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Abstract

Motivation: Permutation tests offer a straightforward framework to assess the significance of differences in sample
statistics. A significant advantage of permutation tests are the relatively few assumptions about the distribution of
the test statistic are needed, as they rely on the assumption of exchangeability of the group labels. They have great
value, as they allow a sensitivity analysis to determine the extent to which the assumed broad sample distribution of
the test statistic applies. However, in this situation, permutation tests are rarely applied because the running time of
naı̈ve implementations is too slow and grows exponentially with the sample size. Nevertheless, continued develop-
ment in the 1980s introduced dynamic programming algorithms that compute exact permutation tests in polynomial
time. Albeit this significant running time reduction, the exact test has not yet become one of the predominant statis-
tical tests for medium sample size. Here, we propose a computational parallelization of one such dynamic
programming-based permutation test, the Green algorithm, which makes the permutation test more attractive.

Results: Parallelization of the Green algorithm was found possible by non-trivial rearrangement of the structure of
the algorithm. A speed-up—by orders of magnitude—is achievable by executing the parallelized algorithm on a
GPU. We demonstrate that the execution time essentially becomes a non-issue for sample sizes, even as high as
hundreds of samples. This improvement makes our method an attractive alternative to, e.g. the widely used asymp-
totic Mann-Whitney U-test.

Availabilityand implementation: In Python 3 code from the GitHub repository https://github.com/statisticalbiotech
nology/parallelPermutationTest under an Apache 2.0 license.

Contact: lukask@kth.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Permutation tests are frequently used for non-parametric testing and
are incredibly valuable within computational biology, with applica-
tions within genome-wide association studies (Browning, 2008;
Dudbridge and Gusnanto, 2008; Purcell et al., 2007), Pathway
Analysis (Jeuken and Käll, 2018; Subramanian et al., 2005) and ex-
pression quantitative trait loci studies (Doerge and Churchill, 1996;
Sul et al., 2015). Monte Carlo-based sampling techniques (Segal
et al., 2018) and exact tests that derive full permutation distribu-
tions are roughly the two ways to implement the permutation test.

Exact tests are traditionally seen as unattractive for large sample
sizes, as the number of permutation grows super-exponentially with
the sample size. Nonetheless, Green’s dynamic programming algo-
rithm (Green, 1977), which was made explicit by others (Pagano
and Tritchler, 1983; Zimmermann, 1985), partially overcome this
computational problem. This algorithm is significantly less compu-
tationally demanding than the naı̈ve approach. However, the exact
test’s popularity for larger sample sizes has not attracted much at-
tention in the last couple of decades. We report here on an extension
using a Graphics processing unit (GPU) implementation to compute

parallelized exact tests and found it superior to the other tested
alternatives in terms of speed and accuracy.

2 Algorithm

Here, we will describe our parallelization of the Green method to
calculate exact tests. First, in Section 2.1, we describe the main ob-
jective, perform hypothesis testing with an exact test, then a descrip-

tion of the Green algorithm in Section 2.2, and, finally, a description
of how to parallelize the algorithm in Section 2.2.

2.1 Hypothesis testing
Consider a two-sample hypothesis testing setting for central ten-

dency, i.e. we want to know if the considered response in one group
B is generally larger than in another group A.

Let xA ¼ ðxA
1 ; . . . ;xA

mÞ and xB ¼ ðxB
1 ; . . . ; xB

n Þ be two independ-
ent samples of non-negative integers valued scores from the dis-
tributions DA and DB, respectively. So, xA

i �
iidDA and xA

i 2 N0 for

1 � i � m; and xB
i �

iidDB; and xB
j 2 N0 for 1 � j � n. We also
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form the concatenation of the samples as
x ¼ ðxA

1 ; . . . ; xA
m; x

B
1 ; . . . ; xB

n Þ ¼ ðx1; x2; . . . ; xnþmÞ. Our interest is in
investigating the hypothesis H0 : DA ¼ DB versus the one-sided al-
ternative that the response in group B tends to be larger than the
response in group A. This alternative can be formalized for our
case of discrete distributions by, e.g. introducing p ¼ PrðxA <
xBÞ þ 1

2 PrðxA ¼ xBÞ and letting HA : p > 1
2 (Fay and Proschan,

2010).
A way to perform the test is to determine how extreme the

observed sum of sample xA; sobs ¼
Pm
i¼1

xA
i is under the null hypoth-

esis. Typically, one assumes a particular parametric family of distri-
butions and computes the P value of the test as the probability of
observing sobs or a more extreme value in the alternative’s direction
under the assumption that the null-hypothesis is true. However, it is
rarely possible to analytically compute this probability, and one
often has to resort to asymptotic approximations. A permutation
test approach to the testing problem is to assume instead that the
labels A and B are exchangeable under H0: Under the null hypoth-
esis the distribution of the test statistic would remain the same for
any permutation of x. However, this property would not hold under
the alternative HA (Huang et al., 2006). One can thus calculate how
frequently samples with sample sums greater or equal than sobs

appears when resampling from x.
We can formulate the P value as Prðsobs � Sjx;H0Þ, where

PrðSjx;H0Þ is the probability mass function, and S is a random
variable denoting the sum’s value in the first sample under the
permutation distribution. The computationally expensive part is
to obtain PrðSÞ which is estimated by concatenating xA and xB

to x ¼ ðxA
1 ; . . . ; xA

m; x
B
1 ; . . . ; xB

n Þ ¼ ðx1; x2; . . . ; xnþmÞ, and draw all
possible subsets of length m from x and count the number of
occurrences of all possible sums; when the numbers of occur-
rences of all possible sums are available, the distribution is
accessible.

Assume a random variable x� ¼ ðx�1; . . . ;x�mÞ, that is a randomly
sampled subset from x with j elements and its corresponding sum is

S ¼
Pm
i¼1

x�i , where S 2 ½0; smax�. Define N½s;m� to be the number of

ways we can sample subsets x� with m elements in such a way
that their sum S¼ s. Now PrðS ¼ sÞ can be expressed as the frac-
tion of ways that a subset x� can be sampled so that its sum ends
up to as S¼ s to the number of ways it can be sampled with any
sum

PrðsÞ ¼ PrðS ¼ sÞ ¼ N½s;m�
Psmax

s0¼0

N½s0;m�
; (1)

Combinatorics gives us that the denominator of the above
Equation 1 can be expressed as,

mþ n
m

� �
¼ ðmþ nÞ!

n!m!
:

The calculation of the numerator is intricate. A naı̈ve algorithm
that would exhaustively calculate the sum for each possible subset
of size m and compare it to s, for all s, would need

Oðsmax �
mþ n

m

� �
Þ ¼ Oðm � xmax � ðmþ nÞmÞ ¼ OðxmaxmmÞ cal-

culations, which becomes computational prohibitive even for mod-

erate set sizes m. However, in Section 2.2, we will discuss an

algorithm solving the problem within polynomial time.

Now, the sought P value can be calculated as,

Prðsobs � SjxÞ ¼
Xsmax

s¼sobs

N½s;m�
mþ n

m

� � ¼ Xsmax

s¼sobs

PrðsÞ: (2)

Alternatively, the same framework can be used to calculate the
mid P value (Routledge, 1994) as,

pmidðsobsÞ ¼
1

2
PrðsobsÞ þ

Xsmax

s¼sobsþ1

PrðsÞ: (3)

As mentioned above, there is no closed formula to calculate
N½s;m�. However, it is possible to develop a dynamic programming
algorithm to obtain N½s;m� (Pagano and Tritchler, 1983;
Zimmermann, 1985), described thoroughly in the next section.

2.2 Efficient calculation of N [s, m]: the Green Algorithm
A dynamic programming algorithm for calculating N½s;m� was first
presented in Green (1977) and more in detail described by others
(Gebhard and Schmitz, 1998; Zimmermann, 1985). Here, we will
give a walk-through of the algorithm, mostly to describe its parallel-
ization in Section 2.3. We also provide a simple use case of the algo-
rithm in Supplementary Note S1.

We can find a recursive expression for N½s;m� by considering a
scenario where x� is drawn instead of the full set x from a subset
xi ¼ fxhgi

h¼1 consisting of only the first i features of x. To do so; we
first need some definitions. Define Ni½s; j� as the number of ways we
can sample j elements so that their sum becomes s from a subset xi.
If we know how to calculate Ni½s; j�, we also know how to calculate
N½s; j� ¼ Ni¼mþn½s; j� ¼ N½s; j�, since fxhgmþn

h¼1 ¼ x. We also define
Mi½s; j� to be the number of ways we can sample xi so that the sam-
ple elements sum to s and including the last element xi in the sample.

We can now form a recursion of Ni½s; j� as the number of ways to
sample xi has to be equal to the number of ways to sample xi�1 with
the number of ways to sample xi that include xi. So,

Ni½s; j� ¼ Ni�1½s; j� þMi½s; j�: (4)

We can express Mi in terms of Ni�1 by noting that Mi½s; j� ¼
Ni�1½s� xi; j� 1� when xi � s, and otherwise zero. We can hence
express the recursion 4 as,

Ni½s; j� ¼ Ni�1½s; j� þNi�1½s� xj; j� 1�; if j > 0 and xi � s: (5)

Let’s now turn to the boundary conditions of this recursion. The
empty set 1 trivially reach the sum s¼0, thus

Ni½s; j� ¼ 1 if j ¼ s ¼ 0: (6)

We cannot sample j from i elements if j> i. Also, Ni½s; j� has to
be zero when either i � 0 (i.e. checking the empty set of x), when
s<0, or when smax < s (i.e. when s is outside the boundary of pos-
sible sums). Hence,

Ni½s; j� ¼ 0; if i < j; i ¼ 0; s < 0; or smax < s: (7)

By combining the base case 7 and 6 with the generic sub-
recursion 5, the final recursion is,

Ni½s; j� ¼ f

1; if j ¼ s ¼ 0:
0; if i < j; i ¼ 0; j � 0; or s < 0:
Ni�1½s; j�þ
þNi�1½s� xj; j� 1�; otherwise:

(8)

The pseudo-code of the top-down dynamic programming code
of the recursion in Equation 8 is given in Supplementary Algorithm
S1. The algorithm needs some explanation. Instead of using one ex-
tensive array N½0 . . . smax; 0 . . . ðmþ nÞ;0 . . . m�, two smaller arrays,
Nold½0 . . .smax; 0 . . .m� and Nnew½0 . . .smax; 0 . . .m�, are swapped and
rewritten in each iteration of i in an oscillatory fashion—to save
memory, see line 24. It is the complete rewriting of Nnew in the next
iteration that makes this possible (any of the conditions in the recur-
sion relation will re-calculate each entry Nnew).

We save quite some memory by keeping Nnew and Nold instead
of the full three-dimensional array. The former two arrays require
Oðsmax �mþ smax �mÞ ¼ Oð2 � xmaxm �mÞ ¼ Oðxmax �m2Þ, whereas
the latter array requires Oðsmax � ðmþ nÞ �mÞ ¼ Oðxmax �m3Þ.
Moreover, this improvement in memory usage is a quintessential dif-
ference for the parallelized algorithm (GPU’s memory storage can
easily be a bottleneck).
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A second point, notice the structure of the for-loops; they could
easily have been arranged in whatever way and still obtain correct
computations. However, the dimensions of the two arrays have to
be adjusted appropriately related to the outer-most loop.
Nevertheless, this specific order has a purpose; it is parallelizable—
described in the next section.

One final note on Supplementary Algorithm S1, by plain obser-
vation on the nested loops, it easy to see that the running time is
Oðm � ðmþ nÞ � smaxÞ ¼ Oðxmax �m3Þ.

2.3 Parallelization over two dimensions: s and j
The meaning of parallelizing over two dimensions is, in this case, to
fix one of the variables and check whether the two other variables
are parallelizable given the third fixed variable. In practice, the fixed
variable is the outer-most for-loop, and for each iteration of this
variable, then within this loop, everything is calculated in parallel
over the two other variables.

Out of the three variables, it is only necessary to find one such
variable to fix, and instead of exhaustively checking all possibilities,
one can check recursion 9 to see which variable is parallelizable. By
comparing the left side to the right side, the only variable that is not
dependent on contemporary action of itself is variable i, i.e.
Ni½s; j� ¼ f ðs; s� xj; i� 1; j; j� 1Þ, and, furthermore, the other two
variables are not possible to fix. Below is a verification that Ni½s; j� is
parallelizable given that i is fixed.

Initiation: In the lines 6–9 in Supplementary Algorithm S1, constants
are set, and initialization of both arrays, Nnew½0 . . .smax;0 . . .m� and
Nold½0 . . .smax; 0 . . .m�, occur. There is no conflict for the paralleliza-
tion of this step.

Maintenance: 1 � i � ðmþ nÞ þ 1 Consider iteration i. In lines
13–16, the array Nnew is only dependent on constants (i.e. the
boundary conditions 8 and 7). Thus, the computation of Nnew is
parallelizable. Furthermore, in lines 17–20, Nnew is only dependent
on elements from Nold and x, which both are invariant for i¼1 (ex-
cept for Nold, that switch values at the end of the iteration i, how-
ever, all computations for i are already done). Therefore, Nnew is
parallelizable here too. Finally, at line 24, Nold is switched with
Nnew, and no parallelization occurs here. Hence, the algorithm is
parallelizable for iteration i.

When entering the next iteration of i, i.e. i iþ 1, the same
arguments above apply.

Termination: i ¼ ðmþ nÞ þ 2 When arriving at line 10 in
Supplementary Algorithm S1 and i ¼ ðmþ nÞ þ 2, it will not enter
the loop. By the maintenance of Algorithm 2.3, one can be sure that
the computation of Nð0 . . .smax; ðmþ nÞ;mÞ is correct. Since there is
no computation after the for-loop-block, hence, there are no more
modifications on Nð0 . . .smax; ðmþ nÞ;mÞ, and it is safe to return
this array.

2.4 Discretization of real numbered samples into integer

valued samples
Our test is defined for integer valued distributions of the scores, x.
However, approximately we may use the procedure if we first dis-

cretize any real value distributed scores, yA and yB, where

y ¼ ðyA
1 ; . . . ; yA

m; y
B
1 ; . . . ; yB

n Þ ¼ ðy1; y2; . . . ; ynþmÞ. This was achieved

by partitioning the samples range into nw discretization windows,

each of length, lw ¼ jmaxðyA ;yBÞ�minðyA ;yBÞj
nw�1 . Each of these windows cov-

ers I i ¼ ½minðyA; yBÞ þ ði� 1
2 Þlw;minðyA; yBÞ þ ðiþ 1

2 Þlw�, for

i ¼ 0; . . . ; nw � 1, which enables us to map any continues sample
into discrete scores, as x ¼ x0�y 2 Ix0 , with values in the interval
x 2 ½0;nw � 1�. Unfortunately, this comes to the cost of discret-
ization errors, which will be a function of the number of discret-
ization windows, nw. We will investigate the effects of such
discretization in Section 4.

3 System and methods

3.1 Compared methods
A couple of methods were used as comparison to our implementa-
tion. We implemented t tests through the function scipy.stats.ttes-
t_ind, and Mann-Whitney U tests through scipy.stats.mannwhitneyu,
both functions in scipy version 1.4.1. We downloaded the FastPerm
method from the master branch of https://github.com/bdsegal/
fastPerm. When executing FastPerm we applied the default
parameter-tuning as described in the implementation guide, available
at the method’s GitHub repository. We implemented the r-package
Coin (https://CRAN.R-project.org/package¼coin) version of the
shift-method (exact test) as part of our python package and used it as
a benchmark.

3.2 System
Performance figures were recorded on a 8 core Intel i7-9700K with
an NVIDIA GeForce RTX 2070 graphics card. Some of the experi-
ments we compared this configuration’s performance to similar
computers equipped with NVIDIA GeForce RTX 2060 and one
with a NVIDIA Titan X Pascal graphics card.

3.3 Implementation
A python 3.6 implementation implementing the below algorithms
was made available under an Apache 2.0 license. We implemented
our algorithm together with our discretization strategy as a CUDA
(Chakrabarti et al., 2012) enabled Python module. The implementa-
tion and all results of this paper are available in reproducible form
from a GitHub repository https://github.com/statisticalbiotechnol
ogy/parallelPermutationTest.

4 Results

We implemented the algorithm described above, and set out to char-
acterize the algorithm’s performance. To establish that the strategy
executes in a practically useful time scale, we first tested the running
time performance as a function of the number of discretization win-
dows and its dependence on sample size. Subsequently, we tested the
accuracy of our discretization strategy to establish that it is asymp-
totically unbiased and precise compared to other methods. Finally,
we applied the method to a relatively large-scale proteomics dataset
to establish the methods’ usefulness in a practical test scenario.

For some of the tests, we were able to benchmark our GPU im-
plementation of the Green algorithm (named Green Cuda in the fol-
lowing text) against other methods. Here we implemented a single-
thread version of the Green algorithm (Green Singlethread) on the
CPU and a multi-thread version of Green algorithm (Green
Multithread) on the CPU and downloaded a previously described
Monte Carlo-based sampling method called the fast permutation
method, FastPerm (Segal et al., 2018), the shift algorithm’s imple-
mentation in the popular r-package Coin (Hothorn et al., 2006;
Hothorn et al., 2008) for exact permutation test (here named Shift
Coin), and used Python scipy’s implementation of the t test and
Mann-Whitney U test.

4.1 Test of running time requirements
4.1.1 Running time as a function of sample size, n
We first tested the running time requirements of the testes methods
as a function of sample size. Here, we selected uniformly distributed
samples, yA � Uð0; nÞ and yB � Uð0; nÞ, and drew samples of size
n¼ jyAj ¼ jyBj 2 ½50;100;200;250;300;350;400;450;500� ¼n. For
each n2 n, using five samples replicates. The average time to calcu-
late the corresponding P values was recorded and plotted as a func-
tion of n (Fig. 1). For the tested sample sizes, Green Cuda scales well
with sample size, and for all sample sizes, Green Cuda was found be-
tween 15 and 50 times faster than FastPerm, see Figure 1b at
n¼300 and n¼100, respectively. However, they seem to reach a
similar running time around n¼500.
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The Green Singlethread should have a running time that expands
as Oðnwn3Þ ¼ Oðn3Þ as nw was held constant in the experiment.
This corresponds well with our observations in Figure 1.

Some Monte Carlo-based approaches are, unlike e.g. FastPerm,
leaving the choice of the number of sampled permutations to their
users. The number of permutations is inversely proportional to the
granularity of the P values estimated by the MC-sampler, and hence

governs their possible precision, at least when no other techniques
such as importance sampling is used. We hence measure the running
time for different amounts of permutation samples with the MC-
sampling functionality of the package Coin, putting it in the context

of the running time of Green Cuda (Fig. 1c). The two methods seem
to have similar running times for about 105–106 permutation sam-
ples, tentatively suggesting that the Green Cuda will be the faster
method of the two methods, whenever a precision of the estimated P
values is desired to be better than 10�5–10�6.

Furthermore, to see how the running time depends on the hard-
ware, the test was repeated on other GPUs. However, we found a
relatively small difference in performance between the tested graphic
cards (see Supplementary Fig. S1).

4.1.2 Running time as a function of the number discretization

windows, nw

We also wanted to establish that our implementation scales well
with the number of discretization windows used for the test. Again,
we sampled from yA � Uð0; 500Þ and yB � Uð0;500Þ with sample
size n ¼ m ¼ 500, with five replicates. We plotted the running time
as a function of nw 2 nw ¼ ½50;100; 200;250; 300; 350; 400;
450;500� in Figure 2.

The single-threaded implementation of the Green algorithm
(Green singlethread) should theoretically have a running time com-
plexityOðnwn3Þ. As sample size n is kept constant in the experiment,
we expect the running time to expend as OðnwÞ. Indeed, Figure 2
confirms this for Green singlethread.

4.2 Memory allocation
4.2.1 Test of memory allocation

We characterized the memory requirements of Green Cuda by
increasing sample size n and m, and a growing number of bins nw.
The first experiment (Fig. 3a), varied the set sizes
jyAj ¼ jyBj ¼ m ¼ n 2 n ¼ ½10;20;30; . . . ; 480;490; 500�, for three
different bin sizes nw of 64, 128 and 256. In the second experiment
(Fig. 3b), the number of bins was the variable nw 2 nw ¼
½10; 12; 14; . . . ; 396; 398;400� for three different set sizes jyAj ¼
jyBj ¼ n ¼ m of 125, 250 and 500. In both experiments, the data
was sampled from yA � Nð0; 1Þ and yB � Nð0; 1Þ and the number
replicates was 1000.

The amount of data that can be handled by a GPU at each point
in time is limited by the GPU’s memory size. Here we used an
NVIDIA GeForce RTX 2070, which allows for 7982 MiB memory
allocation. One could imagine settings where smax is so large that
one cannot calculate N even for one data point. However, we would

Fig. 1. Running time requirements of the compared algorithms. We plotted the time

required to calculate P values for samples from yA � Uð0; nÞ and yB � Uð0; nÞ for

different sample sizes n. The mean time and the 95% confidence interval around the

mean time to calculate each of 5 replicate samplings was plotted in (a) linear and (b)

log scale. It should be noted that the execution times where highly reproducible, and

it might be hard to see the confidence interval in the plots. (c) We further investi-

gated the running time as a function of the number of Monte Carlo samples for a

MC-based approach. We compared running time for a Monte Carlo sampled to

draw samples of jyA
i j ¼ jyB

i j ¼ m ¼ n 2 ½200; 300; 400�, with five replicates. The

horizontal lines represent the running time for Green Cuda to compute the same

samples

Fig. 2. Running time as a function of the number of discretization windows. We

plotted the mean of the mean and standard deviation of the required running time,

as wall time, as a function of the number of discretization windows, nw. Time was

plotted (a) in normal scale, and (b) log-scale. Note that the similarity in execution

speed makes it hard to separate the series for Green Multithread and Coin Shift.

Also note that the other methods were excluded from the plot, as the discretization

step is exclusively present in the Green algorithm
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instead run into floating-point problems before reaching this type of
memory problem for such cases. For large set-sizes,
1000 < jyAj þ jyBj, the sums in the entries in N start go beyond the

maximum double-point precision in CUDA i.e. �1:79e308. A future
improvement of our algorithm could be to reduce the values in each

iteration by dividing all elements in Ni½s; j� by a normalizing factor
in each iteration over i, which would help us reduce the problems of
N becoming too large.

4.3 Test of accuracy and precision
4.3.1 Test dependency of window size

While the Green Algorithm is a non-parametric test for discrete test

statistics, the algorithm’s performance will be a function of the num-
ber of windows, nw, we use for discretizing any continuous data. We

hence wanted to characterize the influence of nw on the accuracy of
our test. We selected samples from a Normal distribution and com-
pared the computed P values with the ones from a regular t test

(Supplementary Fig. S2). The results suggest that both the accuracy
and precision of the test improves when increasing the number of
windows. However, the effect seems to saturate for nw > 30.

4.3.2 Comparison to other method’s accuracy and precision

against comparative methods

We subsequently wanted to test the accuracy of the estimated P val-

ues. Again we used Normal distributed samples and used t test-
calculated P values as reference. As benchmark comparisons, we
again used the FastPerm method and Python’s asymptotic Normal

distribution implementation of the Mann-Whitney U test, scipy.s-
tats.mannwhitneyu. We plotted the ratio, p�

pt
, where p� is the tested P

value and pt is given by a t test, as a function of sample size for two
different effect sizes (Fig. 4). Overall, the p�

pt
of the Green Cuda were

found closer to 1, and less dependent on the sample size than the

ones from the compared methods. The reason for the Mann-
Whitney U test deviating from the results of the t test, particularly in

Figure 4b, is that the test has comparatively low efficiency when
testing on normal distributed data. It is also important to note that
the Mann-Whitney U test, which depends on ranking statistics,

would not be under the same null model as the compared methods
in the presence of ties. However, we expect ties to be rare when sam-

pling from continuous distributions.

4.3.3 Calibration test

We also tested the parallelized shift method’s P values uniformity
under the null hypothesis (Murdoch et al., 2008). This property is of
particular importance for studies where we test many variables for
the same sample, as it is the base for efficient multiple hypothesis
testing (Efron, 2012; Storey and Tibshirani, 2003). Here, we com-
pared Green Cuda against the FastPerm method, Mann-Whitney U
test and a regular t test. We picked 10000 samples from the Normal
distribution and a log-Normal distribution and plotted each method
has estimated P values as a function of their relative rank
(Supplementary Fig. S3). We found that the calibration of the paral-
lel Green method was on par with the test. However, unsurprisingly
the calibration seems to be entirely off for the t tests on log-Normal
distributed data. We see that the Mann-Whitney U test’s calibration
appears conservative, while the FastPerm method appears anti-
conservative for both tested distributions.

4.4 Running time requirements for a proteomics dataset
As the last test, we tested the algorithm’s performance on a dataset
of breast cancer samples from the CPTAC consortium (NCI
CPTAC, 2016). For the 8051 proteins for which measurements had
been obtained for all samples, we tested differential abundance be-
tween 80 non-triple-negative and 26 triple-negative samples. The
run-time for Green Cuda method can be found in Table 1. For the
other methods: FastPerm took 45 min, 1.5 s for a Mann-Whitney U
test and 1.32 s for a t test.

Fig. 4. Comparison of estimation error as a function of sample size. We plotted the

fold change between one side Green Cuda, FastPerm and Mann-Whithey U test and

on the other side a t test, as a function of the sample size, n, when yA � Nð0:0; 1Þ
and (a) yB � Nð0:2; 1Þ, and (b) yB � Nð1:0; 1Þ. For both cases we plotted results

from 50 samples, and used nw ¼ 100 discretization windows. Note that the estima-

tion errors for Green Multithread, Green Multithread, Green Cuda and Coin Shift

are identical, so we compressed the reults into onse series, labeled Green

Table 1. Running time for Green Cuda on the proteomics dataset

as a function of the number of discretization windows nw

nw 16 64 256 512 1028

Time (s) 6, 31 6, 87 10, 8 17, 5 37

Fig. 3. Memory allocation as a function of set size and bin size for Green Cuda. We

plotted the required memory allocation to calculate P values for samples from yA �
Nð0; 1Þ and yB � Nð0; 1Þ for different sample sizes n and bin sizes nw. In (a) the nw

used were 64, 128 and 512 with 5 replicates, and in (b) n were 125, 250 and 500

with 5 replicates
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5 Discussion

Statistical testing is the base for most scientific activities. Also, in
most research areas, the amount of public data is rapidly increasing,
and hence there is a need for ever more efficient methods to com-
pute significance. Permutation tests offer an exciting method as they
do not assume a particular sampling distribution, but instead, build
one by permuting label associations to the observed data. This ap-
proach corresponds perfectly with the null hypothesis that there is
no difference in case and control outcomes.

Here, we have described a parallelized dynamic programming
method to perform permutation tests. We have demonstrated that it
is faster and more accurate than the sampling-based methods.
Previous work by Pagano and Trichler (1983) demonstrates that one
can quickly expand exact tests to handle missing values, something
that rank-based not easily can handle. We note that several studies
are dependent on normal approximations of non-parametric tests
such as the Mann-Whitney U test. In practice, the implementation
of such tests is approximations as they are asymptotic and not exact.
The Green Cuda method offers an exact test that does not appear
much slower but more accurate than such tests. However, admitted-
ly, the difference between the outcomes of asymptotic and permuta-
tion tests gets smaller with an increased sample size.

Permutation tests have been successfully used in many, if not
most areas of bioinformatics as a relatively assumption-free method
for assessing statistical significance in inferences. In most applica-
tions the procedures involve some flavor of Monte Carlo-based sam-
pling methodology. Here we demonstrated that for at least in the
case of statistical hypothesis testing on can instead rely on calculat-
ing a full distribution of the sampling space.
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