
Articles
eClinicalMedicine
2024;71: 102580

Published Online xxx

https://doi.org/10.
1016/j.eclinm.2024.
102580
An artificial intelligence model for detecting pathological
lymph node metastasis in prostate cancer using whole slide
images: a retrospective, multicentre, diagnostic study
Shaoxu Wu,a,b,c,j Yun Wang,a,j Guibin Hong,a,j Yun Luo,d,j Zhen Lin,e,j Runnan Shen,a Hong Zeng,f Abai Xu,g Peng Wu,h Mingzhao Xiao,i

Xiaoyang Li,d Peng Rao,g Qishen Yang,h Zhengyuan Feng,h Quanhao He,i Fan Jiang,a Ye Xie,a Chengxiao Liao,a Xiaowei Huang,e Rui Chen,e and
Tianxin Lina,b,c,∗

aDepartment of Urology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
bGuangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint
Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
cGuangdong Provincial Clinical Research Centre for Urological Diseases, Guangzhou, China
dDepartment of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
eCellsVision Medical Technology Services Co., Ltd., Guangzhou, China
fDepartment of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
gDepartment of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
hDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
iDepartment of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China

Summary
Background The pathological examination of lymph node metastasis (LNM) is crucial for treating prostate cancer
(PCa). However, the limitations with naked-eye detection and pathologist workload contribute to a high missed-
diagnosis rate for nodal micrometastasis. We aimed to develop an artificial intelligence (AI)-based, time-efficient,
and high-precision PCa LNM detector (ProCaLNMD) and evaluate its clinical application value.

Methods In this multicentre, retrospective, diagnostic study, consecutive patients with PCa who underwent radical
prostatectomy and pelvic lymph node dissection at five centres between Sep 2, 2013 and Apr 28, 2023 were included,
and histopathological slides of resected lymph nodes were collected and digitised as whole-slide images for model
development and validation. ProCaLNMD was trained at a dataset from a single centre (the Sun Yat-sen Memorial
Hospital of Sun Yat-sen University [SYSMH]), and externally validated in the other four centres. A bladder cancer
dataset from SYSMH was used to further validate ProCaLNMD, and an additional validation (human-AI
comparison and collaboration study) containing consecutive patients with PCa from SYSMH was implemented to
evaluate the application value of integrating ProCaLNMD into the clinical workflow. The primary endpoint was
the area under the receiver operating characteristic curve (AUROC) of ProCaLNMD. In addition, the performance
measures for pathologists with ProCaLNMD assistance was also assessed.

Findings In total, 8225 slides from 1297 patients with PCa were collected and digitised. Overall, 8158 slides (18,761
lymph nodes) from 1297 patients with PCa (median age 68 years [interquartile range 64–73]; 331 [26%] with LNM)
were used to train and validate ProCaLNMD. The AUROC of ProCaLNMD ranged from 0.975 (95% confidence
interval 0.953–0.998) to 0.992 (0.982–1.000) in the training and validation datasets, with sensitivities > 0.955 and
specificities > 0.921. ProCaLNMD also demonstrated an AUROC of 0.979 in the cross-cancer dataset. ProCaLNMD
use triggered true reclassification in 43 (4.3%) slides in which micrometastatic tumour regions were initially missed
by pathologists, thereby correcting 28 (8.5%) missed-diagnosed cases of previous routine pathological reports. In the
human-AI comparison and collaboration study, the sensitivity of ProCaLNMD (0.983 [0.908–1.000]) surpassed that of
two junior pathologists (0.862 [0.746–0.939], P = 0.023; 0.879 [0.767–0.950], P = 0.041) by 10–12% and showed no
difference to that of two senior pathologists (both 0.983 [0.908–1.000], both P > 0.99). Furthermore, ProCaLNMD
significantly boosted the diagnostic sensitivity of two junior pathologists (both P = 0.041) to the level of senior
pathologists (both P > 0.99), and substantially reduced the four pathologists’ slide reviewing time (−31%,
P < 0.0001; −34%, P < 0.0001; −29%, P < 0.0001; and −27%, P = 0.00031).
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Interpretation ProCaLNMD demonstrated high diagnostic capabilities for identifying LNM in prostate cancer,
reducing the likelihood of missed diagnoses by pathologists and decreasing the slide reviewing time, highlighting its
potential for clinical application.
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Research in context

Evidence before this study
We conducted a search on PubMed, spanning from the
database’s inception to Dec 31, 2023, using search terms
“artificial intelligence” or “AI”, “deep learning” or “DL”,
“machine learning” or “ML”, “lymph node metastasis” or
“LNM”, and “whole slide image” or “WSI”, without language
restrictions. Several studies have developed artificial
intelligence (AI) models to detect lymph node metastasis
(LNM) in various types of cancer, including breast, gastric,
colorectal, bladder, and melanoma cancers, using histological
slide images. However, no study has reported the application
of AI for detecting pathological LNM in prostate cancer.

Added value of this study
In this multicentre study, we developed and validated a
prostate cancer lymph node metastasis detector
(ProCaLNMD), which is powered by AI and can detect prostate
cancer LNM with a sensitivity higher than that of initial
routine pathological reports in each centre. To our

knowledge, this is the first study to develop an AI-based
diagnostic model for detecting pathological LNM in prostate
cancer, and it includes most cases of any study that has
applied AI for pathological LNM detection. ProCaLNMD
showed promising performance in multicentre validation,
significantly shortened the slide reviewing time of
pathologists, and reduced the missed diagnosis rate of LNM
positive patients with prostate cancer by approximately 7.3%.

Implications of all the available evidence
The current process of pathological assessment for LNM in
clinical practice is challenging, as it is time-consuming,
requires great effort, and carries the risk of overlooking
micrometastases. The AI model we developed can be used as
an effective and reliable diagnostic tool for LNM detection in
prostate cancer. The high sensitivity, reliability, and time-
saving properties of ProCaLNMD suggest that it has the
potential to significantly reduce the number of missed
diagnoses and enhance the efficiency of pathologists.
Introduction
Prostate cancer (PCa) is the second most common
cancer globally and the fifth leading cause of cancer-
related deaths among men.1 Lymph node metastasis
(LNM), confirmed by pathological examination, occurs
in 12–17% of PCa cases2,3 and is a significant indicator
of poor prognosis.4,5 Patients with PCa and LNM can
benefit from adjuvant hormonal therapy and adjuvant
radiotherapy,3,6 emphasising the importance of accu-
rately evaluating LNM postoperatively.

Pathological examination has long been considered
as the gold standard for evaluating LNM. However,
challenges have arisen in the pathological assessment of
LNM in patients with PCa. The high missed-diagnosis
rate of nodal micrometastasis (tumour size ≤ 2 mm)
is a primary challenge. Approximately 8.8–13% of PCa
cases with nodal micrometastasis only (pN1mi) have
been reported to be missed by routine pathological
examination,4,7 and the prognosis of these neglected
patients is significantly worse than that of the LNM-
negative (pN-) patients.7 This challenge can be
attributed to the limitations of naked-eye detection. The
routine procedure for the pathological LNM evaluation
involves manually reviewing histopathological slides by
pathologists, which is time-consuming and laborious,
with the risk of missing micrometastatic cancer clusters.
The second challenge is the critical shortage of pathol-
ogists in developing countries.8 In China, there is less
than one pathologist per 100,000 population,8,9 which
intensifies this difficulty. Serial sectioning and immu-
nohistochemistry (IHC) can reduce missed diagnosis of
PCa nodal micrometastasis,4,7 but this increases
pathologist workload by approximately 19 times.10 The
shortage of pathologists hinders the routine application
of serial sectioning and IHC, thereby increasing the risk
of missing nodal micrometastases. The third challenge
is associated with easily confused PCa subtypes. The use
of neoadjuvant hormonal therapy (NHT) is common in
high-risk PCa cases. After NHT, the PCa cells undergo
regressive changes,11 making it difficult to distinguish
them from normal lymph tissues. This challenge is also
attributed to the foam-like variant subtype of prostatic
www.thelancet.com Vol 71 May, 2024
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acinar adenocarcinoma, which is common and charac-
terised by loose cytoplasm and no significant nuclear
atypia.12,13 Therefore, it is easily confused with normal
cells in the lymphatic sinuses, particularly in micro-
metastasis cases.

To address these challenges, artificial intelligence
(AI)-based automated detection models are expected. In
recent years, digital pathology has made considerable
progress,14 and AI models based on digitised histo-
pathological slides have been widely used to help
improve the workflow of pathological diagnosis.9,15

Several studies16–23 have focused on building AI-based
models to identify pathological LNM in various types
of cancer, including breast, gastric, colorectal, bladder,
and melanoma cancers, with satisfactory capabilities. In
our study on developing a model for bladder cancer
LNM detection,20 we applied it to identify LNM in PCa in
a single-centre, small sample size dataset. Although the
area under the receiver operating characteristic curve
(AUC) reached 0.922, it was not enough ideal for
improving clinical diagnosis in the real world. There-
fore, further studies are warranted. To the best of our
knowledge, no study has reported the development of an
AI-based model to assist in the postoperative evaluation
of PCa LNM.

In this study, we developed an AI-based model that
analyses whole-slide images (WSIs) to automatically
identify metastatic PCa clusters within lymph nodes,
with the aim of improving the accuracy and efficiency of
the clinical workflow of PCa LNM evaluation. We vali-
dated the diagnostic performance of the model using
independent multicentre datasets, including more than
12,000 WSIs of 1823 patients from five large medical
centres.
Methods
Study design and participants
To develop and validate the AI-based model (Prostate
Cancer Lymph Node Metastasis Detector, known as
ProCaLNMD), we retrospectively reviewed the data of
consecutive patients who underwent radical prostatec-
tomy (RP) and pelvic lymph node dissection (PLND) at
five medical centres in China, including Sun Yat-sen
Memorial Hospital of Sun Yat-sen University
(SYSMH, between Sep 2, 2013, and May 27, 2022), the
Third Affiliated Hospital of Sun Yat-sen University
(SYUTH, between Dec 10, 2013, and Jun 24, 2022),
Nanfang Hospital of Southern Medical University
(NFH, between Jan 30, 2018, and Mar 23, 2022), Zhu-
jiang Hospital of Southern Medical University (ZJH,
between Feb 20, 2018, and Apr 24, 2022), and the First
Affiliated Hospital of Chongqing Medical University
(CMUFH, between Jul 5, 2019, and May 6, 2022). We
collected histopathological slides of the resected lymph
nodes and comprehensive clinical data from these pa-
tients. To evaluate ProCaLNMD’s ability in detecting
www.thelancet.com Vol 71 May, 2024
LNM for other type of cancer, SYSMH bladder cancer
dataset20 was used as cross-cancer validation dataset. In
addition, to further confirm model validity, we con-
ducted an additional study at SYSMH including eligible
consecutive patients who underwent RP and PLND be-
tween May 30, 2022, to Apr 28, 2023. The geographic
locations of involved five centres was shown in the
Appendix p 15.

Ethics statement
This study was conducted in accordance with the
Declaration of Helsinki and was reported according to
the Standards for Reporting Diagnostic Accuracy
(STARD, Supplementary table). The research ethics
committee of SYSMH approved this study (approval
number: SYSKY-2022-162-01) and waived the need for
obtaining informed consent due to the retrospective
nature of the study.

Development and multicentre validation of
ProCaLNMD
The clinical data of the patients, including age, PCa pT
stage, pN stage, histological type, Gleason score (Inter-
national Society of Urological Pathology grade group),
and whether NHT had been received, were obtained
from the medical record archives of the five centres. The
haematoxylin and eosin (H&E)-stained histopathological
slides of surgically resected lymph nodes were obtained
from the pathology department’s archive and scanned as
WSIs using two types of digital slide scanners (KF-PRO-
120 and SQS-600P) with 20 × objective lenses. The KF-
PRO-120 scanner (Ningbo, China) with a specimen-level
pixel size of 0.254 μm × 0.254 μm was used to scan
slides from SYSMH and CMUFH, while the SQS-600P
scanner (Shenzhen, China) with a specimen-level pixel
size of 0.206 μm × 0.206 μm was used to scan slides
from SYUTH, NFH, and ZJH. Any slides with quality
issues, such as bubbles under the cover slide, improper
staining, extreme fading, tissue folding, or out-of-focus
during scanning, were excluded. It was ensured that
every enrolled patient had complete clinical and patho-
logical data collected and no missing data was found.

Patients from SYSMH were divided into training and
internal validation datasets in a ratio of 7:3 by setting a
cutoff point for the surgery date (Sep 30, 2019). Patients
from SYUTH, NFH, ZJH, and CMUFH were assigned
to four independent external validation datasets (Fig. 1).

The reference standard for WSIs was determined by
the consensus of two senior pathologists, each with >15
years of experience, recruited from SYSMH. This was
done because a high missed-diagnosis rate of routine
pathological reports for nodal micrometastasis has been
reported.4,7 The two experts independently reviewed and
classified the WSIs as positive (with LNM) or negative
(without LNM), and if there was any inconsistency in
classification between them or any of them required
IHC, the final decision was made using IHC. Either
3
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1297 patients underwent RP and PLND at five hospitals 
and had data collected 
8225 slides
18892 lymph nodes

1297 patients included
8158 WSIs
18761 lymph nodes

67 slides excluded
19 extremely faded
18 tissue folded
8 bubbles under cover glass
15 improper staining
7 out-of-focus during digital scanning

474 patients from SYSMH used for 
training and internal validation
3060 WSIs
7084 lymph nodes

770 patients from SYUTH, NFH, ZJH 
and CMUFH used for external validation
4560 WSIs
10405 lymph nodes

53 patients from SYSMH used for 
additional validation
538 WSIs
1272 lymph nodes

Training dataset
338 patients 
1977 WSIs
4559 lymph nodes

Internal validation dataset
136 patients 
1083 WSIs
2525 lymph nodes

Development and validation of an artificial intelligence-based diagnostic model for the detection of prostate cancer lymph node metastasis

Additional validation dataset
53 patients 
538 WSIs
1272 lymph nodes

Four external validation datasets
SYUTH: 317 patients; 2228 WSIs; 

4218 lymph nodes
NFH: 159 patients; 794 WSIs; 

1970 lymph nodes
ZJH: 187 patients; 922 WSIs; 

2964 lymph nodes
CMUFH: 107 patients; 616 WSIs; 

1253 lymph nodes

Lymph nodes images from 
SYSMH for bladder cancer

Cross-cancer validation 
dataset

526 patients
4429 WSIs
10803 lymph nodes

Fig. 1: Study profile. SYSMH = Sun Yat-sen Memorial Hospital of Sun Yat-sen University. SYUTH = The Third Affiliated Hospital of Sun Yat-sen
University. NFH = Nanfang Hospital of Southern Medical University. ZJH = Zhujiang Hospital of Southern Medical University. CMUFH = The First
Affiliated Hospital of Chongqing Medical University. RP = radical prostatectomy. PLND = pelvic lymph node dissection. WSIs = whole-slide
images.
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pathologist was blind to the clinical information of the
patients. The reference standard was constructed before
developing the AI model.

We used DeepLabv3+24 as the segmentation model
framework and RegNet_Y4025 as the encoder within this
framework. Python software (version 3.7.0) was used to
develop the model. The encoder was initialised using
ImageNet-pretrained parameters. The two senior pathol-
ogists, who created the reference standard, drew pixel-
level annotation to train the model (Fig. 2), and further
details can be found in the Appendix (pp 2, 8). To train the
model, Radam optimizer26 with a weight decay of 0.0001
and a learning rate of 0.0001 was used. CosineAnnea-
lingWarmupRestarts (available at https://github.com/
katsura-jp/pytorch-cosine-annealing-with-warmup) was
employed for learning rate scheduling, with first_cycle_-
steps = 20, max_lr = 0.0001, min_lr = 0.00001, and war-
mup_steps = 5. Focal Loss27 was used as the loss function
with α = 0.75 and γ = 2. We trained with a batch size of 6
for 100 epochs, generating 1200 samples per epoch on
two GeForce RTX 3090 GPUs. The final model was
selected based on the highest mean intersection over
union in the segmentation validation set (Appendix p 6).
During the validation phase, WSIs were slid into
numerous patch images, and invalid regions devoid of
tissues were excluded. ProCaLNMD then made pre-
dictions on all valid patches, yielding 1 × 2048 × 2048
result masks as 8-bit grayscale images with pixel values
ranging from 0 to 255.

The WSI-level classification was accomplished
through a thresholding strategy (Appendix p 7), and a
heatmap was generated by colouring pixels based on the
output values. Low values were represented in blue,
while high values were represented in red (Fig. 2,
Appendix p 8). Detailed descriptions of data augmen-
tation, the strategy to handle data imbalance and hard
samples, and binary classification strategy with two
threshold variables are provided in the Appendix (pp
2–4). The flowchart of ProCaLNMD development is
shown in Fig. 2.

Additional validation: human-AI comparison and
collaboration
To compare the diagnostic performance of ProCaLNMD
with that of pathologists and evaluate the effectiveness
of ProCaLNMD in assisting pathologists in reviewing
www.thelancet.com Vol 71 May, 2024
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Fig. 2: Flowchart of development of ProCaLNMD. WSI = whole-slide image. ROI = region of interest. AI = artificial intelligence.
IHC = immunohistochemistry. ProCaLNMD = prostate cancer lymph node metastasis detector.
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slides, an additional validation was conducted on 53
consecutive patients from SYSMH. Four pathologists
(two seniors with 7 years of experience, and two juniors
with 3 years of experience) were recruited from SYSMH
to review histopathological slides of resected lymph
nodes. The slides were collected, quality-controlled, and
assigned for review, following the routine pathological
assessment process. On each working day, each
pathologist was required to review all slides of four pa-
tients, with two being reviewed in morning and the
remaining in afternoon. The order in which the 53 pa-
tients presented was randomly generated and unique to
each pathologist, and they were blinded to any infor-
mation regarding the patients they were reviewing.
Next, the slides from all 53 patients were scanned as
WSIs using a KF-PRO-120 scanner with 20 × objective
lenses and submitted to ProCaLNMD for independent
diagnosis. After a 4-week washout period, the patholo-
gists reviewed the WSIs again, this time with the
assistance of ProCaLNMD, which highlighted suspi-
cious areas of cancer clusters. The order in which the
patients were presented to the pathologists in the AI-
assisted mode was decided randomly and differed
from that in the non-AI-assisted mode. The time taken
by each pathologist to review each patient in both two
modes was recorded.

Prior to reviewing, the reference standard was con-
structed in the same manner as that in the multicentre
www.thelancet.com Vol 71 May, 2024
validation. The four pathologists were blinded to the
reference standard during the study.

Outcomes
The primary endpoint of this study was the AUC of
ProCaLNMD. Secondary endpoints were sensitivity,
specificity, positive predictive value (PPV), and negative
predictive value (NPV). Additionally, the study
compared the performance of pathologists with and
without the use of ProCaLNMD. The present study was
exploratory and no multiplicity adjustment was applied
for multiple endpoints.

Statistical analysis
All statistical analyses were performed using R software
(version 4.3.1). No ex-ante sample size calculation was
performed due to the exploratory nature of the present
study and the data-driven nature of AI. The ggplot2
package (version 3.4.2) was used to draw the violin plot.
We employed the receiver operating characteristic
(ROC) curve to demonstrate the diagnostic ability of
ProCaLNMD, and calculated the AUC using the pROC
package (version 1.18.2). Threshold values for the binary
classification of ProCaLNMD were based on the optimal
F2 score. The 95% confidence intervals (CI) for sensi-
tivity, specificity, PPV, and NPV were calculated using
the Clopper-Pearson method because multiple indexes
were close to 1. We used the paired χ2 test (McNemar’s
5
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test) to compare the diagnostic sensitivity of different
operators (ProCaLNMD, different pathologists, and pa-
thologists with and without AI assistance). We used the
Wilcoxon signed rank test to analyse the difference in
the reviewing time of pathologists per patient in the
non-AI-assisted and AI-assisted modes. All statistical
tests were two-sided, and P < 0.05 was considered sta-
tistically significant.

Role of the funding source
The funders were not involved in the study design, data
collection, data analysis, data interpretation, or manu-
script writing. All authors reviewed the manuscript,
approved the submitted version, had full access to all the
data reported in the study, and had final responsibility for
the decision to submit the manuscript for publication.
Results
In this retrospective, multicentre, diagnostic study, 8225
slides from 1297 patients with PCa (median age 68
[interquartile range 64–73] years; 331 [26%] with LNM)
were collected. After quality control, 67 (0.8%) slides
were excluded due to low quality (19, extremely faded;
18, tissue folded; 15, improper staining; 8, bubbles un-
der cover glass; and 7, out-of-focus during scanning).
There was no missing data in the present study. For the
development of ProCaLNMD, 1977 WSIs of 338 pa-
tients from SYSMH (between Sep 2, 2013, and Sep 30,
2019) were included in the training dataset, and 1083
WSIs of 136 patients from SYSMH (between Oct 1,
2019 and May 27, 2022) were included in the internal
validation dataset. The external validation datasets
included 2228 WSIs of 317 patients from SYUTH, 794
WSIs of 159 patients from NFH, 922 WSIs of 187 pa-
tients from ZJH, and 616 WSIs of 107 patients from
CMUFH. To further validate ProCaLNMD, 538 WSIs of
53 patients from SYSMH (between May 30, 2022, and
Apr 28, 2023) were included in the additional validation
dataset. In addition, 4429 WSIs of 526 patients with
bladder cancer from SYSMH (between Jan 1, 2013, and
Dec 31,2021) were included to validate ProCaLNMD’s
ability in detecting LNM in other type of cancer.

Overall, 8158 WSIs of 1297 patients (18,761 lymph
nodes) with PCa from five independent medical centres
were used to develop and validate ProCaLNMD. The
study profile is presented in Fig. 1, and the character-
istics of patients with PCa are listed in Table 1.

The AUC of ProCaLNMD varied from 0.975 (95%
CI: 0.953–0.998) to 0.992 (0.982–1.000) in the training,
internal validation, and external validation datasets
(Fig. 3A). As the threshold values were determined
based on the optimal F2 score, ProCaLNMD sensitivity
reached 0.986 (139/141, 0.950–0.998), 0.974 (75/77,
0.909–0.997), 0.978 (312/319, 0.955–0.991), 0.982 (167/
170, 0.949–0.996), 0.957 (135/141, 0.910–0.984), 0.955
(84/88, 0.888–0.987), and 0.983 (57/58, 0.908–1.000) in
the training, internal validation, SYUTH, NFH, ZJH,
CMUFH, and additional validation datasets, respec-
tively. Meanwhile, the specificities in all seven PCa
datasets were >0.920 (Table 2). In combined all external
validation datasets, ProCaLNMD demonstrated an AUC
of 0.983 (0.977–0.990, Appendix p 14), a sensitivity of
0.972 (698/718, 0.957–0.983), and a specificity of 0.932
(3582/3842, 0.924–0.940, Table 2).

The diagnostic performance of ProCaLNMD was
validated in various subgroups. For subgroups of pa-
tients with different pT stages, Gleason scores, and
those who received NHT before surgery, ProCaLNMD
AUCs ranged from 0.953 to 1.000, 0.972 to 1.000, and
0.962 to 0.988, respectively, in the five centres (Fig. 3B).
For subgroups of pN + patients with a foam-like variant
subtype, ProCaLNMD exhibited a sensitivity comparable
to that of pathological reports (0.967 vs 0.958, P = 0.80,
Appendix p 10). The output heatmaps showed that
ProCaLNMD was able to accurately identify nodal met-
astatic cancer clusters of the foam-like subtype
(Appendix p 10) and those with degenerative changes
after NHT (Appendix p 11). Additionally, ProCaLNMD
demonstrated an AUC of 0.979 in identifying bladder
cancer LNM, with a sensitivity of 0.963 and a specificity
of 0.955 (Appendix p 16).

In the additional validation, ProCaLNMD displayed a
sensitivity of 0.983 (57/58, 95% CI 0.908–1.000), com-
parable to that of the two senior pathologists (both
0.983, 57/58, 0.908–1.000, P > 0.99) and higher than
that of junior pathologist 1 (0.862, 50/58, 0.746–0.939,
P = 0.023) and junior pathologist 2 (0.879, 51/58,
0.767–0.950, P = 0.041). In the human-AI collaboration
phase, ProCaLNMD helped reduce the number of
missed positive slides by 6 (6/8, 75%) for junior
pathologist 1, 6 (6/7, 85.7%) for junior pathologist 2, 1
(1/1, 100%) for senior pathologists 1, and 1 (1/1, 100%)
for senior pathologist 2 (Appendix p 12). ProCaLNMD
use improved the sensitivity exhibited by pathologists
(junior pathologist 1: from 0.862 without AI assistance
to 0.966 with AI assistance, +10.4%, P = 0.041; junior
pathologist 2: from 0.879 to 0.983, +10.4%, P = 0.041;
senior pathologists 1 & 2: both from 0.983 to
1.000, +1.7%, P > 0.99; Fig. 3C and Table 2). With
ProCaLNMD assistance, the sensitivity of junior pa-
thologists 1 (0.966, 56/58, 0.881–0.996) and 2 (0.983, 57/
58, 0.908–1.000) were both comparable (both P > 0.99)
to that of senior pathologists without AI assistance (both
0.983, 57/58, 0.908–1.000). The reclassification tables
showed that all four pathologists had a net reclassifica-
tion index > 0 (Appendix p 12), indicating improved
performance with AI assistance. In addition, with the
assistance of ProCaLNMD, the mean reviewing time per
patient was significantly reduced for all four pathologists
(for junior 1, from 791s without assistance to 542s with
assistance, −31.4%, W = 2231, P < 0.0001; for junior 2,
from 753s to 501s, −33.5%, W = 2102, P < 0.0001; for
senior 1, from 584s to 414s, −29.1%, W = 2057,
www.thelancet.com Vol 71 May, 2024
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Training
dataset
(n = 338)

Internal validation
dataset (n = 136)

External validation
dataset 1 (n = 317)

External validation
dataset 2 (n = 159)

External validation
dataset 3 (n = 187)

External validation
dataset 4 (n = 107)

Additional validation
dataset (n = 53)

Age, years 67 (63–72) 67 (63–72) 69 (64–74) 68 (64–74) 69 (64–73) 69 (65–73) 69 (64–72)

pT stage

pT2 182 (54%) 49 (36%) 136 (43%) 75 (47%) 104 (56%) 48 (45%) 20 (38%)

pT3a 60 (18%) 36 (26%) 67 (21%) 16 (10%) 38 (20%) 32 (30%) 13 (25%)

pT3b 91 (27%) 50 (37%) 112 (35%) 58 (36%) 38 (20%) 27 (25%) 18 (34%)

pT4 5 (1%) 0 0 7 (4%) 5 (3%) 0 1 (2%)

Othersa 0 1 (1%) 2 (1%) 3 (2%) 2 (1%) 0 1 (2%)

pN stageb

pN0 276 (82%) 105 (77%) 224 (71%) 111 (70%) 134 (72%) 79 (74%) 37 (70%)

pN1mi 23 (7%) 7 (5%) 29 (9%) 12 (8%) 24 (13%) 8 (7%) 5 (9%)

pN1 39 (12%) 24 (18%) 64 (20%) 36 (23%) 29 (16%) 20 (19%) 11 (21%)

Histological type

Acinar adenocarcinoma 325 (96%) 129 (95%) 313 (99%) 154 (97%) 184 (98%) 106 (99%) 51 (96%)

Others 13 (4%) 7 (5%) 4 (1%) 5 (3%) 3 (2%) 1 (1%) 2 (4%)

Gleason score (ISUP grade group)

1 45 (13%) 5 (4%) 34 (11%) 10 (6%) 18 (10%) 0 0

2 72 (21%) 30 (22%) 54 (17%) 30 (19%) 31 (17%) 14 (13%) 7 (13%)

3 82 (24%) 40 (29%) 60 (19%) 24 (15%) 27 (14%) 28 (26%) 14 (26%)

4 42 (12%) 17 (13%) 55 (17%) 18 (11%) 46 (25%) 17 (16%) 6 (11%)

5 59 (17%) 26 (19%) 104 (33%) 71 (45%) 60 (32%) 46 (43%) 12 (23%)

Othersc 38 (11%) 18 (13%) 10 (3%) 6 (4%) 5 (3%) 2 (2%) 14 (26%)

Neoadjuvant hormonal therapy

Yes 149 (44%) 66 (49%) 84 (26%) 42 (26%) 90 (48%) 44 (41%) 26 (49%)

No 189 (56%) 70 (51%) 233 (74%) 117 (74%) 97 (52%) 63 (59%) 27 (51%)

Data are median (interquartile range) or n (%). The training dataset, internal validation dataset and additional validation dataset were from Sun Yat-sen Memorial Hospital of Sun Yat-sen University
[SYSMH]. The external validation dataset 1 was from The Third Affiliated Hospital of Sun Yat-sen University [SYUTH]. The external validation dataset 2 was from Nanfang Hospital of Southern Medical
University [NFH]. The external validation dataset 3 was from Zhujiang Hospital of Southern Medical University [ZJH]. The external validation dataset 4 was from The First Affiliated Hospital of Chongqing
Medical University [CMUFH]. ISUP = International Society of Urological Pathology. aPathological complete response (pCR) or majority remission after neoadjuvant hormonal therapy (NHT). bpN1mi: the
maximum diameters of all metastatic cancer lesions in lymph nodes are less than 2 mm; pN1: at least one metastatic cancer lesion with a maximum diameter greater than 2 mm. cpCR or massive
histological reaction to NHT. For the above two situations, pathological report did not provide Gleason score.

Table 1: Baseline characteristics of included patients with PCa.

Articles
P < 0.0001; for senior 2, from 617s to 450s, −27.0%,
W = 1976, P = 0.00031; Fig. 3D).

Further, ProCaLNMD identified 28 patients with
nodal micrometastasis with a missed diagnosed in five
medical centres (Appendix p 9). Specifically, in five
centres, ProCaLNMD identified 43 positive slides that
were missed by the pathological report, 13 of which
belonged to seven pN + patients correctly diagnosed by
pathological reports (pathologists missed a few of these
patients’ several positive slides). The remaining 30
slides belonged to 28 “LNM-negative” patients who were
previously falsely diagnosed by the pathological reports.
The pathological reports of each centre missed 8 of 109
(7.34%, 95% CI 3.22–14.0) pN + patients in SYSMH, 6
of 93 (6.45%, 2.40–13.5) in SYUTH, 5 of 48 (10.4%,
3.47–22.7) in NFH, 8 of 53 (15.1%, 6.75–27.6) in ZJH,
and 1 of 28 (3.57%, 0.0904–18.3) in CMUFH. Corre-
spondingly, ProCaLNMD failed to identify 2 of 109
(1.83%, 95% CI 0.223–6.47) pN + patients in SYSMH, 1
of 93 (1.08%, 0.0272–5.85) in SYUTH, and 1 of 53
(1.89%, 0.0478–10.1) in ZJH. No pN + patients were
www.thelancet.com Vol 71 May, 2024
missed by ProCaLNMD in NFH and CMUFH. Overall,
8.46% (28/331, 5.69–12.0) pN + patients were missed by
the pathological report, while ProCaLNMD missed
1.21% (4/331, 0.330–3.07), with a significant difference
(P < 0.0001, Appendix p 9). The clinical characteristics
and follow-up details of the 28 missed pN + patients (all
were pN1mi) from five centres are shown in the
Appendix p 5. Ten patients (10/28, 35.7%, 18.6–55.9)
experienced recurrence within 5 years after surgery.

Discussion
We developed an AI-based model, called ProCaLNMD,
for automatically detecting of metastatic PCa clusters in
lymph nodes. We trained and validated this model using
12,587 WSIs from 1823 patients across five large med-
ical centres and evaluated its usefulness for incorpo-
rating into the clinical workflow. The results showed
that ProCaLNMD demonstrated high sensitivity and
specificity in multiple external centres, outperformed
the pathological reports performance in sensitivity, and
showed no difference to senior pathologists. In addition,
7
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Fig. 3: Diagnostic performance of ProCaLNMD and pathologists in different datasets. (A) ROC curves of ProCaLNMD in training, internal
and external validation datasets. (B) ROC curves of ProCaLNMD in different subgroups of training, internal and external validation datasets. (C)
Diagnostic performance of ProCaLNMD and pathologists of different seniorities (with and without AI assistance) in the additional validation.
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Hospital of Sun Yat-sen University [SYSMH]. SYUTH = the Third Affiliated Hospital of Sun Yat-sen University. NFH = Nanfang Hospital of
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metastasis detector.
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ProCaLNMD could assist pathologists, regardless of
their seniority, by improving their diagnostic perfor-
mance and substantially reducing their slide reviewing
time. Moreover, not only for PCa LNM, ProCaLNMD
exhibited satisfactory ability in detecting bladder cancer
LNM. To our knowledge, this is the first study to develop
an AI-based model for the automated pathological
evaluation of PCa LNM, and it also includes the largest
numbers of cases in the application of AI for evaluating
the pN stage of cancer.

Nodal micrometastases are common in PCa and are
easily missed during pathological assessment. Pro-
CaLNMD exhibited excellent sensitivity in detecting
nodal micrometastases in PCa, surpassing that of pa-
thologists who issued the routine pathological reports.
This was demonstrated in identifying 8.5%
pN + patients (all pN1mi) who were previously missed
in the pathological assessment. Within 5 years after
surgery, 36% of these neglected patients experienced
recurrence, which was higher than that previously re-
ported for pN0 patients (19%).4 ProCaLNMD achieved a
significantly higher sensitivity compared with that of
routine pathological reports. Therefore, it can be used in
clinical applications for pathological LNM evaluation to
significantly reduce the missed-diagnosis rate by
approximately 7.3%, and ultimately improve the prog-
nosis of patients with PCa.

The robustness of ProCaLNMD was demonstrated
through its performance in various subgroups, cross-
cancer and multicentre datasets. The model showed
satisfactory diagnostic capabilities in patients with PCa in
different pT stages, Gleason scores, pN + cases with
foam-like subtype, and those who underwent NHT
before surgery, and even patients with bladder cancer.
www.thelancet.com Vol 71 May, 2024
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TP FN TN FP Sensitivity (95%CI) Specificity (95%CI) PPV (95%CI) NPV (95%CI)

Multicentre validation of ProCaLNMD

Training dataset 139 2 1780 44 0.986 (0.950–0.998) 0.976 (0.968–0.982) 0.760 (0.691–0.820) 0.999 (0.996–1.000)

Internal validation dataset 75 2 987 31 0.974 (0.909–0.997) 0.970 (0.957–0.979) 0.708 (0.611–0.792) 0.998 (0.993–1.000)

External validation dataset 1 312 7 1778 131 0.978 (0.955–0.991) 0.931 (0.919–0.942) 0.704 (0.659–0.746) 0.996 (0.992–0.998)

External validation dataset 2 167 3 575 49 0.982 (0.949–0.996) 0.921 (0.898–0.941) 0.773 (0.711–0.827) 0.995 (0.985–0.999)

External validation dataset 3 135 6 724 57 0.957 (0.910–0.984) 0.927 (0.906–0.944) 0.703 (0.633–0.767) 0.992 (0.982–0.997)

External validation dataset 4 84 4 505 23 0.955 (0.888–0.987) 0.956 (0.935–0.972) 0.785 (0.700–0.859) 0.992 (0.980–0.998)

All external validation datasets 698 20 3582 260 0.972 (0.957–0.983) 0.932 (0.924–0.940) 0.729 (0.699–0.757) 0.994 (0.991–0.997)

Additional validation

ProCaLNMD 57 1 457 23 0.983 (0.908–1.000) 0.952 (0.929–0.969) 0.713 (0.600–0.808) 0.998 (0.988–1.000)

Junior pathologist 1 50 8 476 4 0.862 (0.746–0.939) 0.992 (0.979–0.998) 0.926 (0.821–0.979) 0.983 (0.968–0.993)

Junior pathologist 2 51 7 475 5 0.879 (0.767–0.950) 0.990 (0.976–0.997) 0.911 (0.804–0.970) 0.985 (0.970–0.994)

Senior pathologist 1 57 1 480 0 0.983 (0.908–1.000) 1 1 0.998 (0.988–1.000)

Senior pathologist 2 57 1 480 0 0.983 (0.908–1.000) 1 1 0.998 (0.988–1.000)

Junior pathologist 1 with ProCaLNMD assistance 56 2 476 4 0.966 (0.881–0.996) 0.992 (0.979–0.998) 0.933 (0.838–0.982) 0.996 (0.985–1.000)

Junior pathologist 2 with ProCaLNMD assistance 57 1 475 5 0.983 (0.908–1.000) 0.990 (0.976–0.997) 0.919 (0.822–0.973) 0.998 (0.988–1.000)

Senior pathologist 1 with ProCaLNMD assistance 58 0 480 0 1 1 1 1

Senior pathologist 2 with ProCaLNMD assistance 58 0 480 0 1 1 1 1

The training, internal and additional validation dataset were from Sun Yat-sen Memorial Hospital of Sun Yat-sen University [SYSMH]. The external validation dataset 1 was from the Third Affiliated
Hospital of Sun Yat-sen University [SYUTH]. The external validation dataset 2 was from Nanfang Hospital of Southern Medical University [NFH]. The external validation dataset 3 was from Zhujiang
Hospital of Southern Medical University [ZJH]. The external validation dataset 4 was from the First Affiliated Hospital of Chongqing Medical University [CMUFH]. TP = true positive, FN = false negative,
TN = true negative, FP = false positive, PPV = positive predicative value, NPV = negative predicative value, CI = confidence interval, ProCaLNMD = prostate cancer lymph node metastasis detector.

Table 2: The diagnostic performance of ProCaLNMD and pathologists in different datasets.
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Moreover, it performed well in multiple external centres,
achieving high sensitivity and specificity, which is chal-
lenging for AI models aimed at detecting pathological
LNM. Several studies16–23 have reported the development
of AI models for LNM detection on histopathological
slide images. However, few20,23 of these previous studies
achieved sensitivities exceeding 0.95 under the premise
of specificities no less than 0.90 in independent external
validation datasets. In this study, ProCaLNMD was vali-
dated in four independent external datasets containing
4560 WSIs (10,405 lymph nodes) from 770 patients, with
sensitivity > 0.954 and specificity > 0.920 in each dataset.
The favourable generalizability of ProCaLNMD may be
attributed to the following factors. First, the training
dataset were collected from a 7-year consecutive cohort
from SYSMH, a high-volume tertiary hospital in China,
covering diverse representations of men with PCa of
Chinese population. Second, we adopted supervised
learning strategy with pixel-level detailed manual anno-
tation to optimize diagnostic performance. Third, Pro-
CaLNMD was trained using the “human-in-the-loop”28

principle. Specifically, a dynamic training scheme,
which allowed senior pathologists to get real-time in-
sights into complex samples that confuse the AI model
and offer timely expert-knowledge guidance, was applied
during training phase. In short, the consistent diagnostic
performance of ProCaLNMD was satisfactorily demon-
strated, indicating its reliability and general applicability.

The potential utility of integrating ProCaLNMD into
the clinical workflow was further validated.
www.thelancet.com Vol 71 May, 2024
ProCaLNMD assisted pathologists, regardless of their
seniority and especially for juniors, in identifying pre-
viously missed positive slides, resulting in an improve-
ment in sensitivity ranging from 1.7% to 10.3%. In
addition, with the assistance of ProCaLNMD, patholo-
gists spent significantly less time (27–34%) reviewing
the slides compared with that without assistance. With
the help of ProCaLNMD’s time-effective capabilities,
serial sectioning, which can reduce the risk of missed-
diagnosis of nodal micrometastasis,29 is expected to
become a routine practice. Currently, owing to the
relative lack of pathologists and heavy workload of
pathological assessment, only one to two sections of
each formalin-fixed, paraffin-embedded lymph node are
routinely used for H&E-staining and pathological eval-
uation, increasing the risk of missing metastatic cancer
in the rest of the lymph nodes.29 However, the labour
time required for serial sectioning significantly in-
creases.10 The application of ProCaLNMD is promising
in resolving this contradiction, reducing the risk of
overlooking micrometastasis, and improving survival
outcomes in patients with PCa.

In the real-world clinical practice, ProCaLNMD
would serve as a useful tool to help pathologists quickly
notice suspicious areas of metastatic cancer, and assist
in substantially reducing the slide reviewing time. Given
the high sensitivity and relatively low PPV of Pro-
CaLNMD, pathologists would need to review all positive
alarms identified by ProCaLNMD to identify true posi-
tive from false positive. Further, we analysed the false
9
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alarms generated by ProCaLNMD and found that they
can be classified into four categories: vascular walls,
small stains or foreign objects, high endothelial venules
in the lymph nodes, and normal cells containing loose
cytoplasm in the lymph sinuses (Appendix p 13). Pa-
thologists, regardless of their seniority, readily recog-
nised these false alarms, and little burden was caused
for pathologists accordingly.

Our study has some limitations. First, all slides used
in our study were collected and analysed retrospectively,
which may lead to a degree of selection bias. Still, the
favourable performance of ProCaLNMD in multicentre
consecutive cohorts (3–10-year) indicate that the bias is
to some extent not prominent. Second, given that some
subgroups only had a small number of cases, there is
still room for improvement in the present study sample
size. Therefore, further prospective validation involving
more centres and larger sample size is required. Third,
while we used high-resolution WSIs produced by whole-
slide imaging scanners to develop ProCaLNMD, digital
microscopes are more commonly used in resource-
limited regions of developing countries. Hence, the
development of AI models based on affordable devices
is to be explored. Fourth, while ProCaLNMD was
trained and validated in multiple large Chinese cohorts,
its applicability to other regional populations remains to
be tested.

In summary, ProCaLNMD can decrease the number
of missed diagnoses in pN + patients with PCa by
approximately 7.3% compared with that of routine path-
ological reports. Furthermore, it can enhance the accu-
racy and efficiency of pathological evaluations of PCa
LNM. The effectiveness and generalisability of Pro-
CaLNMD have been confirmed via multicentre external
validation, making it a valuable tool in clinical settings.
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