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None of the clinically relevant gene expression signatures available for

breast cancer were specifically developed to capture the influence of the

microenvironment on tumor cells. Here, we attempted to build subtype-

specific signatures derived from an in vitro model reproducing tumor cell

modifications after interaction with activated or normal stromal cells. Gene

expression signatures derived from HER2+, luminal, and basal breast can-

cer cell lines (treated by normal fibroblasts or cancer-associated fibroblasts

conditioned media) were evaluated in clinical tumors by in silico analysis

on published gene expression profiles (GEPs). Patients were classified as

microenvironment-positive (lENV+ve), that is, with tumors showing

molecular profiles suggesting activation by the stroma, or microenviron-

ment-negative (lENV�ve) based on correlation of their tumors’ GEP with

the respective subtype-specific signature. Patients with estrogen receptor

alpha (ER)+/HER2�/lENV+ve tumors were characterized by 2.5-fold

higher risk of developing distant metastases (HR = 2.546; 95% CI: 1.751–
3.701, P = 9.84E-07), while lENV status did not affect, or only suggested

the risk of distant metastases, in women with HER2+ (HR = 1.541; 95%

CI: 0.788–3.012, P = 0.206) or ER-/HER2� tumors (HR = 1.894; 95% CI:

0.938–3.824; P = 0.0747), respectively. In ER+/HER2� tumors, the lENV

status remained significantly associated with metastatic progression

(HR = 2.098; CI: 1.214–3.624; P = 0.00791) in multivariable analysis

including size, age, and Genomic Grade Index. Validity of our in vitro

model was also supported by in vitro biological endpoints such as cell

growth (MTT assay) and migration/invasion (Transwell assay). In vitro-

derived gene signatures tracing the bidirectional interaction with cancer

activated fibroblasts are subtype-specific and add independent prognostic

information to classical prognostic variables in women with ER+/HER2�
tumors.
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1. Introduction

Breast cancer (BC) is the most frequently diagnosed

malignancy and the leading cause of cancer-related

death in women after lung cancer (Siegel et al.,

2016). Clinical breast tumors are very heterogeneous

with at least three subtypes with distinct biological

features characterized by different clinical outcome

(Parker et al., 2009). Approximately 90% of breast

tumors are diagnosed at an early stage; nonetheless,

still about 30% of women eventually relapse, depend-

ing on lymph nodal status and the tumor molecular

features. This has prompted the introduction of adju-

vant treatments which, as recommended by earlier

guidelines (Harris et al., 2007), are guided by single

biomarkers such as estrogen and progesterone recep-

tors (ER and PgR) and HER2 or by gene panels, as

more recently recommended (Harris et al., 2016), but

still lead to treatment of a large fraction of women

who would have never relapsed, with consequent

morbidities, systemic toxicities, and increased costs

for the health system. More recently, the results from

the MINDACT trial addressed the overtreatment

issue by identifying a large group of women for

which 5-year distant metastasis-free survival was good

even regardless of adjuvant chemotherapy administra-

tion (Cardoso et al., 2016), hopefully opening a new

era when women might be spared unnecessary treat-

ment based on the genomic profile of their tumors

(Schmidt, 2016).

The behavior of tumor cells depends on their intrin-

sic features and on the interaction with the microenvi-

ronment composed by the basement membrane and

the surrounding stroma, which is predominantly con-

stituted by fibroblasts (Buchsbaum and Oh, 2016;

Cunha, 1994; Donnarumma et al., 2017; Howlett and

Bissell, 1993; Soysal et al., 2015), but also contains dif-

ferent populations of immune cells. Depending on

their proximity to the tumor cells, fibroblasts undergo

phenotypic and functional modifications becoming ‘ac-

tivated myofibroblasts’ (CAFs). This creates a sus-

tained fibrosis and wound healing response leading to

a desmoplastic reaction which is in fact frequently

observed in advanced breast carcinomas (Dvorak

et al., 1981; Luo et al., 2015). Indeed, fibroblasts and

their activation represent a considerable part of the

host reaction in response to the local damage caused

by the emerging cancer cells (Casbas-Hernandez et al.,

2011; Kalluri, 2016).
Contrary to their normal counterparts, CAFs

express several mesenchymal markers, such as a-
smooth muscle actin (a-SMA), fibroblast-activation

protein (FAP), and vimentin, have an increased rate of

proliferation, produce distinct ECM proteins, and pre-

sent an increased synthesis and release of several

cytokines and growth factors (Gabbiani, 2003; Kalluri

and Zeisberg, 2006). The reciprocal communication

between cancer cells and fibroblasts is mainly mediated

by the paracrine action of cytokines and growth fac-

tors: Among those, IL-6 has already been identified as

main actors in such an interaction. IL-6 level, an

important pro-inflammatory cytokine mainly released

by CAF, correlates with advanced tumor stage

(Kozlowski et al., 2003), increased number of meta-

static sites (Salgado et al., 2003), and poor prognosis

(Bachelot et al., 2003; Salgado et al., 2003; Zhang and

Adachi, 1999). This cytokine allows the normal fibrob-

lasts to acquire the ‘activated’ phenotype (Giannoni

et al., 2010).

Recently collected evidences provided an insight into

the molecular mechanisms underlying interaction with

the microenvironment, showing that fibroblasts affect

many aspects of cancer cell behavior including prolifera-

tion, survival, angiogenesis, invasion, metastasis, and

drug resistance (Wadlow et al., 2009), ultimately influ-

encing the clinical outcome in breast cancer patients

(Egeblad et al., 2005; Merlino et al., 2016). Interestingly,

fibroblasts from different patients, from negative and

positive lymph nodes (Riedel et al., 2016 and Santos

et al., 2011), or from different anatomical sites (Wadlow

et al., 2009) had a distinct effect on cancer cells.

These observations allowed us to hypothesize that

searching in clinical tumors molecular alterations con-

sequent to the interaction with the microenvironment

might allow the identification of a signature recapitu-

lating the microenvironment effect and informing on

prognosis. We therefore investigated the context-speci-

fic interactions of tumor cells with components of

tumor microenvironment by in vitro models using

breast cancer cell lines with distinct molecular sub-

types. The in vitro model was used to generate three

subtype-specific microenvironment gene expression sig-

natures (lENV) which were tested in different clinical

settings by resorting to published transcriptomic data-

sets and demonstrated a prognostic value in the lumi-

nal context. To further support the validity of the

model, we also report results on preclinical experi-

ments investigating the biological effects of the tumor–
microenvironment interaction.

2. Materials and methods

2.1. Experimental models

Human breast cancer cell lines (BCCLs) MCF7,

SkBr3, MDA-MB-231, MDA-MB-361, MDA-MB-468,
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BT20, ZR75.1, T47D, and BT474 were purchased

from American Type Culture Collection (ATCC) and

cultured in Dulbecco’s modified Eagle’s medium

(Lonza, Slough, UK) supplemented with 5% fetal

bovine serum (Lonza). The human fibroblast cell line

NHDF (NAF), derived from human normal derma

(Lonza), and a cancer-associated fibroblast (CAF) cell

line, kindly provided by Bussolino, were cultured in

fibroblast basal medium (FBM) supplemented with

Fibroblast Growth Medium-2 (FGM-2) Bullet kit (Lon-

za), containing 2% FBS, 0.1% insulin, 0.1% GA-1000,

and 0.1% FGF. Cell lines were cultured at 37 °C in

95% humidified air in the presence of 5% CO2, and cell

vitality (≥ 95%) was assessed by trypan blue exclusion

assay before starting experiments. Authentication of cell

lines by STR DNA profiling analysis was performed by

the Genomic Core Facility at Fondazione IRCCS Isti-

tuto Nazionale Tumori (INT) before starting the experi-

ments. For all ATCC cell lines, passage numbers of the

original vials were available. Experiments were run

thawing one vial from a cell bank prepared at the time

of cell line purchase within two passages from the origi-

nal one. All experiments were run within 5 to 10 pas-

sages from thawing of our cell bank vial. Our

laboratory adopts a Mycoplasma contamination testing

policy using an ELISA approach (MycoAlert myco-

plasma detection kit; Lonza).

2.2. Conditioned medium collection

For collection of conditioned medium (CM), 550 000

fibroblasts (NAFs or CAFs) were plated in F25 flask,

in DMEM F/12 5% FBS + FBM 2% FBS medium at

a ratio 1 : 1 (hereafter referred to as MIX medium).

After 24 h, the medium was replaced with 7 mL of

serum-free MIX medium and was collected at 72 h.

CMs by NAFs and CAFs were clarified by centrifuga-

tion at 1400 9 g for 3 min and used to treat for 72 h

each BCCL plated in 24-well plates (Corning) at a

density of 150 000 cells.

2.3. Invasion and migration assays

Invasion and migration assays were performed in 24-

well plates using 6.5-mm TranswellTM with 8.0-lm Pore

Polycarbonate Membrane Insert (Costar, Corning Life

Science, NY, USA). See Doc. S1 for a detailed

description of the assays.

2.4. Cell growth assay

BCCLs were seeded on the bottom of 96-well plates at

7 9 103 cells/well in 150 lL of serum medium and

incubated at 37 °C in a humidified atmosphere of 95%

air and 5% CO2. After 24 h, the medium was removed

and the cells were washed with PBS to completely

eliminate serum before treatment with CM. Cells were

grown for 6 days, and cell growth was evaluated by

MTT assay (see Doc. S1 for more details).

2.5. Cytokine quantification by ELISA

Determination of IL-6 and IL-8 concentration in the

CM obtained from cocultures of BCCLs with NAF

and CAF was performed by Quantikine� High Sensi-

tivity ELISA (R&D Systems, Abingdon, UK).

2.6. mRNA expression profiling

Total RNA was isolated from all BCCLs, treated for

24 h with CM derived from NAF/CAF, using Qiazol

(Qiagen, Valencia, CA, USA). For microarray

hybridization, 300 ng of total RNA was reverse-tran-

scribed, labeled with biotin, and amplified overnight

(14 h) using the Illumina RNA TotalPrep Amplifica-

tion kit (Ambion, Austin, TX, USA) according to the

manufacturer’s protocol. We collected primary data

using the supplied scanner software, and the microar-

ray raw data were obtained using ILLUMINA BEADSTUDIO

3.1.3.0 software and processed using the lumi Biocon-

ductor package (Riedel et al., 2016). After quality con-

trol, the robust spline normalization was applied on

log2-transformed data, and probes with a detection

P < 0.01 in at least one sample were selected. For each

gene, the probe with the highest detection rate was

chosen, or with equal detection rates, the one with the

highest interquartile range. Raw and processed data

were deposited to the Gene Expression Omnibus data

repository (Barrett et al., 2011) with ID GSE70884.

2.7. Analysis of transcriptomic data

On data obtained from BCCLs, class comparison anal-

ysis was performed using the limma Bioconductor

package (R version 2.15.2; Du et al., 2008), and a

two-tailed P-value < 0.0001 was considered as

statistically significant. A biological cutoff was set for

identification of differentially expressed (DE) genes by

considering only FC < 0.67 or FC > 1.5. At a P-

value = 0.0001, 2.2 genes are expected to be deemed as

DE by chance.

Gene set enrichment analysis was performed using

GSEA (Subramanian et al., 2005). A custom collection

including canonical pathway (Kegg, Biocarta, and

Reactome) and gene ontology terms was tested on

the gene list ranked according to t-statistic values
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obtained from class comparison analysis. Terms with

FDR < 0.05 were considered significant.

Nine publicly available datasets downloaded from

the Gene Expression Omnibus website (Barrett et al.,

2011) or ArrayExpress website (Rustici et al., 2013)

were collected and categorized as follows: PROGNOS-

TIC collection includes a total of 826 gene expression

profiles of primary-node-negative breast cancer from

patients not receiving systemic treatment, and TAM

and CHEMO collections include a total of 685 and

537 gene expression profiles of primary tumors from

patients receiving adjuvant endocrine therapy or

chemotherapy, respectively (Callari et al., 2016).

All collected gene expression data were derived from

the Affymetrix GeneChip Human Genome U133A or

U133 Plus 2.0 platforms. Raw signals were imported

using affy Bioconductor package (Gautier et al., 2004)

and processed as previously described (Callari et al.,

2016).

Patients were subdivided into three subtypes based

on ESR1 and ERBB2 expression levels in a way simi-

lar to that described in Bianchini et al. (2010):

ESR1�/ERBB2� (roughly corresponding to basal-like

subtype), ESR1+/�/ERBB2+ (roughly corresponding

to HER2+ enriched subtype), and ESR1+/ERBB2�
(roughly corresponding to luminal A and B subtypes).

The NM_000125 (probeset 205225_at) and

NM_001005862 (probeset 216836_at) reference

sequences were considered as reporters for ESR1 and

ERBB2, respectively, and the threshold values were

defined based on the strong bimodal distribution

observed (Callari et al., 2014).

2.8. Statistical analysis

A major endpoint of this study was to assess the asso-

ciation between microenvironment signatures specific

for ER+/HER2�, HER2+, and ER�/HER2� BCCLs

and disease-free survival in the series of 2048 patients

belonging to the PROGNOSTIC, TAM, and CHEMO

datasets (Callari et al., 2016) and classified in the three

different subtypes. Each signature was dichotomized as

described in Results and investigated in the corre-

sponding breast cancer subtype; Kaplan–Meier curves

were plotted using the same cutoff, and survival differ-

ences were estimated by using the log-rank test. Uni-

variable and multivariable Cox proportional hazards

regressions, as implemented in the survival package (R

version 2.15.2), were used to correlate subtype-specific

lENV signature with clinical outcome in the patient

collection. Proportional hazard assumptions were eval-

uated using a goodness-of-fit testing procedure based

on Schoenfeld residuals (Schoenfeld, 1982).

Data showing the biological effects on BCCLs of

CAF/NAF CM treatment are reported as mean

values � standard deviation from at least three

independent experiments, and statistical analysis was per-

formed by two-tailed Student’s t-test. P-values < 0.05

were considered statistically significant.

3. Results

The role of the microenvironment in modulating

tumor progression was studied in BCCLs belonging to

different subtypes after paracrine interaction with

NAFs and CAFs.

Genes specifically modulated by CAFs were used to

derive three subtype-specific gene signatures, which

were tested in public gene expression datasets of pri-

mary tumors for their association with clinical out-

come. In parallel, microenvironmental effects on cell

growth, migration, and invasion were evaluated in a

subset of cell lines by functional assays. An outline of

the different phases of the study is reported in Fig. 1.

All cell line experiment results were derived from bio-

logical independent triplicates.

3.1. Transcriptome alterations of BCCLs after

interaction with fibroblasts

The interaction of the ‘normal’ (represented by NAF

cells) and activated (represented by CAF) stromal

compartments with the tumor was modeled by treating

epithelial cell lines with culture media conditioned by

fibroblasts. The paracrine effects exerted by fibroblasts

on the epithelial cells were evaluated at transcriptome

level by running gene expression profiles in nine cell

lines, three basal-like (including the two basal-A-like

cell lines MDA-MB-468 and BT20 and the basal

B-like/claudin-low cell line MDA-MB-231), three

HER2+ (SkBr3+; BT474; and MDA-MB-361), and

three luminal cell lines (T47D; MCF7; and ZR75.1),

after treatment with either CAF or NAF CM for 72 h.

Molecular subtype of cell lines was attributed accord-

ing to Neve et al. (2006) and Heiser et al. (2012).

By class comparison approaches, CAF vs NAF

CM-induced gene modulations were investigated at

subtype level. The number of differentially expressed

(DE) genes, identified at the same significance thresh-

olds (P-value < 1E-04 and FC < 0.67 or FC > 1.5),

was higher in luminal and HER2+ subtypes (69 and

114 genes, respectively) compared to basal-like cell

lines (10 genes). Furthermore, in each cell group the

majority of DE genes were defined as upregulated

rather than downregulated (Fig. 2A). The complete

gene list is provided in Doc. S1 and includes both
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DE genes derived from class comparison of CAF vs

NAF (used for deriving our signature) and DE

genes in CAF vs serum-free control medium and

NAF vs serum-free control medium (included for

completeness).

As a next step, we evaluated common and sub-

type-specific altered pathways by performing gene

set enrichment analysis (GSEA) on the genes identi-

fied by class comparison. Genes were ranked with

respect to t-statistics obtained from class compar-

ison analysis. The specific enrichment for function-

ally related genes was tested across a collection of

1843 curated gene sets including the canonical path-

ways (Kegg, Biocarta, and Reactome, included in

C2 collection) and gene ontology terms (C5 collec-

tion). By this analysis, pathways positively or nega-

tively associated with CAF CM (vs NAF CM)

treatment were identified. To attain a biological

interpretation of these findings, gene sets used for

GSEA were subgrouped into different categories

linked with specific pathways or with biological

functions (Fig. 2B).

Several pathways, such as interferon signaling, IL-6,

IL-12 and IL-23 signaling, Toll-like receptor pathway,

pathways related to inflammation, and metabolism of

carbohydrates, were positively enriched in both

HER2+ and luminal subtypes. Among pathways posi-

tively enriched in luminal and basal subtypes, we

observed the complement cascade and tumor necrosis

factor pathways. No common pathway was observed

between HER2+ and basal subtypes.

In HER2+ cell lines, we identified a positive enrich-

ment for lipid metabolism and oxidoreductase activity,

whereas in luminal subtype, JAK–STAT signaling and

NF-jB pathways were positively enriched. Only in the

basal subtype, the stimulation with CAF CM (vs NAF

CM) caused a negative enrichment of lipid and amino

acid metabolism.

3.2. Identification of subtype-specific

microenvironment signatures (lENV)

Differentially expressed genes identified by class com-

parison analysis between luminal HER2+ and basal

BCCLs treated with CM from CAF or from NAF

were used for building three different microenviron-

ment signatures representative of stromal effect on

breast cancer cells belonging to the three different sub-

types (lENVlum, lENVHER2, and lENVbasal). The ref-

erence levels for each subtype-specific signature were

obtained by calculating the mean expression of DE

genes in BCCLs representative of the specific subtype,

treated with CM obtained from CAFs. These values

were then used to classify individual clinical samples

with respect to the degree of microenvironment-related

gene stimulation (hereafter referred to as lENV sta-

tus).The ‘microenvironment status’ of clinical samples

was defined by Spearman’s correlation between defined

Fig. 1. Workflow of the analysis.
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subtype-specific signatures and the gene expression

levels in patients with the corresponding tumor

subtype. Tumors with correlation value higher

than 0 were classified as ‘microenvironment-positive’

(lENV+).
To remove the dependence on magnitude of gene

expressions between different datasets used

(experimental data and case series), each collection

was mean-centered by subtracting from expression

value of each gene its average signal of all samples on

the platform.

Before assessing the clinical relevance of the identi-

fied signatures, their overlap with previously described

microenvironment-related signatures was evaluated. To

Fig. 2. Effects of microenvironment upon gene expression profile of breast cancer cell lines (BCCLs). (A) Volcano plots for differentially

expressed genes between BCCLs treated with conditioned media (CMs) from activated fibroblasts and BCCLs treated with conditioned

media from normal fibroblasts. The green and red boxes respectively indicate down- and upregulated genes using as significance

thresholds P < 0.0001 and FC < 0.67 or FC > 1.5. (B) Pathways significantly enriched after treatment with BCAF CM (respect to NHDF

CM) in each subtype. Significantly enriched gene sets were identified by GSEA and grouped based on biological function. The lowest

FDR is reported for each group using a color code. Red boxes indicate positively enriched pathways (dark and light red indicate

FDR < 0.001 and 0.001 ≤ FDR < 0.005, respectively); green boxes indicate negatively enriched pathways (dark and light green indicate

FDR < 0.001 and 0.001 ≤ FDR < 0.005, respectively). All gene expression results refer to biological independent triplicates for each test

condition.
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such a purpose, we considered five signatures among

those described in Giussani et al. (2015), namely the

signatures by Chang et al. (2004), by West et al.

(2005), by Helleman et al. (2008), by Farmer et al.

(2009), and by Bergamaschi et al. (2008). The observed

lack of overlap between our microenvironment-related

signatures and published data proved their novelty

(Table S1).

3.3. Validation of lENV signatures by association

with prognosis in publicly available datasets

The relevance of each lENV signature was evaluated

in publicly available datasets with known clinical out-

come. The pure prognostic relevance was explored

exploiting the so-called PROGNOSTIC dataset.

Percentages of patients defined as lENV-positive were

different between the subtypes (43% among patients

with ER+/HER2� tumors, 64% among patients

with HER2+ tumors, and 79% among patients with

ER�/HER2� tumors, P < 0.00001).

For each subgroup of patients (Table S2), Kaplan–
Meier curves were plotted (Fig. 3). Women bearing

ER+/HER2� tumors, defined as lENV+ve, showed a

reduced DMFS compared to those with lENV�ve

tumors (P = 9.84E-07) and a more than 2.5-fold

higher 10-year recurrence risk. A similar finding,

although of marginal statistical significance (P =
0.0747), was obtained for ER�/HER2� tumors, where

the 10-year recurrence risk was still almost twofold

higher in patients with lENV+ve tumors, although the

wide 95% confidence interval does not significantly

support the relevance of this finding. Conversely, in

women with tumors classified as HER2+, DMFS

curves were not affected by the lENV signature.

The subtype dependence of the generated lENV sig-

natures on DMFS was tested by univariable and sur-

vival curves analyses employing each of the signatures

out of their subtype context. Data are reported in

Fig. S1. For all the explored combinations, DMFS

proved to be unaffected by lENV signatures unrelated

to the specific subtype.

As shown in Table 1, the luminal lENV signature

maintained its independent prognostic significance on

DMFS in women with ER+/HER2� tumors even in the

presence of well-known prognostic factors such as size,

age (evaluated as dichotomous variables), and Genomic

Grade Index, GGI (Sotiriou et al., 2006) (HR = 2.098;

CI: 1.214–3.624; P = 0.00791). As GGI did not satisfy the

proportional hazard assumptions (Table S3), in the Cox

regression the GGI-by-time interaction was included.

Finally, we tested whether the women with

lENV+ve tumors were not characterized by a worse

prognosis due to an overlap with luminal B tumors.

Using the PAM50 signature (Parker et al., 2009), we

classified patients of our prognostic dataset into lumi-

nal A and luminal B. Logistic regression of the lENV

signature using the luminal A/B classification as

dependent variable did reveal a statistically significa-

tive association (OR = 0.04; P < 0.001), but with

lower lENV metagene levels in the luminal B group

than in the luminal A group. This result does not sup-

port the possibility that women with lENV+ tumors

have a worse prognosis due to an enrichment in lumi-

nal B subtype.

As luminal B tumors are distinguished from lumi-

nal A tumors mainly due to high proliferation, it

also suggests that proliferation is not the main

driver for the prognostic relevance of the lENV

signature.

We next evaluated the performance of our lENV

signatures for luminal tumors with respect to treat-

ment, using the CHEMO and TAM collections as

described in Materials and methods. In 189 women

belonging to the CHEMO dataset, the 10-year HR for

developing distant metastases was unrelated to the

lENV signature (HR = 1.06; 95% CI 0.58–1.95,
P = 0.853). Similar results were observed in 523

women receiving adjuvant treatment with tamoxifen

(HR = 1.40; 95% CI 0.93–2.10, P = 0.107).

3.4. In vitro assay for investigating the

interaction of breast cancer cell lines and

fibroblasts

Microenvironment–cancer cell interactions were stud-

ied from a functional point of view by focusing on one

cell line as representative of each subtype: SkBr3 cells

for HER2+ subtype, T47D for luminal subtype, and

MDA-MB-468 for basal subtype.

All the collected CMs were characterized for their

content of two selected cytokines (IL-8 and IL-6)

using an ELISA kit. Figure S2 reports the results

summarized in a heat map to simplify comparisons.

When grown alone, SkBr3 and T47D and the nor-

mal fibroblasts, NHDF, did not release in the CM

neither IL-8 nor IL-6, whereas on the opposite, the

basal A MDA-MB-468 cells and the CAF cells

released high levels of both interleukins. The direct

interaction of NAF with the two T47D or SkBr3

cell lines caused an increased release of interleukins,

especially for IL-6. The release was even higher in

the case of interaction with CAF. The interaction of

MDA-MB-468 with normal or activated fibroblast

did not modify the release of IL-6 and IL-8 already

released at high levels by all of these cells when
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separately cultured. Therefore, whereas the reported

results do not allow identification of which cell line

is responsible for the increased interleukin release,

they clearly show that the tumor microenvironment

is definitely modified with respect to its cytokine

content upon an interaction between tumor and stro-

mal cells (especially if activated; Fig. S2).

To investigate with more detail the effect of NAF

and CAF on BCCL, we set up biological assays for

assessing growth in cells treated with CM and

Transwell experiments for migration and invasion

(Fig. 4).

Culture media conditioned by NAF or CAF signifi-

cantly (P < 0.005) stimulated SkBr3 and T47D

growth, evaluated at 7 days by MTT assay. Different

from the HER2+ and luminal cell lines, the CM of

both NAF and CAF did not increase, but reduced

(P < 0.005) the growth of MDA-MB-468 (Fig. 4A).

The migration and invasion capacity of BCCLs,

upon the interaction with fibroblasts, was evaluated in

Transwell heterotypic cocultures, seeding the fibrob-

lasts on the bottom of the well and the tumor cells

inside the TranswellTM.

Migration and invasion of SkBr3 were significantly

stimulated by both NAF and CAF (Fig. 4B). For

both the evaluated endpoints, the effect exerted by

CAFs was stronger compared to NAFs, in keeping

with the cytokine release results (Fig. S2).Treatment

with NAF or CAF CM also increased the migration

(P < 0.0005) and invasion (P < 0.05) of T47D cells

(Fig. 4C), whereas the basal A cell line MDA-MB-

468 positively reacted to the interaction with CAFs,

Fig. 3. Kaplan–Meier curves comparing distant metastasis-free

survival (DMFS) according to lENV status defined using subtype-

specific lENV signatures. (A) patients with ERa+/ERBB2-, (B)

patients with ERBB2+ tumors, and (C) patients with ERa-/ERBB2-

tumors. The number of patients in each group at each time is

reported. For each comparison hazard ratio (HR), 95% CI and P-

value are reported.

Table 1. Multivariable Cox regression analysis in lymph-node-

negative untreated patients with ESR1+/ERBB2- tumors (297

patients, 53 unfavorable events)

Variable HR (95% CI) P-value

lENV (+ve, �ve) 2.098 (1.214–3.624) 0.00791

Age (> 50, ≤ 50) 1.334 (0.752–2.367) 0.325

Size (> 2 cm, ≤ 2cm) 2.093 (1.194–3.669) 0.00990

GGI (> 0, ≤ 0) 6.214 (3.076–12.55) 3.54E-07

GGI: gtime 0.112 (0.027–0.466) 0.00262
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but not with NAFs when migration was evaluated

(Fig. 4D). Conversely, in the case of invasion there

was a significant (P < 0.05) stimulation by NAFs and

not by CAFs.

4. Discussion

Tumors are seen as heterogeneous diseases character-

ized by the acquirement of somatic mutations and

undergoing clonal evolution (Greaves and Maley,

2012). Consequently, tumors present with deregula-

tions in numerous pathways and with a malignant

phenotype characterized by distinct gene expression

profiles. However, we know that in such a process, the

microenvironment is not a simple bystander (Hanahan

and Coussens, 2012) as it is able to modify cell shape,

tissue organization, and obviously also gene expression

and cell behavior. As in the bidirectional communica-

tion between cells and their microenvironment, fibrob-

lasts are among the main actors, although not the only

ones, we hypothesized that a gene expression signature

recapitulating such an interaction could inform on

tumor progression and predict metastatic spread. We

know however that stromal signatures derived from

Fig. 4. In vitro assays on cell growth, migration, and invasion. (A) Growth of SkBr3, T47D, and MDA-MB-468 cells upon stimulation with

conditioned medium (CM) from NAFs and CAFs. Bars represent mean optical density units (OD) as obtained from three independent

experiments by MTT assays �SD. (B–D) Migration and invasion assays of SkBr3, T47D, and MDA-MB-468, respectively, cocultured with

NAFs and CAFs. Bars represent the mean fraction of sulforhodamine-stained cells per area unit as detected by microscope examination

from three independent experiments �SD. Statistical significance of differences was evaluated by Student’s t-test. *P < 0.05; **P < 0.005,

***P < 0.0005.
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clinical tumors contain genes associated with different

subpopulations and not only fibroblasts, including

endothelial, inflammatory, and immune cells as

recently described by Winslow et al. (2015).

Being aware of the well-known association between

prognosis and molecular subtype and of the distinct

signaling pattern of each molecular subtype, we

decided to develop subtype-specific signatures rather

than a unique signature for all tumor types. We there-

fore built in vitro models, from which three distinct

cancer cell gene expression signatures specific for lumi-

nal, HER2-positive, and basal tumors were derived

and subsequently challenged as prognostic biomarkers

in clinical tumors. Whereas pure stromal signatures

have been described in the literature (Beck et al., 2008

and Finak et al., 2008), to the best of our knowledge,

no signatures reflecting the state of tumor cells upon

interaction with an activating microenvironment have

been reported.

The subtype specificity of our signatures represents

an innovation compared to literature data and high-

lights the fact that interaction with the microenviron-

ment involves activation of distinct pathways based on

biological features of tumor cells. In particular, tumors

classified as ER�/HER� do not seem to sense the

influence of an activated microenvironment and might

be in certain way considered as constitutively acti-

vated. In fact, almost 80% of tumors belonging to this

subtype were classified as lENV+ve according to the

specific signature. On the contrary, HER2+ tumor cells

are modified upon interaction with activated fibrob-

lasts, but those changes do not seem to affect progno-

sis in women with HER2+ tumors, suggesting that the

tumor-intrinsic features play a major role compared to

the microenvironment. ER+/HER2� cancer cells,

instead, sense the microenvironment activating inflam-

matory and metabolic pathways, and the resulting

transcriptional changes, when detected in clinical

tumors, are associated with a grim prognosis for

women with ESRI+/ERBB2� tumors. ER+/HER2�
tumors appear to be therefore not only estrogen-

responsive but also ‘microenvironment-sensitive’.

Nonetheless, in women with such tumors in the pres-

ence of either anti-estrogens or standard chemotherapy

treatment, differences in risk of metastasis as a func-

tion of microenvironment signature were not observed.

We might speculate that the lENV signature has a

prognostic relevance rather than predictive relevance;

however, in the absence of randomized trial with a

treatment and a control arm, no definitive conclusion

can be drawn on its predictive role.

The specificity of our lENV signatures was also

supported by their complete lack of prognostic

relevance out of their subtype context. A strength

point in our approach comes from the successful way

of integrating previous knowledge from the literature

(van’t Veer et al., 2002) on the biological and clinical

differences between breast tumors in the context of

new prognostic studies. This goes in the direction of

searching a progressive refinement of prognostic tools

by embedding previous knowledge to facilitate clini-

cally relevant achievements. In early-stage breast can-

cer, therapeutic planning considers clinicopathological

variables as risk predictors, but is guided by subtype

for the optimal treatment choice. Despite optimal

matching of patient groups with treatments based on

their tumor subtype, still a relevant percent of patients

receive unnecessary treatments due to prognostic

heterogeneity and could instead be spared the toxicity

(Callari et al., 2016; Cardoso et al., 2016; Harris et al.,

2016; Sparano et al., 2015). This problem, which is at

the heart of the recently published results of large tri-

als (MINDACT), has so far been addressed using

prognostic signatures, however without specifically tak-

ing into account the important contribution of the

stroma.

Nonetheless, the importance of the microenviron-

mental contribution to refine tumor-derived prognostic

signatures and classic clinic–pathologic prognostic fac-

tors has already been reported in the past. For

instance in the study by Finak et al. (2008), a stroma-

derived prognostic predictor (SDPP) obtained from

laser-capture-microdissected breast tumors was shown

to stratify patients also when considering nonmicrodis-

sected tumors independently of ER and HER2 status.

Though, the SDPP by Finak and colleagues does cap-

ture a different dimension of the stromal prognostic

space compared to the lENV signature, as SDPP con-

tains genes associated with proficient immune, neo-

angiogenic, and hypoxic responses.

The choice of only two representative cells lines for

NAFs and CAFs might represent a limitation in our

study. We would however like to point out that our

NAF and CAF representatives were chosen due their

biological reliability. In fact, our CAF cells overex-

press the same genes and the same gene categories as

do activated fibroblasts derived from other tumor

types such as prostate and lung (Gandellini et al.,

2015), suggesting a common path in stromal activation

in solid tumors. Furthermore, we have previously

observed that the tumor subtype does not impact the

pattern of paracrine-mediated activation of fibroblasts

(Merlino et al., 2016), thus suggesting that selection of

fibroblasts isolated from clinical tumors with different

molecular phenotypes is not strictly necessary to

obtain a reliable gene signature.
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The clinical relevance of our signatures, which is

demonstrated in public datasets, was in a sense both

predicted and supported by our in vitro data. In fact,

in keeping with the weak clinical relevance of the

lENV signature in ER�/HER2� tumors, we did not

observe neither stimulation of cell growth, migration,

and invasion nor modification in the cytokine milieu

of MDA-MB-468 cells upon interaction with fibrob-

lasts. Functional modifications have been instead

observed for luminal and for HER2-+ve cells. Note-

worthy, SkBr3 cells responded even better than T47D

cells to paracrine stimulation exerted by fibroblasts, in

terms of growth, migration, and invasion, despite the

fact that the HER2-specific lENV signature did not

discriminate distant metastasis risk. A possible inter-

pretation for this finding relates to a major role of

other microenvironmental components in this tumor

type, such as immune cells (Rody et al., 2009). The

same observation could be applied also to ER�/

HER2�, a subtype where the role of the immune

response is well known (Rody et al., 2009; Schmidt

et al., 2008; Teschendorff et al., 2007) and has also

been recently reconfirmed by our group (Callari et al.,

2016). Conversely, the importance of the stromal com-

partment in the luminal subtype has been reported

also by other groups (Dennison et al., 2016).

The partial success in developing a distant metasta-

sis risk predictor in ER�/HER2� tumors might also

represent a limitation of this study. In the case of

HER2+ tumors, the poor performance of the lENV

signature might be related to intrinsic properties of

HER2+ tumors as well as to the fact that within the

HER2+ group no distinction is performed between

ER+ and ER� cases. This applies both to the clinical

tumors and to the cell lines chosen as representatives.

Finally, as in this study only paracrine-mediated

effects have been considered, we cannot exclude that

in the case of HER-2-enriched or of basal tumors, a

direct contact between heterotypic cells is necessary to

elicit stimulation by the stroma.

The novelty of our approach lies instead in having

shown that the bidirectional interaction with

fibroblasts is subtype-specific and that in the ER+/
HER2� subtype the tracking of such an interaction

has prognostic relevance. Future, more clinically

addressed studies should however focus on combining

such interaction-focused signature with pure tumor-

focused signatures.
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