
Metagenomic Discovery of 83 New Human Papillomavirus
Types in Patients with Immunodeficiency

Diana V. Pastrana,a Alberto Peretti,a Nicole L. Welch,a Cinzia Borgogna,b Carlotta Olivero,b Raffaele Badolato,c

Lucia D. Notarangelo,c Marisa Gariglio,b Peter C. FitzGerald,d Carl E. McIntosh,d Jesse Reeves,a Gabriel J. Starrett,a

Valery Bliskovsky,e† Daniel Velez,f Isaac Brownell,g Robert Yarchoan,h Kathleen M. Wyvill,h Thomas S. Uldrick,h

Frank Maldarelli,i Andrea Lisco,j Irini Sereti,j Christopher M. Gonzalez,k,l Elliot J. Androphy,m Alison A. McBride,n

Koenraad Van Doorslaer,o,p,q,r Francisco Garcia,s Israel Dvoretzky,t Joceline S. Liu,u Justin Han,u Philip M. Murphy,f

David H. McDermott,f Christopher B. Bucka

aLaboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, USA
bNovara Medical School, Novara, Italy
cUniversity of Brescia, Brescia, Italy
dNCI Genome Analysis Unit, NCI, Bethesda, Maryland, USA
eCancer Genetics Branch, NCI, Bethesda, Maryland, USA
fMolecular Signaling Section, Laboratory of Molecular Immunology, NIAID, Bethesda, Maryland, USA
gNational Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
hHIV and AIDS Malignancy Branch, NCI, Bethesda, Maryland, USA
iHost Virus Interaction Branch, NCI, Bethesda, Maryland, USA
jLaboratory of Immunoregulation, NIAID, Bethesda, Maryland, USA
kDepartment of Urology, Case Western Reserve University, Cleveland, Ohio, USA
lDepartment of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
mStark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
nDNA Tumor Virus Section, NIAID, Bethesda, Maryland, USA
oSchool of Animal and Comparative Biomedical Sciences, Department of Immunobiology, Cancer Biology
Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA

pSchool of Animal and Comparative Biomedical Sciences, Department of Immunobiology, Genetics Graduate
Interdisciplinary Program, University of Arizona, Tucson, Arizona, USA

qBio5 Institute, University of Arizona, Tucson, Arizona, USA
rUniversity of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
sMel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA
tYale University, New Haven, Connecticut, USA
uNorthwestern University Feinberg School of Medicine, Chicago, Illinois, USA

ABSTRACT Several immunodeficiencies are associated with high susceptibility to
persistent and progressive human papillomavirus (HPV) infection leading to a wide
range of cutaneous and mucosal lesions. However, the HPV types most commonly
associated with such clinical manifestations in these patients have not been system-
atically defined. Here, we used virion enrichment, rolling circle amplification, and
deep sequencing to identify circular DNA viruses present in skin swabs and/or wart
biopsy samples from 48 patients with rare genetic immunodeficiencies, including pa-
tients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syn-
drome, or epidermodysplasia verruciformis (EV). Their profiles were compared with
the profiles of swabs from 14 healthy adults and warts from 6 immunologically nor-
mal children. Individual patients were typically infected with multiple HPV types; up
to 26 different types were isolated from a single patient (multiple anatomical sites,
one time point). Among these, we identified the complete genomes of 83 previously
unknown HPV types and 35 incomplete genomes representing possible additional
new types. HPV types in the genus Gammapapillomavirus were common in WHIM
patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus.
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Preliminary evidence based on three WHIM patients treated with plerixafor, a leuko-
cyte mobilizing agent, suggest that longer-term therapy may correlate with de-
creased HPV diversity and increased predominance of HPV types associated with
childhood skin warts.

IMPORTANCE Although some members of the viral family Papillomaviridae cause
benign skin warts (papillomas), many human papillomavirus (HPV) infections are not
associated with visible symptoms. For example, most healthy adults chronically shed
Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To fur-
ther explore the diversity of papillomaviruses, we performed viromic surveys on im-
munodeficient individuals suffering from florid skin warts. Our results nearly double
the number of known Gamma HPV types and suggest that WHIM syndrome patients
are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results
suggest that treatment with the drug plerixafor may promote resolution of the un-
usual Gamma HPV skin warts observed in WHIM patients.

KEYWORDS epidermodysplasia verruciformis, gammapapillomaviruses,
metagenomic, next-generation sequencing, plerixafor, skin swabs, WHIM syndrome

The Papillomaviridae family is a large and diverse family of nonenveloped, 8-kb
double-stranded circular DNA viruses named for their ability to cause skin warts

(papillomas) in specific vertebrate hosts (1). Human papillomaviruses (HPVs) are divided
into five genera designated Alphapapillomavirus, Betapapillomavirus, Gammapapilloma-
virus, Mupapillomavirus, and Nupapillomavirus (for brevity, the name of each genus has
been abbreviated to Alpha, Beta, Gamma, Mu, and Nu, respectively, in this article). A
group of nearly two dozen genus Alpha HPV types, including HPV16 and HPV18,
preferentially infect mucosal epithelia. Although these “high-risk” types generally do
not cause visible mucosal lesions, they can cause carcinomas of the cervix, anus,
oropharynx, and other sites in a minority of chronically infected individuals (2). Other
Alpha types, such as HPV6, cause benign genital warts, while Alpha HPVs 2, 27, and 57
cause skin warts in areas such as the palms of the hands. In most individuals, detectable
Alpha HPV infections are transient, typically clearing within a period of months.

Individuals with a rare group of genetic immunodeficiencies collectively known as
epidermodysplasia verruciformis (EV), including but not exclusively those with a defi-
ciency in EVER1 or EVER2 proteins (3, 4) typically present with flat warts across various
skin surfaces as the sole clinical manifestation. The lesions are caused by genus Beta
HPV types, such as HPV5 and HPV8, that normally infect the hair follicles and skin of
most healthy adults without causing warts. In EV, dysplastic wart-like lesions can
progress to squamous cell carcinoma (SCC). Although it is well established that Beta
HPVs, together with ultraviolet (UV) light, are carcinogenic in EV patients, their pro-
posed causal role in SCC in the general population remains inconclusive (5, 6). Animal
model studies support the concept that Beta HPVs might play a so-called “hit-and-run”
role in SCC development (7–9).

Patients with warts, hypogammaglobulinemia, infections, and myelokathexis
(WHIM) syndrome suffer from an extremely rare genetic immunodeficiency caused by
various gain-of-function mutations in the C-X-C chemokine receptor gene CXCR4 (4, 10).
Recently, plerixafor (AMD3100, Mozobil), a CXCR4 antagonist, has been used to treat
WHIM patients, resulting in partial responses in the outward appearance of skin warts
(11, 12, 48). The distribution of HPV types has been previously described for a few WHIM
syndrome patients and includes Alpha (HPV2, -6, and -11) and Beta (HPV5 and -23) types
(13, 14).

Although some HPV types in the genus Gamma transiently cause skin warts, others
are associated only with subclinical infection. Healthy adults typically shed low levels of
one or a few Gamma HPV types from apparently healthy skin and mucosal surfaces.
Recent deep sequencing studies have revealed highly divergent new Gamma types,
some of which appear to be associated with SCC (15).

It is known that the E6 and E7 proteins of high-risk Alpha papillomaviruses differ in
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their affinity to degrade p53 or bind Rb by an order of magnitude compared to low-risk
Alpha papillomaviruses or other genera (reviewed in reference 16). While these differ-
ences help to elucidate why some viruses have a more aggressive profile than others,
they do not fully elucidate the underlying mechanisms that lead to different clinical
manifestations for the other genera. A recent study, however, highlights how some
differences in HPV biology lead to drastically different outcomes. By studying EV-like
patients who lacked EVER1/2 mutations and instead had CIB1 (calcium and integrin
binding protein 1) deficiencies, de Jong and colleagues uncovered a role for the
CIB1-EVER1-EVER2 complex on HPV-related disease (17). In healthy individuals, the
CIB1-EVER1/2 complex represses Beta HPVs, but Alpha, Gamma, and Mu papillomavi-
ruses utilize their E5 and E8 proteins to counteract this repression. Additional uniden-
tified repression mechanisms in keratinocytes probably account for the lack of clinical
manifestations of non-Beta HPVs in most healthy individuals. In patients with CIB1,
EVER1, or EVER2 mutations, the Beta HPVs, which lack E5, are able to replicate very
efficiently in the absence of a functional CIB1-EVER1-EVER2 complex. Although the
biology of the Gamma genus is poorly understood, some differences have been noted
such as the loss of E6 in the Gamma-6 species of HPVs (18), and the ability of the E6 of
some Gamma types, such as HPV197, to interact with tumor suppressor proteins, such
as TP53.

In the present study, we used recently developed virion enrichment and deep
sequencing methods to survey HPV sequences in human skin. We sampled patients
with several immunodeficiencies associated with persistent warts (WHIM syndrome, EV,
Gata2, etc.), as well as healthy individuals with or without warts or other types of skin
lesions.

RESULTS
Identification of known taxa in samples. A total of 125 samples, including skin

swabs, biopsy specimens, and whole-blood samples, were obtained from immunocom-
promised patients, patients with skin conditions not known to be associated with warts
(lichen sclerosus [LS] and acne inversa [AI]), and healthy volunteers (see Table S1 in the
supplemental material). Samples were treated with detergent and nuclease to reduce
the amount of nonviral nucleic acids, and virions were separated from the lysate by
ultracentrifugation through Optiprep gradients (19). Viral DNA was extracted from
gradient fractions, amplified by random-primed rolling circle amplification (RCA), and
sequenced on the Illumina MiSeq platform.

In swabs from immunologically normal individuals (healthy and LS subjects), bac-
terial and human reads comprised the majority (range, 81% to 99%) of the sample, and
no more than 12% of the reads were attributable to HPVs (Fig. 1 and Table S1). In
contrast, HPV sequences comprised the majority of the reads in all EV patients (97% to
99%). In a majority of WHIM patient samples, HPVs were also highly abundant,
accounting for up to 94% of the sample. Merkel cell carcinoma (MCC) patient samples
(n � 7) varied greatly in their HPV content, with some patients having no HPV reads,
and one patient having 87% HPV reads. Unexpectedly, only one of the swabs from MCC
patients (M292) had a detectable amount of Merkel cell polyomavirus (MCPyV), but the
172 reads with identity to MCPyV were well below the 2,000-read confidence threshold.

Identification of known taxa in wart biopsy samples or scrapings. We compared
the HPV profile for all available wart biopsy samples from six immunologically normal
individuals (children) versus wart biopsy samples or lesions from WHIM patients, a WILD
(warts, immunodeficiency, lymphedema, anogenital dysplasia) patient, and an idio-
pathic CD4 lymphopenia patient (ICL) (Fig. 2 and Table S1). Five out of six warts from
immunologically healthy individuals showed a single HPV type, and the remaining
sample showed two HPV types. HPVs in warts from healthy children were exclusively
types known to be common in transient skin warts (Mu HPV1; Alpha HPV2, and HPV57)
(20). Five of the 10 wart and tissue biopsy specimens from WHIM patients had more
than one HPV type. In addition to the expected common wart-causing types found in
healthy individuals, WHIM-associated tissues also contained abundant Beta and Gamma
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HPVs, as well as various human polyomaviruses (HPyV6, HPyV10, STLPyV, and TSPyV).
Polyomaviruses were usually present in relatively low abundance, except for one case
where HPyV6 was dominant. We had only one WILD patient and one ICL patient for
which biopsy specimens were available (only two biopsy specimens for the same ICL
patient had detectable HPV reads), so it is difficult to draw a conclusion. However, it is
notable that the WILD patient sample possessed the typical childhood wart type
(HPV57), while the ICL patient sample had more unusual Alpha and Gamma types.

To compare the proportion of HPV and HPyV reads obtained by the two methods
of sampling, we performed a Mann-Whitney U test on 52 swabs and 14 biopsy
specimens/scrapings from WHIM patients. There were statistically significantly more
HPV and HPyV reads obtained from biopsy samples/scrapings (P � 0.043 and P � 0.022,
respectively) than from swabs. The proportions of human, bacterial, plasmid, and other
viral reads were not significantly different between the sampling methods. The meth-
odological difference was even more pronounced in healthy individuals, where HPV

FIG 1 Known taxa in skin swabs from healthy subjects, WHIM patients, and patients with other diseases.
Donut graphs show the total numbers of reads of known taxa of interest detected in swab samples from
individuals from various categories: healthy lab volunteers (TVMBS), lichen sclerosus (LS) patients, Merkel
cell carcinoma (M) patients, EV patients, GATA2 (GA2), DOCK8, and WHIM patients (W or WG). For the
WHIM patients, each graph shows the first collected sample of affected nongenital or genital (-Gen) skin
for each patient.
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accounted for 99.9% of the reads in biopsy samples (n � 6), whereas in swabs (n � 8),
HPV sequences constituted only 2.4% of the reads (P � 0.0001).

Identification of known taxa in blood. A comprehensive recent report on the DNA
virome of 8,240 healthy blood donors found that HPV and HPyV viremia is rare (21). We
observed similar results for blood samples from eight WHIM patients. No HPV se-
quences were identified, and only two samples had low levels of polyomavirus se-
quences (HPyV7 and JCPyV). Bacterial and bacteriophage sequences accounted for
different fractions of reads in the blood samples. In three blood samples, the predom-
inant observed sequences were torque teno viruses (TTVs) (family Anelloviridae). Since
the MiSeq technology used for this work does not appear to be compatible with
sequencing the GC-rich hairpin at the TTV origin of replication, the complete genomic
sequences of these novel TTV isolates will be the subject of a future study.

Identification of novel viral types and species. HPVs are typed according to
nucleotide alignments of their L1 coding sequences. New HPV types are �90% identical
to their nearest neighbor within a species, whereas members of new species diverge
from those of their nearest neighbor species by �30% (1). We were able to identify the
complete genomic sequences of 83 previously unknown HPV types (GenBank submis-
sion performed on 2 August 2017), 69 of which occupy the highly diverse genus
Gamma (Fig. 3). Four of the new types represent new species. Incomplete genomic
sequences of an additional 35 potentially novel Gamma types (including some possible
new species) were also observed. No representatives of new papillomavirus genera (L1
with �60% identity to the nearest neighbor) were found. Since this discovery method

FIG 2 HPVs and HPyVs in wart biopsy samples/scrapings. (A and B) Warts from immunologically normal
subjects (A) or immunodeficient patients (WILD, idiopathic CD4 lymphopenia [ICL], and WHIM [W]
patients) (B) were assessed for the presence of distinct HPV types. Genera are depicted in different colors,
with slices of the same color representing different types in the same genus. Blue numbers inside the
donut represent the total number of viral types for the sample. In some cases, such as W03, some of the
types represented a very small fraction of the whole, and wedges are not discernible. Black numbers on
the donut correspond to the HPV type or isolate designation (letters are used to denote not-yet-assigned
new HPV types), or human polyomavirus (HPyV) species number. For example, Wart I contained a single
type, HPV1 from the Mupapillomavirus genus (Mu). For clarity, only the larger predominant graph
segments are annotated with HPV type designations. Some patients had biopsy specimens of multiple
warts, and each is shown individually.
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FIG 3 Phylogenetic analysis of reported HPV types. (A and B) Protein sequences from L1 (A) or E1 (B) were used to construct
phylogenetic trees. At least one HPV type from each previously known species (black font) was analyzed along with each of the
83 complete HPV genomes catalogued in the current study. Asterisks were used to show known representative species that did
not fit due to the figure’s space restrictions (counterclockwise, Beta 3-HPV49, Gamma 20-HPV163, Gamma 21-HPV167, and Gamma
2-HPV48). HPV genera are depicted by different colors as follows: orange, Alpha; red, Beta; blue, Gamma; pink, Mu; green, Nu. Dotted
lines are not significant; they were used to indicate HPV type names. Arrows indicate potential new species.
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has previously been used to detect extremely divergent papillomaviruses and polyo-
maviruses associated with fish (22) (unpublished results), it seems unlikely that any
previously undiscovered HPV genera would have been missed at the bioinformatic
level.

Of the 83 novel genomes that are complete, 49% were from WHIM patients, 19%
were from EV patients, 12% were from healthy individuals, 10% were from MCC
patients, and the remainder were from HIV, DOCK8, and GATA2 patients. Thirty-seven
of the novel HPVs (33 complete genomes and 4 incomplete genomes) occurred in more
than one sample. Nine were present in different samples from the same individual,
while the remaining 28 were associated with samples from more than one patient or
volunteer. For example, the Gamma species 5 isolate w20c04 was initially observed in
sample 47 (a WHIM patient) as well as in different anatomical sites and dates from the
same person, once each in two other WHIM patients hailing from different continents
(samples 75 and 86), and once in the DOCK8-deficient patient.

A potential pitfall of massive parallel sequencing is that contig assembly can result
in the artifactual assembly of chimeric genomes, particularly when closely related viral
strains are present in the same sample. To address this issue, we created a second
phylogenetic tree based on E1 protein sequences (Fig. 3B). The E1 and L1 protein
phylogenetic trees show essentially identical topology for our novel sequences. The
results indicate that artifactual chimerization between early and late genome segments
does not appear to have occurred in the current study.

Using the approach described above, we attempted to detect additional examples
of new species within known vertebrate DNA virus families of interest. Contigs from
each sample were probed using a low-stringency Blastx alignment against a custom-
made library consisting of highly conserved proteins from each selected viral family.
This approach detected gemycircularvirus-like sequences and a known species of
human poxvirus, molluscum contagiosum virus (Table S1).

Predominant HPV genera in swabs from immunodeficient or diseased patients.
In addition to assessing the abundance of HPV reads that we observed for five disease
conditions examined (MCC, EV, GATA2, DOCK8, and WHIM patients), we assessed HPV
genus diversity. Swabs from various anatomical sites from diseased or immunodeficient
patients taken at a single time point often showed multiple HPV types (24 out of 31
samples where HPV was detected), with up to 17 types in both MCC and EV patients
and up to 26 types in WHIM patients (Fig. 4 and Table S1). In contrast, swabs from only
two healthy individuals (TVMBSF and TVMBSH) had enough HPV reads to reach our
threshold of 2,000 reads, and they had one or two HPV types, respectively (Table S1).
In EV and MCC patients, members of the genus Beta generally predominated. One
exception occurred in an MCC sample that yielded an Alpha type originally discovered
in a flat skin wart (23). In most WHIM patients (except in WG3, a WHIM patient from
Italy), Beta HPVs were not dominant, although they were readily identified in several
samples. In addition, WHIM patients tended to have a greater diversity of HPV types,
with several samples containing members of three HPV genera. In WHIM patient
samples, Gamma HPVs were often predominant, in some cases by the number of reads
(W01, W07, W14, W20, W22, W24, W27, WG1, and WG2) and in other cases, by the
number of different Gamma types (W11, W18, W20, W23, W34, and W35). Swabs from
genital samples of WHIM patients (designated W#-Gen) were dominated by known
mucosal Alpha types (Fig. S1).

For the single GATA2 and DOCK8 patients, the pattern of HPV types was closer to
what was seen in WHIM patients than in EV patients, with few Beta types and more
Alpha and Gamma types. The single sample swab from an ICL patient contained a Beta
type.

Effects of plerixafor therapy on WHIM patients. Treatment of WHIM patients with
plerixafor increases the absolute leukocyte count in peripheral blood by effectively
mobilizing myeloid and lymphoid cells out of the bone marrow and possibly other
storage sites into circulation. Preliminary evidence suggests that plerixafor may reduce
the frequency of bacterial and viral infections in WHIM patients (12, 24, 25). HPV type
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analysis for three patients (W06, W20, and W27) who were treated with prolonged open
label plerixafor in phase 1 clinical trial NCT00967785 (clinicaltrials.gov) is shown in Fig. 5
and Table S1. A detailed account of the clinical effects of the treatment is described in
a separate article (reference 48, patient 1). The diversity of HPVs dramatically declined
during the trial and corresponded to the reduction in the outward appearance of warts.
The Gamma HPV predominance typical of WHIM patients became less evident and
posttreatment profiles were more dominated by Alpha HPV types (such as HPV3, -6, -27,
and -57). Prior to treatment, patient W20 had 13 to 18 different detected viral types in
pooled specimens (Fig. 4, Fig. 5, and Table S1). After 7 to 18 months of treatment, the
patient had either very low levels of HPVs (�2,000 [2K] reads) or only one to three
Gamma HPV types (and, in one sample, BKPyV) depending on the swabbed site (Fig. 5).
For patient W27, the first available sample was from 1 year posttreatment and 22
different viruses could be detected (Fig. 4), with the vast majority (95%) belonging to
the Gamma genus. After an additional 4 months on treatment (Fig. 5), the samples
showed a predominance of Alpha HPV types (59% to 100%, depending on the sample).

FIG 4 Comparison of viral diversity among skin swabs of patients. (A to D) Analysis of pooled swab samples from
affected (warts, rashes, etc.) and healthy skin from the earliest single time point for MCC patients (A), EV patients
(B), a GATA2, a DOCK8 and an ICL patient (originally classified as EV-like) (C), and WHIM patients (D). Blue numbers
inside the donut represent the numbers of viral types. Black numbers on the donut represent predominant HPV
types (letters are used to denote not-yet-assigned new HPV types).
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DISCUSSION

Discovery of novel HPVs has traditionally been accomplished through PCR using
partially degenerate oligonucleotides designed to target conserved regions of the
genome (26, 27). Even as more HPV types have been added to primer design strategies,
it remains difficult to make oligonucleotides that have adequate sensitivity across
genera or within the highly diverse genus Gamma HPV (28). The advent of deep
sequencing has provided a less biased approach for metagenomic discovery and has
accelerated the discovery rate of new HPVs, including types that are not detected with
“consensus” PCR (15, 29, 30). However, even studies utilizing deep sequencing have
yielded only a few new HPV types with complete genomes (e.g., four types discovered
by Arroyo Mühr and colleagues [15] and two types by Bzhalava [29]). Our current
approach to papillomavirus discovery (19) provides another layer of sensitivity by
physically enriching for encapsidated viral DNA (ultracentrifugation) followed by
random-primed amplification of circular DNA through RCA. For skin samples from
immunosuppressed individuals, the method often achieves deep sequencing runs that
are dominated by HPV sequences. In some of our samples, both from wart biopsy
samples and from skin swabs, more than 90% of reads mapped to HPVs. The methods
seem to be able to discriminate between low and high virus burdens. The skin samples
from patients with skin conditions not known to be associated with HPVs such as acne
inversa and lichen sclerosus were not dominated by viral reads (�13% HPV reads) and
did not have more than two HPV types present.

This study began as an exploratory exercise into the papillomavirus and polyoma-

FIG 5 HPV typing for three individuals on plerixafor therapy. Analysis of samples from WHIM patients
during long treatment. Each donut represents pooled samples from several anatomical locations. Samples
from patient W06 are from the same time point, the first donut contains swabs from the following sites:
right (R) 4th finger, R wrist, and an oral lesion; the second donut represents pooled swabs from the R 2nd
finger, R forearm, and R palm. Samples from patient W20 are from different time points: (i) R calf, R ankle,
left (L) top of foot, L thigh, and R sole of foot; (ii) normal skin of the abdomen; (iii) L palm and right foot,
(iv) L eye cantus; (v) R leg follicular lesions; (vi) R leg open wound. Samples from patient W27 are from the
following sites: (i) R toes, R dorsum of foot, R middle finger, R ankle, R jaw, L hand; (ii) R middle finger, L
ring finger, L hand, R toes, R calf; (iii) R sole; (iv) L hand periungal. The first available time points for W20
and W27 were first shown in Fig. 4, and are also added here for comparison. Blue numbers inside the donut
represent the numbers of viral types. Black numbers on the donut represent predominant HPV types (letters
are used to denote not-yet-assigned new HPV types).
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virus diversity in the skin of patients with immunodeficient conditions in order to detect
novel members of each family. The rarity of some of these genetic conditions, as well
as the laboriousness of the method resulted in limitations in this study. For example, it
was difficult to obtain multiple samples from some of the conditions, such that Job
syndrome and GATA2 and DOCK8 deficiency are each represented by a single sample.
The fact that some samples (i.e., some healthy individuals) were pooled for conve-
nience, while others were processed individually also complicates the analysis. Several
diseases, including HIV infection, MCPyV-induced skin cancer, and inflammatory skin
disease, all of which can result in susceptibility to papilloma- or polyomaviruses, were
included simply based on availability of samples. The variability in sample number and
body sites sampled added to the complexity in evaluation and interpretation of the
data.

Quantitative PCR can readily detect MCPyV DNA in skin swabs of healthy individuals
(31) or the unaffected skin of a subset of MCC patients (32). While we detected a large
amount of MCPyV in pooled samples from healthy individuals, MCPyV was surprisingly
not detected in six of seven MCC patients and was only marginally detectable in the
seventh MCC patient. The discrepancy between our findings and prior results from MCC
patients could be due to differences in methodology or sample selection (not all the
tumors from our MCC patients tested positive for MCPyV in the original diagnosis). In
particular, it is unclear whether the virion enrichment/RCA method used in the present
study is as sensitive as qPCR. In MCC, productive virions are not usually found, as the
virus is integrated into the human genome, so our method would miss their detection.
Our method is particularly suited to disease states where the HPV is not integrated such
as is the case for Beta HPVs in EV (33); however, little is known about the integration
status of Gamma HPVs even in cases where it is associated with cancer (15).

Our findings better define the cutaneous DNA virome associated with specific
immunodeficiency states. WHIM patients are susceptible to a broad range of bacterial
infections, whereas their susceptibility to viruses seems to be markedly skewed toward
Gamma HPVs. In contrast, EV patients appear to be vulnerable to uncontrolled Beta HPV
infection. Both types of patients may also be less likely to control some types of human
polyomavirus infections. Although seropositivity against TSPyV is high in healthy adults,
it is rare to detect the virus in the skin of healthy individuals (34, 35) (unpublished
results). Several of our skin swabs/samples from WHIM patients were positive for TSPyV
DNA, as well as STLPyV, HPyV6, or HPyV10 DNA.

It has been speculated that both SDF-1 and/or CXCR4, which are dysregulated in
WHIM syndrome, affect the growth of keratinocytes (36). This might theoretically
account for the apparent failure of WHIM patients to control Gamma HPV infections.
Another hypothesis is that myeloid and lymphoid cells, including plasmacytoid den-
dritic cells, which express CXCR4 and are deficient in the blood in untreated WHIM
patients, may be involved in the control of HPV infections (37). The reduction of overall
HPV burden by the use of plerixafor in WHIM patients requires further investigation, but
it is certainly intriguing to speculate about the mechanisms through which infections
with this HPV genus are controlled. WHIM patients seem an ideal population in which
to study this phenomenon.

MATERIALS AND METHODS
Patient population. Patients signed informed consent forms, and protocols were approved by

Institutional Review Boards at the National Cancer Institute, National Institute of Allergy and Infectious
Diseases, University of Eastern Piedmont in Italy, and Northwestern University.

A combination of archived and prospectively collected samples were compiled for this study
(Table 1). Sixty patients with immunodeficiencies were included, 26 with WHIM syndrome, 3 with
epidermodysplasia verruciformis (EV), 7 with Merkel cell carcinoma (MCC), 18 with HIV infection (pooled
into one sample), 1 with GATA2 deficiency, 1 with DOCK8 deficiency, a lung aspirate from a patient with
Job syndrome (autosomal dominant hyperimmunoglobulin E IgE syndrome), 2 with idiopathic CD4
lymphopenia (ICL), and 1 diagnosed with WILD (warts, immunodeficiency, lymphedema, anogenital
dysplasia) syndrome. Although WILD syndrome is sometimes attributable to GATA2 deficiency, the
patient in the present study was not tested for GATA2 gene deletions. Lesions from the EV patients from
different time points and anatomical sites had been previously described (38–40). One of the ICL patients
was originally described as EV-like and later reassigned to unclassified immunodeficiency, as described
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by Landini et al. (41); the Job syndrome patient was also previously described (42). Thirteen patients with
other skin conditions in which skin-tropic viruses might hypothetically play a role (ten with lichen
sclerosus [LS], three with acne inversa [AI]) were included for comparison. A pool of vaginal washes from
six healthy volunteers was also processed and analyzed. Samples from 14 immunologically healthy adult
volunteers, without visible warts, were also included for reference (samples for 6 of the 14 were analyzed
individually, and samples from all 14 were analyzed as a pool) (43). In addition, six warts excised from
immunologically normal children were analyzed. All samples were anonymized prior to testing.

Processing of samples. (i) Swabs. Cotton-tipped wooden swabs (Greiner Bio-One) were used to
vigorously rub the skin in both affected areas and areas that appear healthy and not affected. Nuclease
cocktail (Dulbecco’s phosphate-buffered saline [DPBS], 10 mM MgCl2, 0.5% Brij-58, and 0.1% Benzonase;
all from Sigma) (150 �l) was added to each swab. Swab tips were placed inside an empty 2-ml fritted
centrifuge column (Pierce). The samples were incubated for 15 min at room temperature and spun at
1,000 � g for 5 min to recover the eluate. Columns containing the swabs were washed three times with
500 �l of wash buffer (DPBS, 800 mM NaCl, 0.5% Brij-58), and the supernatants were combined and
clarified by centrifugation at 5,000 � g for 5 min. Samples were incubated with 1 U/ml of Clostridium
perfringens neuraminidase (Sigma) for 15 min at 37°C and loaded onto a 27, 33, 39% iodixanol (Optiprep;
Sigma) step gradient which was run at 234,000 � g for 3.5 h at 16°C in an SW55Ti rotor (Beckman). The
Optiprep portion of the gradient, including the interface with the swab eluate, was collected by
puncturing the bottom of the tube and dividing the gradient into six fractions. The procedure is
described in detail at our laboratory website (https://home.ccr.cancer.gov/Lco/).

(ii) Tissue. Tissue biopsy specimens and curettages weighing less than 300 mg were minced with a
razor blade, transferred to siliconized 2-ml microcentrifuge tubes (BioPlas), and combined with 400 �l of
nuclease cocktail along with 1 U/ml neuraminidase. Material was further disrupted with a disposable
plastic pestle (Fisher Scientific) and incubated at 37°C for 20 min with rocking. The homogenate was then
treated with 1 mg of collagenase H (Sigma) overnight at 4°C. The sample was adjusted to 800 mM NaCl
and clarified at 5,000 � g. Clarified supernatant was transferred to a clean tube. The pellet was
resuspended in DPBS/0.8 M NaCl and sonicated for three cycles of 30 s on a cup horn (Misonix). The
sonicated homogenate was clarified as described above and combined with the previous supernatant,
loaded onto an Optiprep gradient, and processed as described above for the swabs.

(iii) Blood. Whole blood (sodium citrate or heparin anticoagulated) was diluted 1:6 into nuclease
cocktail and incubated for 30 min at 37°C. The sample was adjusted to 800 mM NaCl, clarified, incubated
with neuraminidase, and then loaded onto an Optiprep gradient.

Rolling circle amplification. Rolling circle amplification (RCA) was performed as previously de-
scribed (19). Briefly, 200 �l of each fraction was treated with 50 �l of digest buffer (250 mM Tris [pH 8],
125 mM EDTA, 2.5% SDS, 2.5% proteinase K [Qiagen], and 50 mM DTT) to extract DNA. The digestion
products were incubated at 50°C for 15 min and heat inactivated at 72°C for 10 min. To precipitate the
DNA, 125 �l of 7.5 M ammonium acetate and 975 �l of 95% ethanol were added, incubated at room
temperature for one hour, and then incubated overnight at 4°C. After the samples were allowed to

TABLE 1 Characteristics of patients and samples in this study

Patient/volunteer
type

No. of
patients

No. of
samples

Type of sample
(no. of samples)

Age
distributiona

Sex
distributionb

Healthy adults 20c 9 Swabs (8), vaginal washes (1) Unknown Unknown
Healthy children 6 6 Wart biopsies (6) Unknown Unknown

Subjects with:
GATA2 1 1 Swabs (1) 26 F (1)
Dock-8 1 1 Swabs (1) 11 F (1)
Job syndrome 1 1 Lung aspirate (1) 28 F (1)
WHIM 26 75 Swabs (52), biopsy (14), blood (9) 4–56 M (9), F (17)
Epidermodysplasia

verruciformis
3 3 Swabs (7) 45–65 M (3)

Idiopathic CD4
lymphopenia

2 7 Swabs (3), biopsy (4) 26–37 M (2)

WILD 1 1 Biopsy/curetting (1) 34 M
HIV 18d 1 Swabs (1) 30–60 M (16), F (2)
Merkel cell

carcinoma
7 7 Swabs (7) 58–84 M (6), F (1)

Lichen sclerosus 10 10 Swabs (10) Unknown Unknown
Acne inversa 3 3 Swabs (3) 35–71 M (1), F (2)

Total 99 125 Swabs (93), biopsies (21), blood (9),
vaginal wash (1), lung aspirate (1)

aThe age (in years) for one individual or age range (in years) for more than one individual is shown if known.
bThe sex (female [F] or male [M]) of the patient or volunteer is shown if known. The number of individuals is shown in parentheses.
cOne pool of swabs from 14 volunteers was processed as a single sample. The swabs from seven volunteers were processed individually. Vaginal washes from six
individuals were pooled.

dSwabs from all 18 patients were pooled into a single sample.
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equilibrate at room temperature, they were centrifuged for 1 h at room temperature (44), washed with
70% ethanol, and air dried for 10 min. Ten �l of sample buffer (TempliPhi; GE Healthcare) were used to
resuspend the pelleted DNA, and the sample was denatured at 95°C for 3 min and then cooled before
the addition of 10.2 �l of reaction buffer/enzyme mix. The RCA reaction was performed for 24 h at 30°C.
The reaction was inactivated at 65°C for 10 min. The DNA was precipitated again using 1/2 volume of
7.5 M ammonium acetate and 2.6 volumes of 95% ethanol, with the same incubation times as described
above, and resuspended in 75 �l of 2 mM Tris (pH 8) and 0.2 mM EDTA.

Next-generation sequencing and bioinformatics. The Nextera XT DNA sample kit (Illumina) was
used to prepare samples for sequencing on the MiSeq platform (Illumina) analysis as previously described
(19). Reads were trimmed for adaptors and quality and were assembled into contigs using CLC Genomics
Workbench 10.1.1 (Qiagen). Contigs were restricted to a minimum length of 300 nt. All contigs were
analyzed via megablast (NCBI) for the presence of known sequences (�95% identity) using the most
current nucleotide collection (nr/nt) database. This work utilized the computational resources of the NIH
HPC Biowulf cluster (http://hpc.nih.gov). Results from megablast were visualized utilizing Krona (45).

To identify distantly related previously unknown viral sequences, a protein database was created
utilizing a custom library of open reading frames that are known to be well conserved. The library was
empirically tested for its ability to identity distant members of the viral family which they represent. We
restricted the families to those which were of interest to the authors and likely to work within the context
of the ultracentrifugation enrichment step. The database contained the following 24 proteins (accession
numbers) HPV16 E1 (NP_041327.2), HPV16 L1 (NP_041332), WU polyomavirus VP1 (YP_001285487),
Merkel cell polyomavirus (MCPyV) VP1 (ADE45419), MCPyV large T antigen (LT) (YP_009111421), torque
teno virus (TTV) 3 orf1 (YP_003587868), TTV LC011 ORF1 (BAA93586), scorpion polyomavirus LT
(CRI06403), scorpion polyomavirus VP1 (CRI06401), budgerigar polyomavirus LT (YP_004061429), gemy-
circular sewage-associated circular DNA virus 2 replication-associated protein (YP_009177700), porcine
circovirus 2 replicase (NP_937956), seal anellovirus 2 ORF1 (YP_009058903), human alphaherpesvirus 1
DNA polymerase catalytic subunit (YP_009137105), human mastadenovirus 12 E2B (NP_040917), African
swine fever virus helicase (NP_042814), human parvovirus B19 NS1 (YP_004928144), squirrelpox A22R
Holliday resolvase (YP_008658536), yokapoxvirus A9L IMV essential in early morphogenesis
(YP_004821464), molluscum contagiosum virus A1L transcription factor (NP_044054), monkey poxvirus
I7L IMV processing peptidase (NP_536495), acanthocystis turfacea chlorella virus Z664R capsid
(YP_001427145), lymphocystis disease virus 1 major capsid protein (NP_044812), guitarfish adomavirus
helicase, L07, and L08 proteins (NC_026244.1). For the LT proteins, the J-domain was removed to avoid
detection of host J-domain proteins.

All contigs were queried against the protein sequence library utilizing tBlastn, and the resulting hits
were reevaluated using blastn against GenBank to eliminate false-positive results. The bioinformatic
pipeline described is available at https://github.com/BUCK-LCO-NCI/VirConTaxa. Contigs that were not
eliminated with these criteria were further evaluated if they fulfilled one of the three following
conditions. (i) The contig was at least 4,500 bp long. (ii) At least 2,000 reads mapped to the contig. (iii)
Contigs were less than 90% identical to known HPV types. These criteria increased the possibility of
finding novel full-length papillomavirus genomes with an average coverage of at least 33-fold over every
nucleotide position (read length after quality trimming was at least 150 bp). The raw reads used to
generate the contigs passing the filtering criteria were mapped back to their respective contigs to
validate the completion of the circular genome (i.e., to identify individual reads that overlapped both
ends of the candidate genome). When genomes were found to be incomplete, raw reads for that sample
were mapped back to the ends of the viral contig to identify overhanging reads that could be used to
extend and complete the viral genome. A valid extension of the viral contig required a minimum of 10�
read coverage identically matching at least 40 bp of the contig end and extending beyond that end at
least 15 bp. Additionally, 100% identity across the candidate sequence extension was required for all
supporting reads. The candidate sequence extension meeting these criteria was added to the end of the
contig, and this process was iteratively performed with each newly extended contig until the aforemen-
tioned criteria for a complete, circular genome was met or no sequence passing these criteria was found.

In four of the novel HPVs, some of the regions had �30-fold coverage. For these viruses, PCR primers
were designed in a region of L1 that seemed to be unique for the novel HPV. We performed 25 cycles
of PCR with Herculase II Fusion DNA polymerase (Agilent) and obtained either a full-length genome-sized
PCR product or a PCR product covering the region of sequence uncertainty. PCR products were fully
sequenced with traditional Sanger sequencing for small amplicons or in the MiSeq platform for almost
full-length genomes. The primers for full-length HPV isolate Gamma-w27c03a (GenBank accession
number MF588758) were w27c03L1F (5= AAC TGT GAA ACG CAG AAG ACG 3=) and w27c03L1R (5= TCT
AAG GGC ACT GAA CAG AGT TG 3=). The primers for L1 or full-length HPV isolate Gamma-w27c52c
(MF588691) were w27c52c_F (5= TGAAGGAGAAAGAGGTGACTGC 3=), w27c52c_R (5= GTTGGAACGAATG
CTAACTGCC 3=), and w27c52c_FL_F (5= ATCTGAGCCATTGTCTGTTTGC 3=). The primers for the incomplete
region of isolate Beta02-m292c14 (MF588682) were m292c31P1F (5= TCAAGGTCACGATCCCGATCC 3=)
and m292c14P1R (5= TCCAGTTCTTAATGGCACATACCC 3=). The primers for the full-length and incomplete
regions of isolate Gamma22-w18c39 (MF588741) were w18c39P2F (5= GAACGGGTCTTAACCGACTTGAG
3=), w18c39P1R (5= GTCTCCACTAGGATCTTGAAAATACAG 3=), and w18c39P3R (5= CCTTGTCATTATCAACA
GAGTC 3=).

Phylogenetic trees. Phylogenetic trees were constructed using at least one representative from each
known HPV species. Trees were created as reported previously (22) using the Phylogeny.fr website
http://www.phylogeny.fr/ without Gblocks in “One Click” mode (46, 47). Trees were displayed using
FigTree software 1.4.3 http://tree.bio.ed.ac.uk/software/figtree/.
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Accession number(s). MiSeq read sets have been deposited in the NCBI Sequence Read Archive and
assigned accession numbers SAMN08296086 to SAMN08296210. Viral sequences for both complete and
incomplete novel HPVs were deposited in GenBank and have been assigned accession numbers
MF588676 to MF588793.
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