseudogen (putative membrane protein, S. Gallinarum. Identities: 99%) - -

SEN1974 609 2064298–
2064906

Hypothetical protein (SeD_A2308. S Dublin) Identities:99% - -

SEN1975 882 2065272–
2066153

TlpA. Cytoplasmic protein with TIR domain (Salmonella sp.) Identities: 100% c2398 45

SEN1976 2143 2066381–
2068523

Pseudogen (putative type IV prepilin protein, S. Gallinarum. Identities: 99%) c2394 76

SEN1978 558 2068581–
2069138

Type IV Pilin (S. Enteritidis). Identities: 100%. (N-terminal PilS domain). c2395 93

SEN1979 306 2069546–
2069851

Conserved hypothetical protein (S. Enteritidis and S. Dublin). Identities: 100%.
(Conjugal transfer protein TraD domain)

c2396 87

SEN1980 1521 2070488–
2072008

MobA/MobL family protein (S. Dublin) and possible Conjugal transfer protein (S.
Enteritidis). Identities: 100%. (MobA/MobL family).

c2397 84

SEN1981 915 2072032–
2072946

Conserved hypothetical protein (S. Enteritidis). Identities: 99% - -

SEN1981A 264 2073108–
2073371

Membrane protein

SEN1982 543 2073382–
2073924

Lipoprotein (S. Enteritidis). Identities: 100%. c2401 96

SEN1983 488 2074332–
2074819

Pseudogen (exported protein. S. Gallinarum. Identities: 99%) - -

SEN1984 378 2074852–
2075229

Exported protein (S. Enteritidis). Identities: 100% - -

SEN1985 1611 2075307–
2076917

Hypothetical protein (S. Gallinarum and S. Enteritidis). Identities: 100% (S-
adenosylmethionine-dependent methyltransferases (SAM or AdoMet-MTase) domain)

- -

SEN1986 963 2076969–
2077931

Hypothetical protein (S. Dublin and S. Enteritidis). Identities: 100% c2406 86

SEN1987 423 2077987–
2078409

Hypothetical protein (S. Enteritidis). Identities: 100% - -

SEN1988 270 2078458–
2078727

Hypothetical protein (S. Gallinarum and S. Enteritidis). Identities: 100% - -

SEN1989 300 2079026–
2079325

Hypothetical protein (S. Enteritidis). Identities: 100% - -

SEN1990 735 2080087–
2080821

DNA-binding protein (S.Dublin and S. Enteritidis). Identities: 100% (Domain:
helix_turn_helix multiple antibiotic resistance protein)

- -

SEN1991 792 2080852–
2081643

Hypothetical protein (S.Gallinarum and S. Enteritidis). Identities: 100% - -

SEN1992 480 2081729–
2082208

Hypothetical protein (S. Gallinarum). Identities: 98%. c2410 92

SEN1993 405 2082369–
2082773

DNA-binding protein (histone-like protein hlp-II) (S. Gallinarum and S. Enteritidis).
Identities: 100% (Domain: global DNA-binding transcriptional dual regulator H-NS;
Provisional)

c2411 91

SEN1994 567 2083189–
2083755

Membrane protein (S. Gallinarum and S. Enteritidis). Identities: 100%. - -

SEN1995 1272 2083802–
2085073

Conserved Hypothetical protein (S. Dublin and S. Enteritidis). Identities: 100%. - -

SEN1996 297 2085319–
2085615

Hypothetical protein (S. Gallinarum and S. Enteritidis). Identities: 100%. c2414 95

SEN1997 303 2085660–
2085962

Hypothetical protein (S. Gallinarum and S. Enteritidis). Identities: 100%. c2415 95

SEN1998 219 2086032–
2086250

Phage regulatory protein (Salmonella sp.). Identities: 100%. (Domain: Prophage CP4-57
regulatory protein (AlpA)/Predicted transcriptional regulator [Transcription])

- -

Pathogenicity Island Excision in S. Enteritidis
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rpoD gene was quantified as an indication of the total amount of

bacterial chromosomes per sample. Data were expressed as the

number of attB copies/number of rpoD copies.

Excision type 1 of ROD21 was determined for extracellular

bacteria, which were recovered from the supernatant of phago-

cytic cells 2 h after infection. Further, ROD21 excision was also

determined for intracellular bacteria recovered from phagocytic

cells at different times post-infection (2, 18 and 24 h). Then, the

ratios of the ROD21 excision between intracellular bacteria and

extracellular bacteria were determined (relative value in figure 5).

As shown in Fig. 5A, excision rates in intracellular bacteria were

increased at all time points, especially after 18 h of DCs infection

(Fig. 5A) and after 2 h of macrophages infection (Fig. 5B). Similar

results were obtained when the ratio of ROD21 excision between

intracellular bacteria and bacteria grown in either LB or cell

culture media was determined (data not shown). Finally, because

similar intracellular bacterial loads were observed at all time points

during infection of phagocytic cells (Fig. 5C and 5D), it is unlikely

that our results could be due to variability in the amount of

bacteria recovered after infection. These findings suggest that the

excision of ROD21 might be induced by the environmental

conditions found by S. Enteritidis inside phagocytic cells during

infection.

Peroxide treatment increases ROD21 excision in vitro
Given that phagocytic cells produce reactive oxygen species

upon phagocytosis of bacteria [24], whether oxidative stress could

increase the frequency of ROD21 excision was evaluated. S.

Enteritidis PT1 was grown in LB medium until OD600 equal to 0.6

and then 3.66109 bacteria were incubated in N medium, which

mimics the intracellular conditions found inside eukaryotic cells

(i.e. reduced magnesium concentration [25]). At 30 min before the

end of the incubation in N medium, bacteria were treated with

0.25 mM hydrogen peroxide and the frequency of ROD21

excision was determined by qPCR. As shown in figure 6A,

ROD21 excision was significantly higher in bacteria grown for

18 h in N medium and treated with peroxide, as compared to the

same strain grown in N medium alone.

To explore a possible mechanism for the enhancement of

excision induced by oxidative stress, the relative expression of the

gene coding for the integrase (SEN1970) required for the

integration and excision process was measured. We obtained

mRNA from bacteria grown either on LB or N medium that were

treated or not with hydrogen peroxide and evaluated the relative

amount of the SEN1970 mRNA, using qPCR. As shown in Fig. 6B,

the amount of SEN1970 mRNA was reduced when bacteria were

exposed to N medium and hydrogen peroxide. These results

suggest that intracellular conditions, such as reduced nutrients and

oxidative stress may increase the excision rate of ROD21 due to a

decreased expression of integrase, as it has been described

previously for other bacteria [26].

In summary, our data suggest that the intracellular environment

of dendritic cells and macrophages promotes excision of ROD21. It

is likely that the survival of Salmonella inside these phagocytic cells

might be increased by the excision of this pathogenicity island.

Discussion

The acquisition of genes through lateral transfer is a major source

of variation and evolution for pathogenic bacteria. An example of

mobile elements that can be transferred from one bacterium to

another are pathogenicity islands, which can harbor several genes

required by bacterial pathogenesis during infection [27]. Previous

studies have described that some pathogenicity islands can excise

from the bacterial chromosome, either spontaneously or in response

to certain stimuli [28]. In this study, we have provided evidence

suggesting that ROD21, a pathogenicity island of S. Enteritidis, is an

unstable genetic element that can undergo spontaneous excision by

two different recombination events. Our data show that recombi-

nation of asnT-2 (attL) with the DRS (attR) results in the excision of

ROD21 (excision type 1), which forms a circular episomal genetic

element. In addition, recombination of asnT-2 with asnT-3 (excision

type 2) also leads to the excision of ROD21 from the chromosome,

but in this case the excision leads to a circular DNA fragment that

includes ROD21 and the fragment located between DRS and asnT-

3. Both circular elements generated by excisions type 1 and 2 were

detected in this study for S. Enteritidis. The presence of a gene

coding for an integrase (SEN1970) in ROD21 suggests that this

protein may catalyze excisions type 1 and 2. However, it remains to

be determined whether this gene encode a functional protein.

Further, it is also possible that other integrases encoded by genes

located in different sites in the chromosome could catalyze the

excision of this region, as it has been described for pathogenicity

islands of E. coli [8]. Mechanisms of homologous recombination,

known to participate in the excision of unstable genetic elements

[29], could also contribute to the excision of ROD21. Given that a

gene encoding the RecA protein is present in the S. Enteritidis

genome [30] and that the sequences involved in the recombination

events are 100% identical, it is likely that this protein may also

contribute to catalyzing ROD21 excision. Moreover, the presence

of three tRNA genes near ROD21, all of them identical in sequence,

raises the possibility that 3 additional recombination events could

take place: (1) recombination between asnT-1 and the DRS, (2)

recombination between asnT-1 and asnT-3, and (3) recombination

between asnT-3 and the DRS. To define whether these additional

excisions occur further research would be required.

Here we have determined that ROD21 excision may result in

the loss of this genomic region in a small percentage of the

bacterial population, consistently to what has been observed for

other bacteria possessing unstable pathogenicity islands [8]. By

using a selection assay based on tetracycline sensitivity, bacteria

that had lost ROD21 due to type 2 excision (recombination

between asnT-2 and asnT-3 genes) were isolated. However,

bacteria that lost ROD21 due to recombination between asnT-2

and the DRS could not be isolated, even if both, attB and attP

sequences generated by type 1 excision could be detected by PCR.

ORF Size Location Hypothetical role

serU island of
the UPEC
CFT073 % identity

SEN1999 876 2086401–
2087276

Hypothetical protein (S. Gallinarum and S. Enteritidis). Identities: 100%. 1999 40

doi:10.1371/journal.pone.0026031.t001

Table 1. Cont.

Pathogenicity Island Excision in S. Enteritidis
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It is likely that type 1 excision leads to the formation of a stable

episomal element, which is kept inside bacteria and probably re-

integrated into the chromosome. Although the episomal element

formed after an excision by recombination between asnT-2 and

ansT-3 can be detected by PCR, this element might be unstable

and eventually degraded. This possibility could explain as to why

only bacteria that lost this genomic region only due to type 2

excision could be isolated.

We also observed that type 2 excision-mediated loss of ROD21

extended the time required by S. Enteritidis to cause a lethal

disease in mice. Further, in vivo competitive assays at equivalent

infection times showed that the DROD21 strain was less capable

of colonizing spleens and livers as compared to WT S. Enteritidis.

These data are in agreement with a potential role for ROD21 as a

cluster for virulence genes. This notion finds additional support on

a previous report showing that lack of the ROD21-encoded

SEN1975 gene reduces the capacity of S. Enteritidis to cause lethal

disease in mice [19]. Moreover, ROD21 also codes for SEN1993,

which is homologous to HnsT, a protein that promotes the

expression of virulence genes in uropathogenic E. coli. It is likely

then that SEN1993 could work in S. Enteritidis as an inducer of the

expression of virulence genes and that the lack of this protein

would reduce pathogenicity in mutant strains. However, addition-

al research is required to evaluate whether other ROD21 genes

contribute to the virulence of S. Enteritidis in mice and other hosts.

We observed that the excision frequency of ROD21 increases

when bacteria infect phagocytic cells, such as DCs and

macrophages. The highest excision frequencies were obtained

Figure 2. Schematic representation of excisions type 1 and type 2 of ROD21 and the respective episomal elements generated.
(A) Schematic representation of ROD21 and its surrounding region in the chromosome of the S. Enteritidis NCTC13349 strain. Light gray arrows
indicate genes that are part of ROD21, black arrows indicate neighboring genes located outside ROD21 and dark gray arrows show neighboring
genes specifically contained between the DRS limiting ROD21 and the asnT-3 gene. Portions of the chromosome involved in type 1 and 2 excisions
are shown by connecting the respective recombining DRS/tRNAs (dotted lines). Numbered arrows indicate the regions where the primers used in this
study hybridize. (B) Schematic representation of the attB-1 and attP-1 sites formed after type 1 excision and the genes remaining in both the
chromosome of S. Enteritidis and the episomal element. (C) Schematic representation of the attB-2 and attP-2 sites formed after type 2 excision, and
the genes remaining in both the chromosome of S. Enteritidis and in the episomal element. Primer pairs used to detect the chromosomal excisions
and episomal elements are indicated as black arrows.
doi:10.1371/journal.pone.0026031.g002
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for bacteria recovered from the intracellular space of infected cells.

It is possible that recognition of signals present inside host cells

would lead to the activation of proteins involved in ROD21

excision. As a consequence of excision, transcription of genes

contained in these unstable genetic elements could be enhanced,

as described for unstable elements found in Corynebacterium

glutamicum [22]. Increased expression of potential virulence genes

contained in ROD21 when Salmonella locates inside host cells could

be relevant for its ability to survive intracellularly.

The conditions present in the Salmonella-containing vacuole,

such as low pH, high amounts of reactive oxygen species, nitric

oxide, reduced Mg+2 concentration, among others, could act as

signals that promote production or activation of proteins involved

in the excision process. In agreement with this notion, our results

show that the presence of hydrogen peroxide increases the

frequency of ROD21 excision. Furthermore, the transcription of

the integrase gene (SEN1970) is reduced when bacteria are grown

in N medium and exposed to hydrogen peroxide. These data are

Figure 3. ROD21 excision can be generated by means of two different recombination events. Amplification of attB and attP sequences
generated after type 1 and type 2 excisions were detected by nested PCR in LK5, PT4, PT1 and PT21 strains of S. Enteritidis, using primer pairs
described in Table 2 and in Figure 2. PCR products for attB (A) and attP (B) sequences for each type of excision were resolved in 1% agarose gels. The
sequence of each PCR product was obtained (chromatograms in each Figure) and compared with the attB and attP sequences deduced for type 1
and type 2 excisions (labeled as theoretical). attB and attP sequences are highlighted in red in both alignments and chromatograms. Expected size for
each PCR product: 591 bp for type 1 excision attB, 657 bp for type 2 excision attB, 995 bp for type 1 excision attP and 1050 bp for type 2 excision
attP.
doi:10.1371/journal.pone.0026031.g003
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in agreement with a recent report showing that Phage 4 integrase

expression is downregulated to promote the excision of bacteria

unstable genetic elements [26]. Then, it is possible that a reduction

of integrase expression could promote ROD21 excision in

response to phagocytic cell oxidative burst. It has been shown

that oxidative burst starts early in macrophages [23], which is

consistent with the early increase of ROD21 excision observed

when S. Enteritidis infects J774.3 cells.

The excision of ROD21 in S. Enteritidis during infection of

phagocytic cells is analogous to the observation that prophage

excision is induced soon after infection. For instance, contact with

pharyngeal epithelial cells promotes the excision of 5 prophages

from the genome of group A Streptococcus [31]. Such a process

induces the production of virulence factors encoded by these

prophages. To the best of our knowledge, this is the first report

describing the occurrence of the excision phenomenon when

bacteria locate inside phagocytic cells, one of the most important

stages of the infectious cycle of Salmonella. Additional studies are

required to further evaluate if the excision of the ROD21

pathogenicity island contributes to the virulence of S. Enteritidis.

Figure 4. ROD21 is lost in bacteria undergoing type 2 excision. (A) Schematic representation of tetRA insertion in the ROD21::tetRA strain.
This strain was used to isolate bacteria that have lost ROD21. The ROD21::tetRA strain was grown in the contraselection BM medium and the arising
colonies were tested for the presence of ROD21 by PCR. The lines denominated 1 and 2 represent the expected PCR products that would be
generated if ROD21 was inserted in the chromosome. (B) Detection of ROD21 by PCR analysis in WT S. Enteritidis and in one of the DROD21 strains
isolated in a contraselection assay. This figure shows a representative agarose gel (1%) resolving the PCR products 1 and 2 (which denote each
boundary of the integrated form of ROD21) obtained for WT and DROD21 S. Enteritidis strains. In addition, the attB sequences generated after type 1
(attB-1) and type 2 (attB-2) excisions were also detected by PCR. As a positive control, the rpoD gene was amplified by PCR. Data shown derive from
one representative S. Enteritidis DROD21 strain selected out of 6 strains recovered in two independent experiments in which the attB-2 sequence was
detected. (C) C57BL/6 mice were orally infected with 16106 CFUs of either WT or DROD21 S. Enteritidis strains and the survival rate was measured
daily. Uninfected mice were included as controls. Data shown are averages of two independent experiments, each including at least 4 mice per
group. (D and E) Competitive infection assays, consisting of C57BL/6 mice infected either orally or intravenously with a mixture of the WT (KnR) and
DROD21 (CmR) S. Enteritidis strains (input ratio equal to 1:1). After 72 h, bacteria were recovered from spleens and livers of infected mice and the ratio
of WT (KnR) over DROD21 (CmR) S. Enteritidis was calculated and compared to the input. Data shown in graphs are average values from two
independent experiments for bacteria recovered from spleens and livers after intragastric gavage (D) or intravenous (E) infections of 3 mice per
group.
doi:10.1371/journal.pone.0026031.g004
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Materials and Methods

Ethics statement
All the procedures performed in this study were revised and

approved by the Bioethics and Biosafety Committee of the School

of Biological Sciences, Pontificia Universidad Católica de Chile

(07/06/2007). All animal work was performed according to the

Guide for Care and Use of Laboratory Animals (National Institute

of Health, USA) and Institutional guidelines were overseen by a

Veterinarian.

Bacterial strains and growth conditions
S. Enteritidis strains used in this study are: S. Enteritidis LK5

(provided by Dr. Guido C. Mora, Universidad Andrés Bello,

Chile), S. Enteritidis phagotype 1 (PT1), phagotype 4 (PT4) and

phagotype 21 (PT21) (provided by Mrs. Alda Fernandez from the

Public Health Institute of Chile, ISP). These strains were stored at

280uC in LB medium supplemented with 20% glycerol and

grown in liquid LB medium at 37uC with aeration and agitation.

N-minimal medium was composed of 5 mM KCl, 7.5 mM

(NH4)2SO4, 0.5 mM K2SO4, 1 mM KH2PO4, 0.1 mM Tris-

HCl pH 7.4, 30 mM MgCl2, 0.2% glucose, 38 mM glycerol, and

0.1% casaminoacids; pH was adjusted to 5.0. When needed,

hydrogen peroxide was added to the N-minimal medium, at a

concentration of 0.25 mM. The strain S. Enteritidis ROD21::tetRA

was generated by Lambda Red-mediated recombination, as

described by Datsenko and Wanner [32]. Briefly, a PCR product

encoding tetA and tetR genes was generated by PCR amplification

from the mini Tn10 transposon T-POP [33]. The primers used

were asnT_tetRA_(H1+P1) (59 GGA ACT CTC CAT TGG AGA

GAA TAC ATA TCA CTT GGG AAA Aaa tca tta agt taa ggt

gga 39) and asnT_tetRA_(H2+P2) (59 ATG TTT GTG TTT AAA

CAT TAT AAT AAA ATT TAA CTT TTA Ata tca aaa tca tta

agg tta 39). The first 40 bp of these primers (capital) align with bp

2,066,174–2,066,213 and 2,066,321–2,066,360 of the S. Enter-

itidis chromosome, respectively. The last 20 bp of these primers

(lowercase) align with the T-POP transposon. Competent S.

Enteritidis PT1 harboring the thermosensitive plasmid pKD46

were prepared as described [32] and PCR products containing tetA

and tetR genes were electrotransformed to these competent cells.

After electrotransformation, bacteria were incubated for 1 h at

37uC with aeration in 1 ml of LB medium, and then seeded on

solid LB medium supplemented with 25 mg/ml tetracycline. In

order to verify the correct insertion of tetA and tetR genes, a PCR

amplification was performed with genomic DNA of the mutant

strains and primers SEN_1975_Fw (59 TTCTGATGAG-

CAGCGTAAAGAGGC 39) and asnT_tetRA_(H2+P2). This

PCR generates a product of 3,108 bp only if tetA and tetR genes

are inserted in the correct position within ROD21.

Molecular biology techniques
The genomic DNA used in this work was prepared using the

phenol-chloroform method described in [34]. PCR amplification

was performed using standard PCR amplification cycles in a

MaxiGene Gradient Thermocycler (Axygen). Approximately

1 ng/ml of DNA, 1 nmol/ml of each primer, 0.2 mM deoxynu-

Figure 5. ROD21 excision frequency increases when S. Enteritidis infects phagocytic cells. Bone marrow-derived DCs (A) and J774.3
macrophages (B) were infected with S. Enteritidis (MOI equal to 25). After 2, 18 and 24 h post infection (hpi) intracellular bacteria were recovered and
the copy number of the attB sequence generated by type 1 excision was detected by quantitative PCR, using as template the genomic DNA obtained
from intracellular bacteria. Frequency of excision is expressed as the ratio between the copy number of the attB-1 sequence determined for
intracellular and extracellular bacteria. The DNA amount was normalized by calculating the copy number of the rpoD gene. Data shown in graphs are
average values of at least three independent experiments. The amount of intracellular bacteria recovered after 2, 18 and 24 hpi from DCs (C) and
J774.3 (D) was determined by lysing either 1,000 DCs or 100 J774.3 cells with PBS-triton X100 (0.1%) and seeding the lysates in LB plates. Data shown
are the average of at least 3 independent experiments.
doi:10.1371/journal.pone.0026031.g005
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cleoside triphosphates, 1.5 mM MgCl2 and 50 U/ml of Taq DNA

polymerase (Invitrogen) were used in these amplifications. Nested

PCR was performed as described above using 1 ml of a first PCR

product as a template. PCR products were resolved by

electrophoresis in 1% agarose gels containing 0.5 mg/ml ethidium

bromide and visualized under UV light. To determine the

specificity of the amplification reaction, some PCR products were

gel-purified and cloned into the pCRH-2.1H-TOPO cloning

plasmid, according to the manufacturer’s instructions (Invitrogen)

and sequenced by the Sequencing Facility at the Pontificia

Universidad Católica de Chile.

Total RNA was obtained from each bacterial sample using

TRIzol reagent (Invitrogen) and purified with RNeasy Mini kit

(QIAGEN) according to the manufacturer instructions. After

purification, RNA was treated with the DNA Free kit (Ambion) to

remove contaminating genomic DNA. DNAse-treated RNA was

tested for DNA contamination amplifying rpoD gene by PCR.

Samples with no positive amplification up to cycle 30 were

considered to be DNA free. cDNA synthesis was performed using

the ImpromII Reverse Transcription System (Promega) following

the manufacturer instructions. One mg of RNA was used as a

template and cDNA synthesis was performed using random

hexamers. Reactions with no RNA or no reverse transcriptase

were included to rule out gDNA contamination.

Isolation of tetracycline-sensitive S. Enteritidis
S. Enteritidis PT1 ROD21::tetRA was grown in LB medium

supplemented with 25 mg/ml tetracycline at 37uC, with aeration

provided by shaking, until an optical density at 600 nm (OD600)

equal to 2.0 was reached. Serial dilutions were performed in sterile

phosphate-buffered saline (PBS) to obtain 100 CFU in a volume of

100 ml. This volume was plated on LB agar supplemented with

tetracycline and incubated at 37uC for 18 h. One colony was

selected and grown in 2 ml of LB medium without antibiotics at

37uC for 18 h. Serial dilutions of this culture medium were

prepared and aliquots of 100 ml containing 106 CFU were plated

on solid Bochner-Maloy medium (5 g/l tryptone, 5 g/l yeast

extract, 10 g/l NaCl, 10 g/l NaH2PO4 N H2O, 50 mg/l

chlortetracycline hydrochloride, 12 mg/l fusaric acid, 0.1 mM

ZnCl2, 15 g/l agar) [21]. For each experiment, 100 plates were

seeded with 16106 CFU each and the amount of tetracycline

sensitive colonies was quantified. In addition, aliquots of 100 ml

containing approximately 100 CFU were plated on LB agar to

determine the exact CFU seeded in each BM plate. After 36 h of

incubation at 37uC, tetracycline-sensitive colonies were selected

and grown in liquid BM medium, at 37uC for 4 hours, then

patched in LB agar and replica plated in LB agar containing

tetracycline and incubated overnight at 37uC. Spontaneous loss of

ROD21 in tetracycline-sensitive CFU was confirmed by PCR,

using primers pairs indicated in Table 2 and in Fig. 2. The

frequency of ROD21 loss was calculated dividing the number of

tetracycline-sensitive colonies obtained by the total number of

CFU seeded in each experiment.

Mouse infection assays
Groups of 4 male C57BL/6 mice (5–6 week age) were used to

evaluate the virulence of strain S. Enteritidis PT1 DROD21.

Infections with WT or DROD21 S. Enteritidis PT1 strains were

performed by growing these bacteria in LB medium at 37uC until

an OD600 equal to 0.6 was reached. The volume of bacterial

culture containing 16106 CFUs was centrifuged in a refrigerated

microcentrifuge (CT15RE Hitachi) at 10,0006 g for 5 min.

Bacterial pellets were thoroughly resuspended in 20 ml of PBS and

used to orally infect mice. Infective doses were corroborated by

seeding serial dilutions of the bacterial inoculum onto LB plates.

After infection, survival rate was recorded on a daily basis. To

perform competitive assays, a kanamycin or chloramphenicol

resistance gene was introduced between genes putA (SEN0986A)

and putP (SEN0987) in WT and DROD21 S. Enteritidis,

respectively, using the methodology described by Datsenko and

Wanner [32]. These bacteria were grown until OD600 equal to 0.6

was reached and 16106 CFU of each strain was mixed,

resuspended in 200 ml PBS and used to infect groups of C57BL/

6 mice, by intragastric gavage. To perform intravenous infection,

1,000 CFU of each strain were mixed, resuspended in 20 ml PBS

and injected in the lateral tail vein using an insulin syringe (G29

needle). The initial proportion of kanamycin and chloramphenicol

resistant bacteria was determined by seeding bacteria in plates of

Figure 6. Exposure to peroxide induces the excision of ROD21
from the S. Enteritidis chromosome. S. Enteritidis strain PT1 was
grown in LB medium and then approximately 36109 CFUs were
transferred to fresh LB medium (LB) or to N-minimal medium (N), and
incubated for 2 or 18 additional hours. Hydrogen peroxide was added
at a final concentration equal to 0.25 mM during the last 30 min of
incubation (N+H) and either genomic DNA or RNA was isolated. (A) The
frequency of attB-1 excision was quantified by qPCR using genomic
DNA and was expressed as a relative value equal to the ratio between
the copy number of attB-1 over the copy number of rpoD gene. (B)
SEN1970 expression was determined by qPCR using cDNA and
expressed as a relative value (the ratio between the copy number of
SEN1970 and the copy number of rpoD). The results are the average of
three independent experiments. **; ,0.01, one-way ANOVA and Tukey
post test.
doi:10.1371/journal.pone.0026031.g006
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solid LB, LB/kanamycin (50 mg/ml) and LB/chloramphenicol

(10 mg/ml) that were incubated for 12–16 h at 37uC. After 72 h of

infection, mice were euthanized and livers and spleens were

recovered and homogenized with two slides in a Petri dish, with

2 ml PBS. To determine the total amount of both kanamycin and

chloramphenicol resistant bacteria, serial dilutions of the homog-

enized tissue were seeded in solid LB, LB/Kanamycin (50 mg/ml)

and LB/Chloramphenicol (10 mg/ml) medium and incubated for

12–16 h at 37uC. Then, colonies were counted and the

competitive index was calculated as follows: (CFUWT/CFU-

DROD21) Input/(CFUWT/CFUDROD21) Output. The word ‘‘input’’

refers to the proportion of bacteria used to infect mice and

‘‘output’’ to the bacteria recovered from organs.

Phagocytic cells assays
The monocyte/macrophage J774.3 cell line used in this study

was kindly provided by Dr. Marı́a Inés Becker (Biosonda S.A.,

Chile). J774.3 cells were routinely grown in high-glucose DMEM

medium (GIBCO, Invitrogen), supplemented with 10% Fetal

Bovine Serum (HyClone) and 1 mM HEPES (GIBCO, Invitro-

gen) in T75 bottles. Cells were incubated at 37uC and 5% CO2

until 95% of confluence. Before infection assays, cells were treated

with 0.1 mg/ml trypsine (HyClone) for 5 min, recovered in 50 ml

polypropylene tubes, and centrifuged at 1,8006 g for 5 min at

room temperature. After three washes with supplemented DMEM

medium, cell number and viability was determined in a

haemocytometer, using the trypan blue staining (1 mg/ml,

Invitrogen). 56105 cells/ml were seeded in 24 well-plates and

incubated overnight at 37uC and 5% CO2. DCs were prepared

from bone marrow precursors of C57BL/6 mice. Cells were

incubated in complete RPMI 1640 medium supplemented with

5% FCS (Hyclone), 2 mM glutamine, 1 mM non-essential amino

acids, 1 mM pyruvate, 1 mM HEPES, and 10 ng/ml of

recombinant murine GM-CSF (Peprotech). All cell culture media

were acquired from GIBCO (Invitrogen). Culture media was

replaced every 2 days. After 6 days, the phenotype of DCs was

analyzed by flow cytometry for the expression of the surface

markers CD11c, CD86 and CD40, which revealed over 70%

CD11c+ with an immature phenotype. Before the infection assays,

DCs were washed three times with PBS and then culture media

was replaced with complete RPMI medium without antibiotics.

DCs and macrophages were infected with S. Enteritidis PT1 at a

multiplicity of infection (MOI) equal to 25. The MOI was

confirmed by plating serial dilutions of bacterial cultures on LB

agar. After 1 h of incubation at 37uC and 5% CO2, the

supernatant of infected cells was recovered and stored for genomic

DNA preparation. Cells were washed two times with PBS and

1 ml of appropriate medium supplemented with gentamicin

Table 2. Primers used in this study.

Primer Nucleotide sequence Coordinates*

1 GACGGAAATCTTTTCGCCTG 2060716-2060735

2 GCGTCAGACTGCCTGTATCA 2060768-2060787

3 CGGCGTAATCTTCTGACCAT 2061726-2061707

39 TTTGGCGACGACACGGAACGAG 2061683-2061662

4 TAGCGGGATCTCTTCCAGCT 2062007-2061988

5 CAGCAAGACCCTGCCAGAGT 2087049-2087068

6 GCATCATAGCGGCTAACATC 2087203-2087222

7 GGTTAATGCCATAGGAGGGG 2087830-2087811

8 AGTGGGCTTATTGGGATCGG 2087962-2087943

9 TCATAATCACCAGCGACTGG 2098867-2098886

10 CCCAGGCTAAAGGCAACCAC 2098923-2098942

11 CAGGCCTGGCCTTTAAATATCCT 2099721-2099699

12 GTTAATGAGGTGCTGGAGCG 2099774-2099755

SEN1975 Fw TTCTGATGAGCAGCGTAAAGAGGC 2065343-2065366

SEN1975 Rev GCAAGGGGACGGACAAAACTATCT 2065807-2065784

asnT_tetRA_(H1+P1) GGAACTCTCCATTGGAGAGAATACATATCACTTGGGAAAAAATCATTAAGTTAAGGTGGA** 2066174-2066213

asnT_tetRA_(H2+P2) ATGTTTGTGTTTAAACATTATAATAAAATTTAACTTTTAATATCAAAATCATTAAGGTTA** 2066360-2066321

SEN_1075_Fw TTCTGATGAGCAGCGTAAAGAGGC 2065343-2065366

rpoD-Fw-2 TGAGTCTGAAATCGGTCGTACG 3264619-3264640

rpoD-Rev TTCGCGGGTAACATCGAACT 3266113-3266094

rpoD-RT-Fw GTTGACCCGGGAAGGCGAAA 3264688-3264707

rpoD-RT-Rev CAGAACCGACGTGAGTTGCG 3264908-3264889

SEN1970-RT-Fw CGATACTGTCTGGAAGCGCCT 2061725-2061745

SEN1970-RT-Rev GGACAGCGCCTTCCATATCAT 2061954-2061934

attB1nested-RT-Fw GTTACTATGCGCCCCGTTCACAC 2061082-2061104

attB1nested-RT-Rev CCGATTAAGCCCCAAAAACTATG 2087781-2087759

*Coordinates are those of the S. enterica serovar Enteritidis PT4 NTCT NCTC13349 sequence.
**Italics indicate the region that anneals to the 59 or 39 end of a mini Tn10 transposon.
doi:10.1371/journal.pone.0026031.t002
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50 mg/ml was added to cell cultures to kill the remaining

extracellular bacteria. After 2, 18 and 24 h of infection, cells were

removed from the wells and centrifuged at 7836 g for 5 min. No

significant changes on cell viability were observed after infection

with S. Enteritidis at the time points used on the experiments (data

not shown). To recover intracellular bacteria, phagocytic cells

were treated with 1 ml of lysis solution (19% ethanol, 0.1% SDS,

1% saturated basic phenol) for 30 min on ice. After the incubation

period, the cell lysate was centrifuged at 7,0436 g for 5 min, and

genomic DNA was extracted following the methodology men-

tioned above. In order to quantify the amount of intracellular

bacteria at different time points, either 100,000 DCs or 10,000

J774.3 cells were treated with 1 ml of PBS-0.1% triton X-100 for

15 min at room temperature. 100 ml of cell lysates were plated on

LB agar and the plates were incubated at 37uC for 18 h. In

parallel, an equal amount of bacteria used to infect cells was

incubated in 1 ml of cell medium. The incubation was performed

for 2 h and after that time bacteria were recovered by

centrifugation at 7.0436 g for 5 min, and genomic DNA was

prepared as described above.

Peroxide treatment
To evaluate whether oxidative stress has a role in the excision of

ROD21, we used hydrogen peroxide (H2O2) as an oxidative agent

and analyzed its effects in bacterial cultures grown in LB, N-

minimal medium, and N-minimal medium+H2O2. S. Enteritidis

strain PT1 was grown in LB until OD600 equal to 0.6 was reached.

Then, the culture was split in 6 samples, each containing

approximately 36109 bacteria. The samples were pelleted and

then two of them were resuspended in fresh LB medium while the

other four were resuspended in N medium. From these 6 new

cultures, two of the N cultures were incubated for an additional

1.5 hour. Next, 0.25 mM H2O2 (Merck) was added and cultures

were incubated for additional 30 min. The other two N samples

were incubated for 17.5 hours, then 0.25 mM H2O2 (Merck) was

added and cultures were incubated for additional 30 minutes.

After the H2O2 treatment, all samples were pelleted and stored at

280uC until analyzed. Genomic DNA or total RNA was prepared

as described above.

Quantitative real time PCR assays
Quantitative real time PCR for the quantification of ROD21

excisions was performed using Brilliant SYBR Green QPCR kit

(STRATAGENE), following the manufacturer’s instructions. The

reaction mixture contained 2 ml of genomic DNA as a template

and 0.12 pmol/ml of each primer. Standard curves for attB-1 and

rpoD were generated using serial dilutions of a plasmid containing

the corresponding PCR fragment for attB-1 and rpoD. Thermal

cycling conditions were: segment 1; one cycle at 50uC for 2 min

followed by initial denaturation at 95uC for 10 min; segment 2, 40

cycles of 30 s at 95uC, 1 min at 58uC, 1 min at 72uC and 15 s at

80uC; segment 3, 1 cycle of 1 min at 95uC, 30 s at 55uC and 30 s

at 95uC. The copy number of attB-1 and rpoD was calculated as

follows: The number of attB-1 and rpoD copies was determined by

the ratio between the amount of DNA in a sample and the weight

of one molecule of the plasmid with the insert. To graph the

standard curve, the value of the threshold cycle (Ct) was

confronted with the log10 of the initial copy number of each

sample, generating a linear relationship that allows us to know the

number of copies of the sample, which has a specific Ct [35]. The

results were expressed as the ratio of attB-1 copy number/rpoD

copy number (relative value).

Quantitative real time for the quantification of SEN1970

expression was performed as described above, but using as a

template 2 ml of a 1021 dilution of the RT-PCR reaction. rpoD

were used as reference gene to normalize the copy numbers of

SEN1970. Standard curves were made of serial dilutions of

purified PCR products.

Statistic analyses
Statistics significance was determined using the analyses of

variance (ANOVA) test with the Prism Graphpad software.
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