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Abstract: Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is a
strategy that is being actively investigated. While scientists continue to develop creative and thoughtful
ways to utilize these cells for tissue repair, the vast majority of these methodologies can ultimately be
categorized into two main approaches: (1) Facilitating the recruitment of endogenous host cells to the
injury site; and (2) physically administering into the injury site cells themselves, exogenously, either by
autologous or allogeneic implantation. The aim of this paper is to comprehensively review recent key
literature on the use of these two approaches in stimulating healing and repair of different skeletal
tissues. As expected, each of the two strategies have their own advantages and limitations (which we
describe), especially when considering the diverse microenvironments of different skeletal tissues
like bone, tendon/ligament, and cartilage/fibrocartilage. This paper also discusses stem/progenitor
cells commonly used for repairing different skeletal tissues, and it lists ongoing clinical trials that
have risen from the implementation of these cells and strategies. Lastly, we discuss our own thoughts
on where the field is headed in the near future.

Keywords: skeletal tissue repair; regeneration; stem cell; progenitor cell; bone; cartilage; fibrocartilage;
tendon; ligament

1. Introduction

Repair/regeneration of damaged tissue is fundamental in the maintenance of normal homeostasis
and it is fine-tuned at the cellular and molecular levels. The process of wound healing is highly
conserved across the animal kingdom from some of the most primitive organisms, such as hydra [1]
and amoeba [2], to advanced organisms like mammals [3,4]. However, the regenerative capabilities of
advanced vertebrates are comparatively limited. In humans, certain tissue types, such as blood vessels
and epidermis or the gastrointestinal track, can repair within hours, whereas in parts of the nervous
system and skeletal system, repair and remodeling may take several weeks to months [5].

Musculoskeletal tissue is on the front line of exposure to injury in any active individual. It comprises
nearly 40% of the total body mass and it is vital for body movements, which are tightly regulated by the
coordinative efforts of its different components, such as bone, cartilage, muscle, ligament, and tendon.
Skeletal tissue injuries occur by various means, which include, but are not limited to: overuse
(i.e., wear and tear), trauma (i.e., accidental/sport injuries), and degenerative diseases (i.e., muscular
dystrophy, osteoarthritis, etc. [6,7]). In most tissues, wound healing begins with the formation of a
blood clot [8,9], followed by the recruitment of mesenchymal stem cells (MSCs). Studies have shown
that MSCs are integral to the repair process as they help replace damaged tissue by differentiating and
directly replacing damaged tissue [10], as well as by mediating indirect paracrine actions that regulate
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the migration and behavior of mature cells to promote healing [11,12]. These paracrine effects are
mediated by factors secreted into the extracellular space by MSCs that are collectively referred to as the
secretome, which regulates immunomodulation, angiogenesis, migration, cell proliferation/survival
features. For further reading on the MSC secretome and its influences on tissue healing, please refer to
Daneshmandi et al., 2020 [13].

The skeletal system consists of different tissues which exist in varying micro-environments
that inherently have, or do not have, access to specific resources [14]. Due to these complexities,
not all tissues have the same level of access to MSCs, hence factoring into why repair efficacy can vary
dramatically between different skeletal tissues. In efforts to account for this disparity, different cell-based
approaches have been implemented in order to jumpstart the repair process, including administering
(or physically relocating) exogenous MSCs as biologic therapies to injury sites, or administering
chemokines, growth factors, scaffolds (and combinations) to stimulate activation and migration of
native endogenous MSCs to these locations (Figure 1). Surgical procedures (such as tibial microfracture
surgery for knee cartilage focal defect repair) have also been developed to facilitate the migration of
native MSCs from one tissue to another (i.e., bone to cartilage), without having to physically relocate
the cells, in order to facilitate repair. Here, we will review the repair efficacies of both “endogenous”
and “exogenous” cell-based repair approaches as they have been reported in different pre-clinical
models. We will also touch on the limitations of these strategies.
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Figure 1. Conceptual diagrams of the two main approaches used to stimulate skeletal tissue healing
and repair by sequestering the help of stem/progenitor cells. (A) Biomaterials/scaffolds and/or bioactive
agents, such as growth factors, chemokines, and small molecules are placed at the site of injury to
stimulate the migration and differentiation of endogenous native mesenchymal stem cells for aiding in
the repair process. (B) Cells are physically administered exogenously, from one anatomical location of
the patient to the site of injury, or from a donor, to aid in the repair process. This can be done with or
without a scaffold or biomaterial to hold the newly administered cells in place.

2. Common Progenitor/Stem Cells Utilized for Skeletal Tissue Repair

Stem cell-based therapies have gained great interest from scientific communities in the last two
decades, not only for their dynamic potential to treat infectious diseases and cancers, but also for
their ability to stimulate tissue healing. Strategies to enhance healing by mimicking the natural
cellular processes that occur during skeletal development are actively being explored. Most notably,
transplantation of tissue specific progenitor cells or stimulating the recruitment of endogenous/native
progenitors are approaches that are utilized to enhance healing of skeletal tissues in preclinical
models [15–19]. The self-renewal capacities of skeletal tissues diminish with aging. This is
partly attributed to the reduced abundance and efficiency (i.e., loss of proliferative capacity and/or
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differentiation potential) of native adult stem cells that are normally involved in repairing these tissues.
The importance of recruiting and/or administrating cells with the greatest potential to rebuild the
specific skeletal tissue in question have been highlighted in previous reviews [20–24].

Human clinical trials involving stem/progenitor cells for the treatment of musculoskeletal injuries
are increasing [25–29]. Many of these trials involve somatic (adult) stem cells, with mesenchymal
stem/progenitor cells being the most commonly used variety. MSCs are essential for the development
and repair of the skeletal system—from embryonic bone formation to adult fracture healing and
remodeling [30]. MSCs are heterogeneous populations of multipotent cells residing in adult
tissues [30,31]. These cells are scattered throughout the skeletal system and they aid in the restoration
of damaged tissue (Figure 2).
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Figure 2. Diagram depicting various sources of Mesenchymal Stem Cells (MSCs) and their cellular
microenvironments of adjacent skeletal tissues that make up a joint. These include MSCs from synovium,
cartilage, bone marrow, periosteum, and ligament/tendon. Additionally, MSCs from adipose tissue
such as fat pad (not depicted here) are also present. This represents how each tissue is not a closed
system but rather that they are constantly in the direct proximity of MSCs from adjacent tissues.

MSCs can be isolated from marrow [32], periosteal bone [33,34], cartilage [35–37],
fibrocartilage [38,39], adipose tissue [40], tendon [41], ligament [42–44], and synovium [45].
MSCs isolated from these different tissues may vary in phenotype, morphology, differentiation,
and proliferation capacity, but the consensus is that they all possess similar characteristics to bone
marrow derived stromal cells (BM-MSCs), suggesting that MSC populations found across all skeletal
tissues share a similar ontogeny [46]. Veritably, a set of minimum criteria have been described for the
identification of these cells [47]; although, these criteria still need further refinement as some adult cells
have been found to be capable of de-differentiating into stem-like cells in culture, further blurring the
line between native MSCs and culture inspired MSC-like cells [48,49]. Regardless, however, both native
MSCs and de-differentiated MSC-like cells exhibit demonstrated usefulness for tissue engineering
applications as well as stimulating and/or enhancing tissue healing [50–53].
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MSCs secrete a large variety of bioactive molecules that facilitate a regenerative environment.
This trophic activity deem them immunosuppressive, especially to T-cells, and as a result, allogeneic
MSCs can be used for therapeutic purposes [54]. MSCs exhibit significant immunomodulatory capacity
and play an important role in maintaining immune homeostasis by interacting with chemokines,
cytokines and cell surface molecules [55]. Besides considering which type of MSC is optimal for therapy,
another equally important consideration is the microenvironment of the injured tissue in question,
which also dictates overall repair success. The local tissue microenvironment can influence how cells
integrate into the existing tissue matrix and how they restore the damaged tissue [14]. Tissue structure,
organization, extracellular matrix (density and content), cellularity, and vasculature are all determining
factors of how quickly and how well it will heal.

Alongside MSCs, human induced pluripotent stem cells (iPSCs) have also emerged as a potential
cell source for skeletal tissue repair. iPSCs are cells that have been dedifferentiated into the
state of pluripotency by the induction of select transcription factors including octamer-binding
transcription factor-3/4 (OCT3/4), SRY-related high-mobility-group (HMG)-box protein-2 (SOX2),
c-MYC, and Kruppel-like factor-4 (KLF4) [56,57]. These cells represent an inexhaustible cell source
for tissue repair and regeneration; however, their incredible plasticity leads to concerns about their
tendency to differentiate resulting in unexpected and undesirable phenotypic changes, which are now
being addressed [58].

3. Stimulating Bone Repair

Bone is the most rigid and vital tissue of the skeletal system since it provides our bodies
with structure, protects vital organs, and facilitates hematopoiesis occurring in the bone marrow.
The structural components that shape the microenvironment of long bones are nanocrystals
of hydroxyapatite (referred as mineral phase); collagen type-I (referred as organic phase);
cellular components that include osteoclast, osteoblast, and osteocytes; ions (primarily calcium);
and lastly, growth factors and cytokines [59]. The most common broken bone injury is the fracture.
Compared to the other tissues of the skeletal system, bones are equipped with sophisticated
microvasculature regularly supplying necessary components such as nutrients for growth and
maintenance of homeostasis. Bone marrow, which is the primary site for hematopoiesis, attracts not
only cytokines and growth factors, but it also attracts metastatic cells (in some cancers), hence stability
of the bone microenvironment is critical during injury repair and metastatic disease [60].

Although the architecture and microenvironment of bone tissue allows fracture repair to efficiently
occur, often healing to pre-injury state, about 10% of fractures will not heal normally [61]. Bone repair
after fracture is a complex process involving a series of cellular and molecular events leading to
new bone formation through systemic and local factors [59]. In general, fracture healing mainly
involves five steps: hematoma formation, inflammation, angiogenesis, fibrocartilaginous callus
formation to bony callus formation, and bone remodeling—with stem/progenitor cells contributing
to each stage of healing [62,63]. Following bone fracture, the bone marrow is exposed and
results in the rapid formation of a hematoma due to damaged blood vessel. This involves an
inflammatory response where specific cytokines like interleukin-1 (IL-1), IL-6 and tumor necrosis
factor-α (TNF-α) [64], neutrophils, macrophages, and other inflammatory cells initiate the bone
healing mechanism, towards endochondral bone formation and remodeling [65]. Growth and
differentiation factors like TGF-β superfamily including bone morphogenetic protein (BMPs), as well as
insulin-like growth factors (IGFs), fibroblast growth factors (FGFs), and platelet-derived growth factors
(PDGF), orchestrate MSC cell proliferation and differentiation (i.e., chondrogenesis, osteogenesis) [66].
Lastly, during revascularization of the injury site (angiogenesis), BMPs stimulate the expression
of vascular endothelial growth factor (VEGF) by osteoblasts [67]. Due to these orchestrated events,
bones have a high capacity for healing but repairing comminuted fractures that result in bone
loss remains a major challenge [68]. Bone is the most commonly transplanted tissue, leading to
1.5 million annual grafts in the United States [69,70]. However, due to hurdles such as the limited
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availability of donor tissue for grafts [71], donor site morbidity [72], possibility of allograft rejection [73],
and ethical dilemmas concerning putting potential donors at risk make this approach challenging [74,75].
Hence, alternative approaches to heal fractured or damaged bone tissue become necessary.

Previous studies have documented the use of cells and other biologics in the treatment of injured
bone. Induction of osteogenesis by co-culturing C3H10T1⁄2 mesenchymal stem cells with chondrocytes
stimulated well-known bone formation markers including osteopontin, osterix, and osteocalcin,
to enhance the bone healing [76–79]. Other treatment strategies such as osteoanabolic and antiresorptive
treatment strategies (including Wnt/ß-catenin signal activation to promote cell proliferation,
differentiation, and microcirculation) have also been utilized [80]. Additionally, parathyroid hormone
treatment and bisphosphonate injections have had promising results, but they have several limitations
since long-term ablation of bone resorption interferes with the ongoing renewal of the bone matrix
and affects skeletal integrity, ultimately affecting the fracture healing process [81–85]. These studies
collectively suggest that current approaches still need refinement.

Hematopoietic stem cells (HSCs) have been widely used as a potential candidate for the bone injury
healing. Kumar et al. demonstrated using a rat model that the treatment of IGF1 in combination with
AMD3100 elevates the growth of fractured bone that is primarily regulated by cell signaling pathways,
Akt and Erk [86]. Further, using a clonal cell transplantation model, Malhotra et al. demonstrated that
HSCs migrate and give rise to osteocytes and chondrocytes aiding the healing process of fractured
bones [87]. Recently, Chan et al. identified human skeletal stem cells (hSSCs) that undergo local
expansion upon injury to the bone. Interestingly, upon comparative analysis, the study also identified
evolutionary differences between mouse and human skeletogenesis [57]. Furthermore, the periosteum
is considered to be the primary source of mesenchymal progenitor cells, giving rise to the fracture
callus [88], but there is evidence that BM-MSCs and muscle progenitor cells also contribute to the bone
repair process [63,89,90].

Exogenous injection/transplantation of MSCs seems to be the most common and most effective
avenue of cell-motivated bone fracture repair that has been reported to date. In late 1960,
Friedenstein et al. [91,92] first demonstrated the osteogenic potential of BM-MSCs. The authors
filled a diffusion chamber with bone marrow and bone marrow fragments, which was placed in
filtered culture containers, showing that the ectopic transplantation of bone marrow cells result in
osteogenesis [91,92]. These findings were then further validated in the 1980s when it was documented
that the injection of bone marrow aspirants directly on to the sites of bone fractures successfully
promoted healing [93]. In the past two decades, several preclinical studies documenting the positive
role of bone marrow aspirant injections on the healing of fractured bones have been conducted using
rodent models [86,94,95]. Clinical studies have also been conducted using bone marrow aspirant
to stimulate healing of fractured bones. Independent case studies conducted on 20 patients by
Garg et al. and Sim et al. in 1993 showed 90% and 85% radiographic healing of the fractured bones,
respectively [96,97]. Kim and colleagues conducted an open randomized clinical trial consisting of
64 patients with a long bone fracture, that were treated with a local injection of 3.0 × 107 osteogenically
differentiated autologous BM-MSCs mixed with fibrin [98]. After 2 months, injected patients showed
no complications and exhibited significant fracture healing. Overall, these studies demonstrate the
efficacy of using BM-MSCs in a clinical setting for bone repair. However, due to the limitations of
BM-MSC abundance (especially in older patients [99]) and their reduced regenerative capacity with
continuous cell expansion [100], there is a need for a detailed clinical trial considering factors such as
age and gender for their therapeutic applications.

Several groups have shown the potential of exogenous stem cells such as circulating skeletal
progenitors as potential therapeutic candidates for the healing of fractured bones. Almost two
decades ago, Kuznestove et al. isolated fibroblast-like skeletal progenitors from rodents and humans
and demonstrated the significant osteogenic potential of these cells upon transplantation [101].
However, these circulating skeletal progenitors were shown to be rare in humans [102]. Other studies
in nude mice have demonstrated that administering human adipose stem/progenitors (ASCs) directly
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on to sites of calvarial bone injuries induces the expression of osteoblast markers (including Alpl,
Col1a1, Runx2) and stimulates bone formation [103,104]. Interestingly, the exogenous cells persisted
only for 14–15 days and were eventually replaced by the host’s own cells.

Progenitor-like cells isolated from dental pulp, referred to as dental pulp stem cells (DPSCs),
were also investigated for bone healing due to their potential for differentiating down the osteoblast
lineage (in vitro) and their ability to stimulate bone formation (in vivo) [105–107]. In 2000, Gronthos
et al., first isolated DPSCs from adult human dental pulp, and determined their in vitro and in vivo
characteristics [108]. Recently, Fuji et al. demonstrated the osteogenic differentiation of DPSCs in vitro
and bone regeneration in vivo in mouse calvaria defects using a derivative of helioxanthin, which is
known to induce osteogenic differentiation of pre-osteoblasts and MSCs [108]. Lee et al. compared the
osteogenic and bone regeneration potential of DPSCs and BM-MSCs in vitro and in vivo in a rabbit
model [109]. Although, DPSCs have been used pre-clinically for repairing various tissues including
cardiovascular tissue, cornea, and muscular, further clinical studies are needed to evaluate their
therapeutic potential [110–112].

Many preclinical studies demonstrate the positive effects of a variety of exogenous and endogenous
stem/progenitor cells on bone fracture repair (Table 1). On the other hand, only two ongoing US clinical
trials testing the efficacy of human MSCs on bone fracture repair and osteochondral defect repair is
being carried out at the time of this review (Table 2) suggesting that there is a fairly large gap that
separates bench and bedside. This does not necessarily imply that pre-clinical cell-based strategies for
bone repair translate poorly, but rather it is more likely that such strategies are difficult to translate into
clinical approaches that comply with established regulatory standards set by the Center for Biologics
Evaluation and Research (CBER) branch of the Food and Drug Administration (FDA), which take
into careful consideration factors such as cell source, purity/homogeneity, and culturing conditions.
Furthermore, this field would benefit greatly from an influx of clinical studies that thoroughly evaluate
different factors such as donor age, sex, and the number of cells to be injected as this would improve
our understanding of therapeutic applications of exogenous stem/progenitor cells for bone healing.
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Table 1. Pre-clinical studies of endogenous and exogenous use of stem/progenitor cells in skeletal tissue.

Tissue Approach Animal Model Injury Model Experimental
Treatment Outcomes/Results References

Bone Endogenous Mice Long Segmental
Defect

Growth factor +
AMD3100 treatment

2 weeks:
IGF1 showed increased proliferation and migration of
isolated MSC as well as augmented bone growth.

Kumar et al., [86] 2012

Bone Exogenous Nude mice Calvarial defect
(4 mm)

Undifferentiated
Human ASCs + PLGA
scaffold + (rh) BMP2

8 weeks:
Gross analysis, microCT, and histological examination
showed complete healing and trabecular bone
formation in the hASCs treated group compared to the
scaffold only group and empty defects.

Levi et al., [103] 2010

Bone Exogenous Rats Femoral fracture BMSCs + skin
fibroblasts

5 weeks:
Callus size and mechanical properties were
significantly higher in the MSC injected group
compared to fibroblast and the PBS control.
Quantitative analysis showed GFP-positive MSCs were
present in callus in MSC group at 5 weeks after fracture.

Huang et al., [113]
2015

Bone Exogenous Mice Femur fracture Mouse BMSCs/RFP
42 days:
BMSCs injected on day 7 post-fracture accelerated
fracture healing with improved callus and bone quality.

Wang et al., [114] 2018

Bone Exogenous Rat Bone nonunion Primary MSCs sheet +
SDF1 injection

4 and 8 weeks:
At 4 weeks, new formed bone tissue united the distal
and proximal sites in the MSC sheet/SDF group
compared to 5 other groups. At 8 weeks, the MSC
sheet/SDF group showed complete bridging of the
fracture site, forming hard bony union.

Chen et al., [115] 2016

Bone
Exogenous

+
Endogenous

Mice Osteogenesis
impairment

Peptidomimetic ligand
(LLP2A) + Alendronate
(LLP2A-Ale) injection

3 and 12 weeks:
At 3 weeks, the hMSC cells injected intravenously in
the xenotransplantation model were observed at the
bone surface in the LLP2A-Ale group. At 12 weeks, the
LLP2A-Ale group could augment bone formation in
mice.

Guan et al., [116] 2012

Tendon Exogenous Rats Multi-differentiation
potential

TSCs + Matrigel
(gel-cells)

8 weeks:
Transplantation of TSCs subcutaneously resulted in the
formation of tendon, cartilage and bone-like tissues.

Zhang et al., [117]
2010

Tendon Exogenous Rat Achilles Tendon
MSCs cultured in

hypoxic and normoxic
condition

2 and 4 weeks:
Tendon rupture site and biomechanical properties were
superior in hypoxic MSC group compared to the
normoxic and control.

Huang et al., [118]
2013
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Table 1. Cont.

Tissue Approach Animal Model Injury Model Experimental
Treatment Outcomes/Results References

Ligament
Endogenous;

Growth
factors

Canine ACL defect Collagen-Platelet Rich
Plasma (PRP) Scaffold

3 and 6 weeks:
The percent filling defect was significantly higher in the
treated group at both 3 and 6 weeks compared to the
untreated defects. Mechanically, the ACL treated group
had 40% increase in strength at 6 weeks, compared to
untreated defects.

Murray et al., [119]
2006

Ligament
Endogenous;

Growth
factors

Porcine ACL defect
Suture +

Collagen-Platelet Rich
Plasma (PRP) hydrogel

4 weeks:
At 4 weeks, the collagen-PRP hydrogel group
stimulated healing and improved biomechanical
properties after suture repair, compared to suture repair
alone. However, both groups remained significantly
inferior to the intact ligament group.

Murray et al., [120]
2007

Tendon
Endogenous;

Growth
factors

Rat Rotator Cuff

3D printed scaffold +
Growth factors (CTGF,

CTGF + TGF-b +
BMP2)

1 and 4 weeks
GF embedded (+GF) scaffolds promoted recruitment of
endogenous tendon progenitor cells and healed
tendon-to-bone via formation of cartilaginous interface
compared to –GF scaffold.

Solaiman et al., [121]
2019

Tendon Exogenous Rat Achilles Tendon TDSCs and BMMSCs

1, 2 and 4 weeks:
TDSCs showed higher regenerative potential with high
mechanical strength, better appearance density and
well-organized longitudinal fibrous structure and
BMSCs also showed positive results.

Al-Ani MK et al.,
[122] 2015

Tendon Exogenous Rabbit Patellar Tendon
defect

BMSCs + Type I bovine
collagen gel

4 weeks:
Mechanically and histologically, the MSC + gel group
showed significantly greater material and structural
properties compared to the collagen gel alone control.
However, treatment group improvements were not
impressive compared to the normal healthy tendon.

Awad et al., [123] 1999

Ligament Exogenous Rabbit ACL
Reconstruction BMSCs + Silk scaffold

8, 16 and 24 weeks:
The MSC/Scaffold group showed abundant ligament
ECM (Col I was more prominent compared to Col III
and Tenascin-C), compared to the scaffold alone control.
The tensile strength was comparable to the mechanical
properties of daily activities.

Fan et al., [124] 2008
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Table 1. Cont.

Tendon Exogenous Rat Rotator Cuff
injury BMSCs + PRP

4 and 8 weeks:
Gene and protein detection at 4 weeks, showed that
combined therapy enhanced the expression of growth
factors and genes related to tendon repair (Col I,
Tenomodulin, Scx). At 8 weeks, mechanical testing
demonstrated that combined therapy was most
efficient to promote tissue regeneration, compared to
single therapy control (PRP alone and MSC alone).

Han et al., [125] 2019

Tendon Exogenous Rat Tendon injury hASC + fibrin glue

4 weeks:
Treatment group of hASCs demonstrated enhanced
tendon healing biomechanically, compared to the fibrin
alone and sham group. Cells were showed to survive
for 4 weeks, in vivo and secreted human-specific Col I
and Tenascin-C.

Lee et al., [126] 2017

Tendon Exogenous Rat
Partial

Transection of
Achilles Tendon

ASCs + Fibrin Sealant
(FS) from serpent

venom

21 days:
In vivo analysis at day 14 revealed higher
quantification of the transplanted fluorescent ASCs in
the tendon treated with ASCs + FS compared to ASC
alone. The ASCs group up-regulated Tenomodulin
expression compared to normal (without transection),
transection alone and the FS group. TIMP-2 and Scx
expression compared to N group. FS group
demonstrated great organization of collagen fibers
followed by ASCs + FS and ASCs alone in comparison
to N

Frauz et al., [127] 2019

Tendon
Endogenous;

Growth
factor

Rat Patellar Tendon TSCs (CD146+) + Fibrin
glue + CTGF

1, 2 and 4 weeks:
CTFG treated CD146+ cells led to tendon regeneration
with dense collagen fibers, compared to the untreated
CD146+. By week 4, the CTGF group generated tendon
with dense collagen fibers compared to the fibrin alone
group and tensile property on the level of native
tendon compared to CD146- and untreated CD146+.

Lee et al., [128] 2015

Tendon
Endogenous;

Growth
factor

Sheep Rotator Cuff
injury

rhPDGF-BB coated
sutures

6 weeks:
rhPDGF-BB coated sutures enhanced histologic scores
of sheep rotator injury and enhanced tendon healing.
However, load to failure was equivalent to standard
suture repair.

Uggen et al., [129]
2010
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Table 1. Cont.

Cartilage Exogenous Rat Osteo-chondral
Defect

hiPSCs pellet or hiPSCs
+ alginate hydrogel

12 weeks:
Defects treated with chondro-induced hiPSCs
implantation had smooth, firm tissue with good
restoration of articular surface compared to control
or alginate alone. However, histological appearance
showed reduced amount of proteoglycan compared
to the normal cartilage.

Ko et al., [130] 2014

Cartilage Exogenous Rat Osteoarthritis Human umbilical MSCs
+ Hyaluronic acid (HA)

6 and 12 weeks:
Macroscopic observation of the femur surface at 6
weeks, showed signs of OA progression with
cartilage surface roughness and osteophyte
formation compared to preserved cartilage in MSC
+ HA group; at 12 weeks, joint surface showed OA
progression in all 3 groups.
Histologically at 6 weeks, the MSC + HA group
showed abundant proteoglycan and reduced
cartilage loss, whereas at 12 weeks, Saf-O staining
was significantly reduced compared to 6 weeks
Hence, single injection of hUC-MSCs had
temporary effects to decelerate OA progression.

Xing et al., [131] 2020

Cartilage Exogenous Rat
Full thickness

cartilage defect
(2mm)

BMSCs +
SUMO1/SUMO2,3/SUMO1,2,3

4 weeks:
BMSCs overexpressing SUMO1 differentiated into
articular cartilage with hard surface; BMSCs
overexpressing SUMO1,2 reduced inflammation
and improved damaged cartilage
microenvironment; BMSCs overexpressing
SUMO1,2,3 showed better survival, less
inflammatory response, and improved tissue repair.

Liu et al., [132] 2020

Cartilage Exogenous Rabbit and
Minipigs

Osteo-chondral
defect

ECM group:
autologous

MSC-derived ECM
scaffold;

BMS group:
Bone marrow
stimulation

Rabbits: 6hrs, 3 and 7 days:
Macroscopic appearance of exudate healing
wounds showed less fibrosis and histology showed
evenly distributed chondrocyte in the EMS group
compared to the BMS. The CFU-F assay showed
increased number of bone MSCs in the ECM group.
Minipigs: 6 months:
Macroscopic and MRI finding improved in the
ECM compared to BMS group. Repaired tissue in
ECM had similar histological characteristic to
normal hyaline cartilage.

Tang et al., [133] 2019
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Table 1. Cont.

Cartilage Exogenous Rat
Full thickness

cartilage defect (2
mm)

Equine BMSCs and
Synovial Fluid-Derived

MSC (SFMSCs) +
agarose gel

1 and 12 weeks:
At 1 week, the knee joint showed the presence of
MSCs at the injured site.Macroscopic and
histological analysis demonstrated better healing of
cartilage in MSC treated knees at 12 weeks,
compared to the control. SFMSC treated showed
significantly higher Col II, suggesting presence of
hyaline cartilage at the defect site.

Zayed et al., [134]
2018

Cartilage
Endogenous;

Growth
factors

Rabbit Humeral Head
incision

TGF-β3 adsorbed or
TGF-β3-free + collagen

hydrogel

4 months:
The TGF-β3 treated group had significantly greater
matrix and articular cartilage thickness compared
to the TGF-β3-free group, showing that the
articular cartilage of the synovial joint was
regenerated by homing endogenous cells. The
TGF-β3 treated group also had consistent
distribution of Col II and Aggrecan.

Lee et al., [135] 2010

Cartilage
Endogenous;

Growth
factors

Rats Osteo-chondral
Defect (1.6mm)

Silk fibroin scaffold +
SDF-1α + TGF-β1

12 weeks:
Scaffold treated with + SDF-1α and TGF-β1 (GSTS)
had the most significant cartilage regeneration
compared to 4 other control groups. The GSTS
group also produced more type II collagen
compared to other groups, which generated
fibrocartilage.

Chen et al., [136] 2019

Cartilage
Endogenous;

Growth
factors

Rabbit Osteo-chondral
Defect (5 mm)

Hydroxyapatite
collagen (Hap/Col)

scaffold + FGF-2 with
10 and 100 µg/mL

concentration collagen
(HAp/Col) scaffold

3,6, 12 and 24 weeks:
Abundant bone formation observed in the Hap/Col
group compared to the defect group. The FGF10
group demonstrated abundant bone regeneration
as well as satisfactory cartilage regeneration with a
hyaline-like appearance.

Maehara et al., [137]
2010
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Table 2. List of few ongoing clinical trials for skeletal tissue.

Condition NCT Identifier Title Status Intervention

Non Union Fracture NCT03325504
A Comparative Study of 2 Doses of BM
Autologous H-MSC + Biomaterial vs Iliac Crest
AutoGraft for Bone Healing in Non-Union

Recruiting Biological: Cultured Mesenchymal Stem Cells
Procedure: Autologous iliac crest graft

Osteochondral Fracture of
Talus NCT03905824

The Effectiveness of Adding Allogenic Stem
Cells After Traditional Treatment of
Osteochondral Lesions of the Talus

Recruiting
Biological: Allogenic stromal mesenchymal cells

derived from the umbilical cord
Procedure: Debridement and microfracture

Full Thickness Rotator Cuff
Tear NCT02484950

Mesenchymal Stem Cell Augmentation in
Patients Undergoing Arthroscopic Rotator Cuff
Repair

Recruiting
Biological: Mesenchymal stem cell augmentation in

rotator cuff repair
Procedure: Standard arthroscopic rotator cuff repair

Rotator Cuff Tear
Rotator Cuff Tendinitis NCT03752827

Autologous Adult Adipose-Derived
Regenerative Cell Injection into Chronic
Partial-Thickness Rotator Cuff Tears

Recruiting Device: Adipose Derived Regenerative Cells
Drug: Corticosteroid

Rotator Cuff Tear NCT03688308 Bone Marrow Derived Stem Cells for the
Treatment of Rotator Cuff Tears Recruiting Procedure: Arthroscopic rotator cuff repair with bone

marrow aspirate concentrate

Rotator Cuff Tear NCT03551509 LifeNet: Extracellular Matrix Graft in Rotator
Cuff Repair Recruiting

Biological: ArthroFLEX ECM scaffold graft
Procedure: Control

Biological: Crossover

Rotator Cuff Tears NCT04325789 Rotator Cuff Healing Using a Nanofiber Scaffold
in Patients Greater Than 55 Years Recruiting Device: Rotium nanofiber graft

ACL—Anterior Cruciate
Ligament Rupture NCT03294720 BioACL Reconstruction with Amnion Collagen

Matrix Wrap and Stem Cells Case Series Active, not recruiting Procedure: Bio-ACL
Device: amnion wrap and BMAC

ACL—Anterior Cruciate
Ligament Rupture NCT03294759 Bio ACL Reconstruction Amnion Collagen

Matrix Wrap and Stem Cells Active, not recruiting Other: Bio ACL
Other: Control

Anterior Cruciate Ligament
Tear NCT02664545 Bridge-Enhanced ACL Repair vs. ACL

Reconstruction Active, not recruiting Device: BEAR Scaffold
Procedure: Tendon Graft

Defect of Articular Cartilage
Cartilage Injury

Osteoarthritis, Knee
NCT02696876 Synovium Brushing to Augmented

Microfracture for Improved Cartilage Repair Recruiting
Device: Arthroscopic synovial brushing

Procedure: Microfracture

Degenerative Lesion of
Articular Cartilage of Knee NCT02090140

Microfracture Versus Adipose Derived Stem
Cells for the Treatment of Articular Cartilage
Defects

Recruiting Procedure: ADSC Application
Procedure: Microfracture

Osteoarthritis, Knee NCT04205656
Prospective Evaluation of PRP and BMC
Treatment to Accelerate Healing After ACL
Reconstruction

Recruiting

Biological: Leukocyte-Poor Platelet Rich Plasma
(LP-PRP)

Biological: Bone Marrow Concentrate (BMC)
Other: Control group (Placebo)

Osteoarthritis, Knee NCT02805855 Autologous Culture Expanded Mesenchymal
Stromal Cells for Knee Osteoarthritis Recruiting Drug: Autologous Adipose-Derived Mesenchymal

Stromal Cells

Knee Osteoarthritis NCT03014401 The Effect of Adipose-Derived Stem Cells for
Knee Osteoarthritis Recruiting

Procedure: Arthroscopic debridement with stem cell
transplantation

Procedure: Arthroscopic debridement only
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Table 2. Cont.

Condition NCT Identifier Title Status Intervention

Osteoarthritis, Knee
Knee Pain NCT03467919 The Effect of Micro Fragmented Adipose Tissue

(MFAT) on Knee Osteoarthritis Recruiting Procedure: Micro Fragmented Adipose Tissue
Procedure: Corticosteroid injection

Post-Traumatic
Osteoarthritis of Knee NCT04222140 Early Regenerative Intervention for

Post-Traumatic Osteoarthritis Not yet recruiting Combination Product: ERIPTO Protocol
Biological: BMAC Only

Knee Osteoarthritis NCT04043819

Evaluation of Safety and Exploratory Efficacy of
an Autologous Adipose-derived Cell Therapy
Product for Treatment of Single Knee
Osteoarthritis

Active, not recruiting Drug: PSC-01

Musculoskeletal Pain
Knee Osteoarthritis

Cartilage Injury
Cartilage Degeneration

NCT03477942 Impact of Mesenchymal Stem Cells in Knee
Osteoarthritis Recruiting Biological: Autologous Mesenchymal Stem Cells

Articular Cartilage Disorder
of Knee

Articular Cartilage;
Degeneration

NCT03101163

Efficacy and Safety Study of Intra-Articular
Injections of Autologous Peripheral Blood Stem
Cells Following Subchondral Drilling Surgery
for the Treatment of Articular Cartilage Injury in
the Knee

Recruiting
Biological: Autologous peripheral blood stem cells

and hyaluronic acid
Other: Hyaluronic acid

Osteoarthritis, Hip NCT03608579 Autologous Culture Expanded Adipose Derived
MSCs for Treatment of Painful Hip OA Recruiting Drug: Autologous Adipose Derived Mesenchymal

Stromal Cells

Osteoarthritis NCT03818737 Multicenter Trial of Stem Cell Therapy for
Osteoarthritis (MILES) Recruiting

Biological: Autologous Bone Marrow Concentrate
(BMAC)

Biological: Adipose-derived Stromal Vascular Fraction
(SVF)

Biological: Umbilical Cord Tissue
Drug: Depomedrol and Normal saline (Corticosteroid

injection)
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4. Stimulating Tendon and Ligament Repair

Tendon and ligament are the dense connective tissue that connects bone to muscle and bone to
bone, respectively. Both are highly prone to injury and can be difficult to repair due to their structural
organization, hypo-cellularity and hypo-vascularity [138–141]. Tendon tissue primarily consists of
collagens I, II, III, V, XI, XII, XIV, elastin, and glycosaminoglycans (GAGs) [142–145]. Type I collagen
is a most robust component of the tendon extracellular matrix (ECM) network [146]. Tendon cells,
or tenocytes, are fibroblast-like in appearance and they synthesize ECM components including
collagen fibers, elastin, proteoglycans [142,147]. The proportion of tendon/ligament ECM constituents
can vary among individuals, mainly due to differences in the mechanical loading environment;
however, they tend to have relatively consistent physiology and structure [148,149].

The healing response to tendon/ligament injury can be divided into three overlapping
stages—(1) inflammation, (2) proliferation, and (3) remodeling [150]. These stages are ushered
by specific cytokines and cellular processes. In the inflammatory phase, a blood clot is formed after
tendon injury, which is followed by activation of chemoattractant inflammatory cells like neutrophils,
monocytes, and lymphocytes [151]. The clot primarily serves as a scaffold to harbor the cells and releases
important growth factors like TGF-β, IGF-1, PDGF, and VEGF causing inflammation [152]. The second
phase, proliferative phase begins roughly after 2 days following injury. This phase is directed by
macrophages and tenocytes of the endotenon and epitenon region of the tendon. Macrophages release
growth factors to direct cell recruitment and tenocytes help in synthesis of a matrix, primarily consisting
of type III collagen [153–155]. The proliferative phase is identified by increased cellularity, synthesis of
ECM, and the deposition of scar tissue by fibroblasts [156]. After about 1–2 months following injury,
the remodeling phase begins with reorganization of tenocytes and collagen fibers, aligning in the
direction of stress [156] with a decrease in type III collagen and GAG content [157] and increased
synthesis of type I collagen [158]. This process continues for months after injury; however, the newly
formed tissue gradually changes to scar-like tendon tissue. The repaired tissue also lacks biomechanical,
biochemical, and ultrastructural properties of native uninjured tendon tissue [159,160].

This complex microenvironment of tendon and ligament tissues makes the healing process
slow [161,162]. In the US alone, tendon and ligament injuries account for almost half of the 32 million
musculoskeletal injuries incurred each year [163]. These rates are rising due to the increasing aged
population and also due to increased participation in sports activities [156]. Rotator cuff tears increase
with age, from 9.7% in patients 20 years and younger to 62% in patients that are 80 years and older [164],
which represents a significant burden [165]. The main challenge in tendon healing is the failure
to functionally attach tendon to bone. The attachment, called enthesis, consists of the transitional
gradient of tendon, fibrocartilage, calcified fibrocartilage and bone; and it mainly allows dissipation of
stress between these tissues of different properties [166,167]. Although the enthesis can be reattached
surgically, the gradient is disrupted and replaced with scar tissue exhibiting impaired mechanical
properties [160,168]. As with tendon, anterior cruciate ligament (ACL) surgical repair results in
failure due to the lack of blood clot formation, intra-articular hypo-vascularity, loss of intrinsic cell
migration, and poor healing capacity of ACL [169,170]. There is even a high risk of failure when the
ACL is repaired surgically by suturing in adolescent patients [171]. Severe tendon/ligament injuries
that result in lost or unsalvageable tissue require tissue autografts, which often lead to donor site
morbidity [172,173]. Ultimately, current surgical paradigms fail to restore the functional, biochemical,
and structural properties of the native tissue [156].

Tenocytes and ligamentocytes (ligament cells) express Scleraxis (Scx)—a transcription factor
that regulates the expression of the glycoprotein Tenomodulin, which is a specific marker of these
mature cells [174–176]. Like other connective tissues, tendon also contains a unique population of
heterogeneous tissue-specific MSCs. They are capable of differentiating into tenocytes, and true to
the nature of all MSCs, they can differentiate along the chondrogenic, osteogenic, and adipogenic
lineages upon in vitro induction [177]. Further, these cells are capable of generating tendon, cartilage,
and tendon-bone junction-like tissues in rats [178], rabbits [117], and equine animal models [179].
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Over the years, regenerative approaches for treating tendon and ligament injuries have been explored.
These include: (i) cell based therapies [180–182] (ii) gene therapy [24,183] (iii) orthobiologics/platelet
rich plasma injections (PRP) [119,120,184], and recently, (iv) cell free strategies that implement sustained
released growth factors to recruit endogenous stem cell that promote healing [121]. Biochemical factors
such as cytokines (IL-6, IL-10, IL-1β,TNF-α) [185–187] and growth factors (transforming growth factor
(TGF)-β, basic fibroblast growth factor (bFGF), IGF-1, PDGF) play a crucial role in maintaining tissue
homeostasis [152,188]. Many endogenous and exogenous cell-based therapies have been used to repair
tendons and ligaments in pre-clinical models (Table 1).

It has been reported that tendon derived stem/progenitor cells (TDSCs) exhibited a higher
regenerative potential towards ruptured Achilles tendon, compared to BM-MSCs at 4 weeks in a rat
model [122]. However, due to the limited availability of these cells, they must be culture expanded.
Unfortunately, in vitro expansion has been reported to cause the cells to lose their phenotypic
markers [189] and studies have demonstrated that the number of TDSCs are greatly reduced with
aging, showing diminished proliferative capacity [190,191]. With this in mind, other cell sources are
being investigated for therapeutic use.

Bone marrow is a widely explored alternative cell source for tendon and ligament tissue
engineering [123–125,192]. Gulotta et al. explored the use of BM-MSCs for treating unilateral
detachment of the supraspinatus tendon in the rats [193]. Although there were no significant
differences found between the treated and untreated groups, they showed that cells were present
and metabolically active at the repair site following treatment. The same group found that cell-based
strategies alone may not be sufficient to improve the structure, composition, and strength of the healing
tendon tissue [193]. Two years later, they showed that administering BM-MSCs transduced with
adenoviral-mediated Scleraxis improved rotator cuff repair in a rat model [194]. There seemed to be
no difference in the histological appearance between the Scx and MSC group, but the Scx transduced
cell treated group had more fibrocartilage, higher load-to-failure and stress-to-failure ratio at 4 weeks,
compared to BM-MSC group alone. Genetic modifications of administered BM-MSCs and ACL
fibroblast with bone morphogenetic factor (BMP)-12 and BMP-13 has also been demonstrated to induce
ligamentogenic differentiation, in vitro [195].

ASCs are also interesting for tissue engineering due to their accessibility and great abundance when
extracted from human subcutaneous adipose tissue [196,197]. Park et al. demonstrated that rat ASCs,
when treated with growth differentiation factor-5 (GDF-5), exhibited enhanced ECM production and
tendonogenic differentiation of cells, in vitro [198]. Multiple studies have reported the in vivo efficacy
of using ASCs to stimulate tendon healing and improve biomechanical properties and normal collagen
fiber organization, compared to the control groups [126,199,200]. Recently, Kokubu et al. demonstrated
that ASCs improved tendon healing by stimulating collagen fiber reformation and preventing ectopic
ossification of tendons in mice, compared to the control group at 2 and 4 weeks after injury [201].
This study suggested that ASCs can modulate inflammation and induce neovascularization at the
site of injury. Tracking of transplanted ASCs revealed that they were present at 2 and 7 days post
transplantation, but no longer present by 3 weeks, post transplantation [201].

When used in combination with fibrin sealant or hydrogels, ASC treatment has been reported
improved tendon healing with increased expression of Col1, Scx, and Tenomodulin in the damaged
tendon tissue. In vivo survival of ASCs injected with scaffolds (fibrin sealant or hydrogel) into the
defect region was confirmed at day 14 [127] and day 31, post injury [202]. While these studies
effectively demonstrate that there are several different approaches for utilizing exogenous cell
treatments (with/without bioactive scaffolds or growth factors) to stimulate tendon and ligament
repair [119,120,127,183,184,202], further comprehensive studies are needed to assess the safety and
efficacy of these approaches to take the research from bench-to-bedside.

Endogenous cell-based approaches for tendon regeneration have also emerged as a promising
strategy consisting of applying different growth factors and biomaterials to effectively recruit native
stem/progenitor cell population. Solaiman et al. demonstrated a tissue engineering integrated approach,
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utilizing both in vitro and in vivo models, by a precise spatiotemporal growth factor delivery system
embedded in 3D-printed flexible scaffolds, which resulted in regeneration of the tendon-to-bone
interface by recruitment of endogenous stem/progenitor cells [121]. Immunofluorescence analysis
7 days post-implantation showed the infiltration of CD146+ cells into the growth factor embedded
scaffold, suggesting an endogenous cell source does exist for tendon-to-bone healing in a rat model [121].
The regenerative potential of tissue-resident stem/progenitor cells (CD146+) in a rat model was evaluated
by Lee et al., [128] These cells, after enriching with connective tissue growth factor (CTGF), were mixed
with fibrin gel and delivered at the injury site. By the end of week 1 and 2, CTGF led to a dense,
aligned collagen fibers, compared to the group without CTGF delivery. By post-operative week 4,
CTGF generated tendon exhibited dense collagen structure compared to the scar-like tissue in the
fibrin-alone group [128]. Furthermore, expression of different growth factors are evaluated in early
phases of tendon healing [203,204].

Several ongoing clinical studies are trying to better understand the implications of treating injuries
with MSCs alone or in combination with bioactive scaffolds to repair tendon and ligament (Table 2).
Hernigou et al. showed 10-year follow up results, after injecting MSCs to have enhanced rate of
healing and reduced number of re-tears over time [205]. Kim et al. revealed that an injection of ASCs
in combination with fibrin sealant, significantly improved re-tear rates of rotator cuff injuries [206].
Ligament injuries like ACL tears have also shown promising results in small number of patients using
autologous injection of bone marrow nucleated cells [207]. Murray et al. developed a bridge enhanced
ACL repair (BEAR) which combines suture repair with an extra cellular matrix scaffold to bridge the
gap between the ligament ends [27] and presented the first-in-human study to show no graft or repair
failures following a two year follow up [28].

5. Stimulating Articular Cartilage Repair

Articular cartilage is a resilient yet flexible tissue which is a vital component of the skeletal system.
The extracellular matrix (ECM) of articular cartilage is mainly composed of water, proteoglycans,
and collagen fibers. The chondrocyte is the primary type of cell found in cartilage, which almost
completely lacks blood vasculatures and neural architecture [208]. This means that the sole mode of
nutrient supplements to the chondrocytes is though adjacent tissues and fluids such as subchondral
bone and synovial fluid, respectively [209,210]. In comparison to other connective tissues, articular
cartilage has the lowest turnover of ECM and it has a very limited capacity for healing after injury [211].
Chondrocytes reside in small compartmented cavities called lacunae that are surrounded by large
areas of dense cartilage ECM making it difficult for these cells to move freely or migrate in response to
biological cues of damaged tissue. Moreover, the lack of blood vasculature prevents the infiltration of
articular cartilage by circulating immune cells [212]. Multiple approaches have been documented to
help restore cartilage without surgical proceedings, but the fact remains that there are virtually no
clinical treatment options in existence that completely restore damaged articular cartilage to its native
state [213–217].

Given its poor capacity for healing, knee injury resulting in cartilage damage is a great clinical
challenge [218–222]. Widely practiced clinical procedures for attempting cartilage restoration include
endogenous cell-based methods like bone marrow stimulation by creating microfractures [223,224],
and exogenous transplantation of tissue and cells such as the use of osteochondral grafts [225,226],
and autologous chondrocyte implantation (ACI) [227–232]. ACI was first described by Brittberg and
colleagues in 1994 where patients’ own cartilage tissues were harvested in one surgery to extract the
chondrocytes, followed by cell culture expansion and injection into the defect site during a second
surgery [231]. This treatment, along with the matrix induced autologous chondrocyte implantation
(MACI) method [233], has shown positive clinical results for larger cartilage defects [234,235].
However, each method has its own limitations that have been previously discussed to great
lengths [236–240].
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With regards to novel methodologies that are still in development for cartilage repair, pre-clinical
strategies fall into one (or both) of two avenues: (1) utilizing biomaterials that can replace/fill lost
cartilage and restore some loadbearing capacity to defect region; (2) utilizing/stimulating cells to assist
with rebuilding lost cartilage ECM [241]. Cellular approaches involve BM-MSCs and ASCs along with
the induction of chondrogenesis. Chondrogenesis is thought to be more functional in a 3D culture system
as chondrocytes tend to lose their original characteristics, dedifferentiate in the monolayer and acquire
a fibroblastic morphology [242,243]. Studies have demonstrated the chondrogenic differentiation
of BM-MSCs and ASCs in monolayer culture as well as in 3D aggregate cultures [40,45,244–246].
The preclinical use of stem/progenitor cells for cartilage repair has been documented in different animal
models (Table 1). Ko et al. investigated the chondrogenic and hypertrophic potential of human iPSCs
compared to BM-MSCs and also demonstrated the healing of damaged cartilage in rats by grafting
iPSCs [130]. Additionally, Xing et al. demonstrated that a single injection of human umbilical cord
derived MSCs into sprague dawley rat knee joint, 4 weeks post-surgery, resulted in a significant
retardation of OA progression compared to controls [131]. Other studies have also reported that stem
cells induce cartilage repair in rodents [132,133], porcine [133] as well as the equine models [134].
Although cell/tissue transplantation-based therapeutic strategies seem promising, there are drawbacks
such as donor-site morbidity, the possibility of graft rejection and rapid cell ‘wash-out’ from synovial
fluid [247]. Due to these limitations, scientists are actively considering the guided delivery of the
biologics such as proteins, nucleic acid, and growth factors to redirect the native/endogenous cells
to the site of cartilage tissue injury [248–250]. These strategies are intended to motivate cartilage
stem/progenitor cells (CPCs) and mature chondrocytes to help accelerate healing [251].

For large cartilage defects, growth factors are used in combination with biomaterials/scaffolds
that have the dual role of providing the necessary structural support while also facilitating the
recruitment of endogenous cells over time [135]. Scaffold can also be laced with other bioactive
molecules, like chemokines, to promote cartilage repair. Chen et al. demonstrated a silk fibroin-porous
gelatin scaffold (capable of sustained release) loaded with growth factors stromal-derived factor-1α
(SDF-1α) and TGF-β1 can promote in vitro MSC homing, migration and chondrogenesis and cartilage
regeneration in vivo [136]. Other bioactive molecules like IGF-1 and FGF-1 encapsulated in bio-scaffolds,
were reported to accelerate the repair process ex vivo and in vivo [137,252–255].

Current clinically practiced methods to reduce pain, increase joint lubrication, and subside
inflammation include: intra-articular injections of platelet rich plasma (PRP), hyaluronic acid,
and corticosteroids. Administering specific growth factors have also showed promise for stimulating
healing [248,249]. An early phase clinical trial [26] seem to suggest that intra-articular injections of
ASCs induce a degree of cartilage regeneration, as they can differentiate along the chondrogenic
lineage [256–258]. However, ASCs maintain their chondrogenesis potential up to 15–16 passages
with diminishing efficiency to differentiate into chondrocytes, comparatively less than that of
BM-MSCs [246,259]. A clinical trial comparing the efficacy of using microfracture vs. application of
ASCs on a collagen scaffold (NCT02090140) for articular cartilage defect repair is currently ongoing.
Simultaneously, randomized phase III clinical trials are being conducted to evaluate which source
of stem cells are superior (NCT03818737). In addition, ongoing is a trial comparing the outcomes in
patients with osteoarthritis (OA) injected with fragmented adipose tissue (NCT03467919) in comparison
to the current standard treatment of treating with corticosteroid to alleviate pain. Refer to Table 2 for
more details on ongoing clinical trials.

Although studies to date suggest that the stem/progenitor cells are capable of cartilage repair, the
combination approach of using cells with different growth factors and bio-scaffolds may be beneficial
for future pre-clinical studies seeking to improve tissue repair efficacy. While facilitating the migration
of endogenous cells to areas of injury is clinically appealing from a regulatory standpoint, aging ensures
that these cells have dwindling capacity for self-renewal and healing. Unfortunately, elderly individuals
make up the largest population suffering from cartilage degeneration. Taking the road less traveled by



Bioengineering 2020, 7, 86 18 of 30

genetically modifying these cells, in order to enhance their regenerative potential, may change the
therapeutic paradigm for cartilage repair.

6. Conclusions

Skeletal tissues like bone, cartilage, tendon, and ligament are difficult to repair completely upon
injury due to their complex microenvironment. Surgical approaches to repair these damaged tissues
are widely used but due to their limitations, cell-based approaches have emerged, and they are being
tested in both pre-clinical models and in current ongoing clinical trials. The approach of stimulating
recruitment of endogenous cells to the injury site is preferable and advantageous in order to avoid
donor site morbidity and graft/cell rejection that is associated with use of exogenous cell-based
approaches detailed here. Unfortunately, in the aging population, the existing native stem/progenitors
may have diminished capacity for proliferation and repair, hence the use of exogenous cells may be
preferable. An intriguing solution that should be more deeply explored in the future is to combine
these approaches—by administering both exogenous cells and growth factors that will also help recruit
native cells to aid in repair.
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