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Abstract  12 

Background: Understanding the geographic distribution of Rickettsia montanensis infections in 13 

Dermacentor variabilis is important for tick-borne disease management in the United States, as 14 

both a tick-borne agent of interest and a potential confounder in surveillance of other rickettsial 15 

diseases. Two previous studies modeled niche suitability for D. variabilis with and without R. 16 

montanensis, from 2002-2012, indicating that the D. variabilis niche overestimates the infected 17 

niche. This study updates these, adding data since 2012. 18 

Methods: Newer surveillance and testing data were used to update Species Distribution Models 19 

(SDMs) of D. variabilis, and R. montanensis infected D. variabilis, in the United States. Using 20 

random forest (RF) models, found to perform best in previous work, we updated the SDMs and 21 

compared them with prior results. Warren’s I niche overlap metric was used to compare 22 

between predicted suitability for all ticks and ‘pathogen positive niche’ models across datasets.   23 
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Results: Warren’s I indicated <2% change in predicted niche, and there was no change in order 24 

of importance of environmental predictors, for D. variabilis or R. montanensis positive niche. 25 

The updated D. variabilis niche model overpredicted suitability compared to the updated R. 26 

montanensis positive niche in key peripheral parts of the range, but slightly underpredicted 27 

through the northern and midwestern parts of the range. This reinforces previous findings of a 28 

more constrained pathogen-positive niche than predicted by D. variabilis records alone. 29 

Conclusions: The consistency of predicted niche suitability for D. variabilis in the United 30 

States, with the addition of nearly a decade of new data, corroborates this is a species with 31 

generalist habitat requirements. Yet a slight shift in updated niche distribution, even of low 32 

suitability, included more southern areas, pointing to a need for continued and extended 33 

monitoring and surveillance. This further underscores the importance of revisiting vector and 34 

vector-borne disease distribution maps.   35 

Keywords: Dermacentor variabilis, Rickettsia montanensis, Species distribution modeling, Tick-36 

borne disease  37 
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Introduction 38 

Species distribution models (SDMs) are increasingly utilized to estimate the geographic 39 

distribution of infectious diseases, particularly those caused by agents transmitted by arthropod 40 

vectors. The basic methodology for constructing SDMs (or ecological niche models) consists of 41 

combining species occurrence data with continuous layers of environmental predictor variables, 42 

which are fed into a modeling algorithm (Elith and Franklin, 2013; Franklin, 2010; Peterson and 43 

Soberón, 2012). The resulting model is projected onto a defined study area, yielding spatially 44 

continuous habitat suitability estimates for areas of the landscape that were not originally 45 

sampled. Species distribution modeling is an intuitive approach to delineating vector-borne 46 

disease ranges that is logistically feasible, particularly when surveillance programs or capacity 47 

for pathogen testing are limited. When faced with multiple unknowns (e.g., unknown 48 

transmission cycles, emerging novel pathogens, etc.), the distribution of vectors on the 49 

landscape are sometimes used in a public health context to approximate risk of exposure to 50 

pathogens (Lippi et al., 2021b, 2021c). Yet, it is important to differentiate between the 51 

distribution of the vectors and that of the pathogens they transmit. Vector presence is not in 52 

itself sufficient for pathogen transmission to occur. Precise delineation of geographic risk 53 

facilitates the development of targeted health policies, educational campaigns, and interventions 54 

with the potential to avert the misallocation of limited resources. 55 

The need for geographically conservative assessments of transmission risk is perhaps most 56 

evident with cosmopolitan vectors, whose broad geographic ranges may far exceed the limits of 57 

known transmission to humans. The American dog tick (Dermacentor variabilis) is a medically 58 

important arthropod vector of several zoonotic pathogens, including the causative agents of 59 

Rocky Mountain spotted fever (RMSF) (Rickettsia rickettsii) (Brumpt; Rickettsiales: 60 

Rickettsiaceae) and tularemia (Francisella tularensis) (Dorofe'ev; McCoy and Chapin; 61 

Thiotrichales: Francisellaceae). Both of these diseases can be fatal without medical 62 
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intervention, perhaps justifying medical advisories that equate risk of tick exposure with 63 

transmission risk, particularly when surveillance data are scarce, or in cases where ticks 64 

themselves act as reservoir hosts (CDC, 2022). In addition to RMSF, D. variabilis also transmits 65 

other spotted fever group (SFG) rickettsial agents, as well as R. montanensis (Rickettsiales: 66 

Rickettsiaceae), a rickettsial group agent that is suspected of causing nonfebrile rashes in 67 

humans, and has caused clinical symptoms in an animal model (McQuiston et al. 2012; 68 

Snellgrove et al. 2021). Although not included in the case definition for SFG pathogens, it is 69 

likely that R. montanensis infections may account for some of the recent increases in SFG 70 

reporting, as immunological cross-reactivity between rickettsial pathogens is frequently 71 

observed with commonly used serologic tests (Abdad et al. 2018). Of note, D. variabilis has 72 

recently been proposed to be split into two species, with a western portion of the population as a 73 

distinct species, D. similis (Lado et al., 2021); however, we do not differentiate in this study.  74 

Determining the geographic risk of D. variabilis infection with R. montanensis has profound 75 

implications for the management of tick-borne diseases in the United States, as both a tick-76 

borne agent of interest and a potential confounder in the surveillance of other Rickettsial 77 

diseases. A model of the distribution of D. variabilis and R. montanensis positive samples was 78 

published by St John et al. in 2016, using MaxEnt modeling to describe and predict 79 

environmental suitability in the United States, based on data obtained through the Department 80 

of Defense (DoD) Human Tick Test Kit Program, now called the Military Tick 81 

Identification/Infection Confirmation Kit Program (MilTICK). These data were available at the 82 

time through the VectorMap online data platform (http://vectormap.si.edu/dataportal/) (St John 83 

et al., 2016). The MilTICK data were human-biting ticks submitted from U.S. military installations 84 

as part of a tick-testing program; test results were reported back to the bitten individuals, and 85 

the data were also used as passive vector surveillance. In 2021, Lippi et al. re-examined the 86 

distribution of D. variabilis and the R. montanensis infected niche in the USA, both to 87 
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understand whether predicted risk of suitability for tick encounters or infected tick encounters 88 

were distinct, and to explore and compare multiple modeling approaches for assessing the 89 

distribution of this tick vector (Lippi et al., 2021a). The 2021 study was able to leverage the 90 

original dataset used in the 2016 study, and used a refined set of environmental predictors to 91 

compare a suite of Species Distribution Model (SDM) approaches. Lippi et al. found support for 92 

an “infected niche” within the broader distribution of D. variabilis which was largely consistent 93 

across models, though the Random Forests (RF) approach (Breiman, 2001) provided the best 94 

performing models, given the available data (Lippi et al., 2021a). Though somewhat limited in 95 

terms of the full geographic distribution of D. variabilis ticks (i.e., few locations were reported 96 

from the tick’s southern extent), the dataset used in these studies provided a rare opportunity to 97 

directly assess the distribution of pathogens within vectors, as every individual tick collected had 98 

been tested for R. montanensis as part of an extensive passive surveillance network. Both of 99 

these studies demonstrated that D. variabilis ticks infected with R. montanensis had estimated 100 

geographic distributions that were considerably restricted compared to that of D. variabilis 101 

alone, thus supporting an “infected niche” that exists as a subset of the vector’s full range. 102 

In the current study, we revise the D. variabilis distribution maps using occurrence data updated 103 

with novel surveillance points collected since 2012, and further refine the environmental 104 

variables according to current best practices using the RF approach (Escobar et al., 2014; 105 

Valavi et al., 2021). We explore whether the additional data impact the estimated suitability 106 

distribution, the relative importance of environmental input variables, and mapped prediction 107 

outputs.     108 

Methods 109 

Tick Surveillance Data – Two previous studies on D. variabilis in the United States were 110 

conducted using occurrence locations recorded in the continental United States from 2002 to 111 
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2012, where ticks were tested for R. montanensis as part of MilTICK, and are described in St 112 

John et al. (2016) and Lippi et al. (2021) (Lippi et al., 2021a; St John et al., 2016). 113 

Georeferenced data were openly available through VectorMap 114 

(http://vectormap.si.edu/dataportal/), a project of the Walter Reed Bioinformatics Unit (WRBU), 115 

housed at the Smithsonian Institution Washington DC (St John et al., 2016). All ticks submitted 116 

through MilTICK are tested for rickettsial pathogens via PCR as previously described 117 

(Milholland et. al., 2021, Stromdahl et al., 2011), providing information on infection status (i.e., 118 

true presence or absence) for the entire dataset. Exposure locations were determined by asking 119 

MilTICK participants to self-report where the tick bite was most likely acquired, accounting for 120 

travel history. If no separate information on tick-bite location was submitted, ticks were assumed 121 

to be acquired on or near the military installation from which the tick was submitted.  122 

New records of D. variabilis reported and tested for R. montanensis through MilTICK since 2012 123 

through 2021 were made available for this study. These data were de-identified, and though 124 

general locality data were provided (e.g., military installation where reported, or towns and cities 125 

where ticks were collected), positional coordinates were not provided. New surveillance data 126 

were manually georeferenced for this study, following the general protocol reported in the 127 

metadata of the original dataset (i.e., 2002-2012 records) georeferenced for TickMap by the 128 

WRBU. Geographic coordinates (i.e., latitude and longitude) were assigned to records, taking 129 

the centroid of named locations found in Google Maps. Spatial uncertainty for points was 130 

established based on the spatial extent of reported locations (e.g., municipal boundaries, 131 

reported area of military installations, etc.). We excluded records where the spatial uncertainty 132 

exceeded 10km, ensuring that the spatial resolution of the St. John et al. (2016) and Lippi et al. 133 

(2021) studies was matched for all analyses. 134 

We removed duplicate records and records without pathogen testing results (n=14). Data 135 

thinning on the remaining species occurrence points was performed via the ‘spThin’ package in 136 
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R (ver. 4.1.2) (R Core Team 2019), which uses a spatial thinning algorithm to randomly remove 137 

excess occurrence locations within a specified distance threshold (Aiello-Lammens et al., 2015). 138 

This was performed for both the original data in the Lippi et al. 2021 study and the updated 139 

dataset to reduce susceptibility to geographic sampling bias, for example, when 140 

overrepresented locations erroneously drive species environmental associations due to 141 

repeated observations at discrete locations. Due to the passive nature of the tick surveillance 142 

program, it was deemed necessary to thin occurrences and minimize the potential effect of 143 

sampling bias, where locations near medical facilities and military installations may be inherently 144 

overrepresented. This process resulted in one unique, randomly selected location per 10km, 145 

and was performed on the full dataset of tick records, and on the subset of ticks that tested 146 

positive for R. montanensis. 147 

The original dataset used to build the distribution models reported in Lippi et al. 2021 was then 148 

compared to an updated dataset, reflecting new surveillance data. Because new surveillance data 149 

consisted of fewer records compared to the original study, the updated dataset was comprised of 150 

both original surveillance data and new surveillance records. Following the framework of Lippi et 151 

al. 2021, we estimated separate geographic distributions of D. variabilis, and the subset of 152 

records that tested positive for R. montanensis infections, for both the original and updated tick 153 

surveillance records. Environmental data layers used in modeling consisted of interpolated 154 

bioclimatic (bioclim) layers from WorldClim (ver. 2), and gridded soil variables (0cm standard 155 

depth) taken from International Soil Reference Information Centre (ISRIC) SoilGrids (Fick and 156 

Hijmans, 2017; Hengl et al., 2017). Gridded environmental data inputs were used at 10km 157 

resolution to match the scale of tick occurrence data. Bioclim layers with known errors (i.e., 158 

Bio8, Bio9, Bio18, and Bio19) were removed a priori, and Variance Inflation Factor (VIF) was 159 

used to control for collinearity in the remaining variables (th=10) (Escobar et al., 2014). The final 160 

set of variables used to build models included annual mean temperature (Bio1), mean diurnal 161 
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range (Bio2), temperature seasonality (Bio4), precipitation of wettest month (Bio13), 162 

precipitation of driest month (Bio14), precipitation seasonality (Bio15), soil organic carbon 163 

density (OCDENS), available soil water capacity until wilting point (WWP), and soil pH 164 

(PHIHOX). 165 

Random forests (RF) modeling, implemented in R with the package ‘sdm’, was used to estimate 166 

tick distributions, following recommendations for settings and parameters described in Valavi et 167 

al 2021 (Valavi et al., 2021). We ran 500 RF model replicates for each dataset of occurrence 168 

points (i.e., original and updated records for all D. variabilis, and original and updated records 169 

for only D. variabilis infected with R. montanensis), averaging projected model output to produce 170 

four estimated distributions. Average model accuracy metrics for each experiment were 171 

calculated to assess the predictive accuracy of SDMs against a random holdout of 25% data 172 

from each dataset, respectively. Four measures were calculated to assess model accuracy, the 173 

receiver operator characteristic (ROC) curve with area under the curve (AUC), true skill statistic 174 

(TSS), model deviance, and mean omission (i.e., false negatives). We quantified the niche 175 

overlap between averaged models with the Warren’s I index, calculated in R with the package 176 

‘spatialEco’ (Warren et al., 2008). The I statistic is an indicator of the similarity between two 177 

distributions, with values ranging from 0 (i.e., no overlap in the niche) to 1 (i.e., the niche is 178 

identical). A difference map to assess agreement in suitability predictions between the updated 179 

full dataset and infected dataset models was generated in R using the packages Raster and 180 

RasterVis by taking the difference of model output rasters and plotting them. 181 

Results 182 

Updated input surveillance data increased our sample sizes for the full dataset (original n=432, 183 

updated n=525), and for the ticks positively identified for R. montanensis infection (original 184 

n=44, updated n=63). We found that updating the input data increased the spatial extent of 185 
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predicted suitability for both the full dataset of all ticks (Figure 1 A (original) and B (updated)) 186 

and for the infected dataset (Figure 1 C (original) and D (updated)). Although we made no 187 

distinction for potential records of the newly described species D. similis, a few occurrence 188 

points were from the Western United States (original n=10, updated n=21). Model accuracy 189 

metrics for averaged RF models across the four datasets are presented in Table 1. Accuracy 190 

metrics across models indicated generally good performance, with AUC values exceeding 0.90, 191 

and TSS values greater than 0.64. Though comparable in output, averaged models made with 192 

updated data performed lower than models made with original datasets, indicated by lower AUC 193 

and TSS values, and higher deviance and omission. A Warren’s I index comparison of the 194 

original and updated dataset suitability predictions for the full and infected niche, showed they 195 

differed by less than 2% each (full dataset: full dataset =0.981, positive dataset: positive dataset 196 

=0.986). 197 

 198 
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Figure 1: Predicted habitat suitability from average output of 500 random forest models 199 

for the original (A, C) and updated (B, D) datasets for all D. variabilis data (A, B), and D. 200 

variabilis infected with R. montanensis (C, D) 201 

The updated R. montanensis positive ticks, as in the original analyses, are predicted to have a 202 

niche which is a subset of the full predicted niche (Figure 1D). The Warren’s I comparisons of 203 

the ‘infected niche’ and the full datasets for original (full:infected =0.950), and updated datasets 204 

(full:infected = 0.968) suggest that these are not dissimilar predicted niche distributions where 205 

they overlap, yet they are not capturing identical distributions. 206 

Table 1. Average model accuracy metrics for Random Forest models, using different datasets 207 

of tick occurrences. 208 

Dataset Subset AUC Deviance TSS Omission 

Original* All Ticks 0.953 0.570 0.769 0.116 

Original* Positive Ticks 0.930 0.690 0.710 0.145 

Updated All Ticks 0.918 0.742 0.692 0.154 

Updated Positive Ticks 0.905 0.812 0.643 0.179 

*data used in Lippi et al. 2021 209 

The importance of variables underlying model predictions varied across datasets, although 210 

precipitation seasonality (Bio15) was the top contributing environmental predictor in all models 211 

(Fig. 2). Mean diurnal range (Bio2) and precipitation of driest month (Bio14) were also relatively 212 

important variables in models of both the original and updated full tick datasets, though these 213 

variables did not contribute highly to the models of infected tick distributions.  214 
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 215 

Figure 2: Relative variable importance from average output of 500 random forest models for the 216 

original and updated datasets for all D. variabilis data, and D. variabilis infected with R. 217 

montanensis.  218 

To visualize the difference in predicted suitability for all ticks and that predicted for the 219 

pathogen-positive ticks, we visualized the difference in mapped suitability estimates from 220 

updated models (Fig. 3). The resulting map highlights the overprediction (redder colors) or 221 

underprediction (darker blue colors) of a model trained on all surveilled ticks, compared to one 222 

trained on R. montanensis positive ticks. Infected ticks are overpredicted by the model of all 223 

ticks along the southeastern and western peripheries of the infected tick distribution, and 224 

underpredicted to a lesser degree, along the northern border and through parts of the mid-225 

Atlantic to midwestern states (Figure 3).  226 
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 227 

Figure 3: Assessing differences in predicted suitability for an average of 500 Random Forest 228 

models for D. variabilis and those infected with R. montanesis - redder colors depict 229 

overprediction by a tick-only model, and darker blue colors, underprediction.  230 

 231 

Discussion 232 

A number of factors exist that influence SDM output, including sampling bias, choice of 233 

environmental predictors, modeling algorithm, and other user-specified inputs (Araújo et al., 234 

2019; Valavi et al., 2021). In this study, we updated previously published RF models of D. 235 

variabilis and D. variabilis infected with R. montanensis. This update was made possible by the 236 

addition of surveillance and testing data to the original dataset used. We thus explored what 237 

impact the additional data had on predictions found previously, via modeling both datasets and 238 

comparing predicted suitability with a niche overlap metric, Warren’s I, and presenting the 239 

mapped output of modeled predictions using the original and updated datasets. We additionally 240 
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presented a visualization of agreement, highlighting areas of over and underprediction of the 241 

infected niche by the overall niche prediction.  242 

Models made with both datasets were generally high-performing, and overlap indices showed 243 

that suitability predictions varied only slightly with the inclusion of novel surveillance data. The 244 

estimated range of D. variabilis primarily extends throughout the eastern United States, with the 245 

highest predicted probabilities spanning areas in the Midwest, Mid-Atlantic, and Northeast 246 

regions. The southern boundary of D. variabilis occurrence was not well captured in Lippi et al. 247 

2021, owing to limited data points from this region in the original MilTICK dataset. Although 248 

records of ticks from southern locations (e.g. Texas and peninsular Florida) exist in online 249 

repositories, these records were not included in efforts to directly compare distributions of ticks 250 

of known infection status. Notably, the predicted geographic distribution for D. variabilis extends 251 

further South in the updated model, indicated by higher probabilities of suitability in Texas and 252 

Florida. 253 

The predicted suitability distribution of D. variabilis infected with R. montanensis, or infected 254 

niche, is geographically constrained, compared to the full predicted suitability distribution of D. 255 

variabilis, regardless of data inputs. Areas of range disagreement, highlighted by the difference 256 

map, are most prominent along the southern and western peripheries of the full D. variabilis 257 

range in the eastern US, as well as on the west coast. A potential explanation for this kind of 258 

pattern is that in the more established parts of the range - i.e. the more central parts of predicted 259 

range - there may be higher R. montanensis exposure risk. For different tick-borne pathogens, 260 

and even for different species of ticks, evidence of patterns of expansion by both the vector and 261 

the pathogen, together or temporally lagged have varied (Burrows et al., 2021; Dahlgren et al., 262 

2016; Fornadel et al., 2011). This highlights the limitations inherent in using vector distribution 263 

maps as proxies for transmission risk maps directly; incorporating pathogen testing results into 264 

this type of distribution modeling can help constrain the area most likely to be important for 265 
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disease transmission exposure risk. This is particularly germane for a generalist vector such as 266 

D. variabilis, where the presence of the pathogen in question may be patchily distributed. 267 

Disagreement along the West coast may also be influenced by the inclusion of D. variabilis 268 

records from California, Oregon, and Washington. The western population of D.variabilis has 269 

recently been proposed as a new species (Dermacentor similis), and thus may have 270 

fundamentally different habitat suitability requirements (Lado et al., 2021). 271 

Dermacentor ticks are receiving increasing attention as significant vectors of zoonotic 272 

pathogens, and there have been recent calls for closer monitoring of understudied species 273 

(Lippi et al., 2021c; Martin et al., 2022). Species distribution modeling offers a framework for 274 

rapidly estimating potential distributions of vectors when ample occurrence data are available. 275 

Yet, there are considerable ramifications that may arise if models are put into public health 276 

practice without thorough assessment (Erdemir et al., 2020). It is therefore necessary to 277 

periodically review estimates of risk as new data or methods become available. However, in this 278 

study we found that an additional nine years of passive surveillance data resulted in negligible 279 

differences in distribution estimates. This points to the benefit of augmenting existing 280 

surveillance to target undersampled areas, and highlights the need to expand pathogen testing 281 

capabilities to other existing networks. Widespread, county-level surveillance for D. variabilis in 282 

the United States is currently limited (Lehane et al., 2019). Pathogens with low detection rates 283 

may particularly benefit from targeted, active surveillance strategies to delineate risk. In this 284 

study, updated passive surveillance data yielded only 19 novel spatially unique records of 285 

infected ticks after thinning. To contrast, a recent study that targeted a discrete area in Northern 286 

Wisconsin, an area of low predicted suitability in our models, successfully detected R. 287 

montanensis in D. variabilis (Vincent and Hulstrand, 2022). Focused testing efforts, particularly 288 

in locations bordering areas of range disagreement, may help resolve the limits of exposure risk 289 

and facilitate targeted monitoring efforts. 290 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2023. ; https://doi.org/10.1101/2023.01.11.523628doi: bioRxiv preprint 

https://paperpile.com/c/OTJvT6/vyjc
https://paperpile.com/c/OTJvT6/7fHQ+9Mg5
https://paperpile.com/c/OTJvT6/ayin
https://paperpile.com/c/OTJvT6/IdYG
https://paperpile.com/c/OTJvT6/J3y3
https://doi.org/10.1101/2023.01.11.523628
http://creativecommons.org/licenses/by-nc-nd/4.0/


In conclusion, infected ticks are predicted to have a distribution that is a subset of the full vector 291 

range, a finding which is consistent across original and updated data inputs. For a generalist 292 

vector such as D. variabilis, ascertaining the key areas of pathogen exposure risk within such a 293 

large range of predicted suitability, is an important potential tool for future surveillance and 294 

monitoring. Revisiting the estimation of tick distributions is a necessary endeavor, particularly as 295 

we gain more information on tick-borne transmission cycles through surveillance and laboratory 296 

studies. There are few occurrence records that establish D. variabilis at the county level 297 

throughout our predicted suitability range in the contiguous United States, pointing to a general 298 

need for increased surveillance activities (Lehane et al., 2019). Yet, placing emphasis solely on 299 

new data collection for the refinement of spatial risk assessments may not yield dramatic gains 300 

in information. This is perhaps most evident in the passive surveillance of pathogens with low 301 

detection rates. Additionally, we suggest that there is a great need to validate the data in areas 302 

identified as high risk through active surveillance, particularly where passive surveillance is 303 

lacking. Moving forward, efforts to further refine geographic risk estimates of tick-borne 304 

pathogens will benefit from targeted surveillance to resolve distributional boundaries.  305 
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