
sensors

Article

Short-Time Fourier Transform Based on Metaprogramming and
the Stockham Optimization Method

Grzegorz Rybak * and Krzysztof Strzecha *

����������
�������

Citation: Rybak, G.; Strzecha, K.

Short-Time Fourier Transform Based

on Metaprogramming and the

Stockham Optimization Method.

Sensors 2021, 21, 4123. https://

doi.org/10.3390/s21124123

Academic Editor: Tomasz Rymarczyk

Received: 5 May 2021

Accepted: 12 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Applied Computer Science, Lodz University of Technology, 90-537 Lodz, Poland
* Correspondence: grzegorz.rybak@p.lodz.pl (G.R.); krzysztof.strzecha@p.lodz.pl (K.S.)

Abstract: The extension for high-performance STFT (Short-Time Fourier Transform) algorithm writ-
ten entirely in Java language for non-parallel computations is presented in the current paper. This
solution could compete with the best available and most common algorithms supplied by libraries
such as FFTW or JTransform. The main idea was to move complex computations and expensive
functions to the program generation phase. Thus, only core and essential operations were executed
during the runtime phase. Furthermore, new approach allows to eliminate the necessity for a rear-
rangement operation that uses the bit-reversal permutation technique. This article presents a brief
description of the STFT solution that was worked out as an extension for the original application, in
order to increase its efficiency. The solution remains a Stockham algorithm adapted using metapro-
gramming techniques and entails an additional reduction its execution time. Performance tests and
experiments were conducted using a Java Platform and JMH library, which allowed for accurate
execution time measurements. Major aspects of the Java VM like warm-up effects were also taken
into consideration. Solution was applied into Electrical Capacitance Tomography measurement
system in order to measure the material changes during the silo discharging industrial process.

Keywords: STFT; program optimization; butterfly operation; Stockham algorithm; metaprogram-
ming; Java; DSP; ECT

1. Introduction

During silos discharging process, particularly with grain or other loose material, dy-
namic effects frequently occur. The dynamic effects and other related to material conveying
processes phenomena have a major impact to the surrounding environment leading to
material depreciation or even industrial disasters. The silo vibrations are commonly caused
or induced by material discharge and a resonance between the eigen frequency of the
silo structure, the frequencies of self-excited material particles and the frequencies of the
operating machines [1].

One of the process tomography technique is Electrical Capacitance Tomography (ECT).
This allows to measure parameters, such as distribution of the material concentration in
the cross section of the silos, the change of material concentration in time during filling and
emptying the silo and the vibrations of the transported material. STFT algorithm presented
in this article was used to measure such frequency phenomena [2].

The methods for signal analysis like Frequency transform are still an essential tool in
digital signal processing (DSP). They are used by many algorithms, e.g., linear filtration,
correlation and frequency spectrum analysis. Particularly Discrete Fourier Transform (DFT)
and its optimized version Fast Fourier Transform (FFT) are used. Both give good results
for signals from stationary systems, but are not sufficient to describe signals generated by
systems whose properties change over time (not stationary). Such signals require special
treatment using dedicated analysis techniques. One such technique is the Short-Time
Fourier Transform (STFT), a very popular tool used in analysis of frequency changes char-
acteristic in time domain that provides information of harmonics magnitude in consecutive

Sensors 2021, 21, 4123. https://doi.org/10.3390/s21124123 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1250-2115
https://orcid.org/0000-0002-5648-0942
https://doi.org/10.3390/s21124123
https://doi.org/10.3390/s21124123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124123
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124123?type=check_update&version=2

Sensors 2021, 21, 4123 2 of 16

time ranges called time windows [3]. This method is also called the Time-Varying Fourier
Transform (TVFT) [4]. There are also other techniques as wavelet transform [5], but not
discussed in this paper.

The STFT is a key component of signal processing systems in many areas such as
medicine, industry measurement and control, audio signals analysis.

Many implementations of the STFT algorithm have been proposed, which differ in
terms of their memory and time complexity. Straightforward implementations of STFT are
not used, as they may have very high computational cost. The STFT may be computed
with filter banks or as consecutive FFT operations. It is possible to obtain transforms
in an iterative manner or using a recursive approach. Both ways have advantages and
disadvantages. The second approach requires additional memory for functions invocation
stack but the solution is more readable. When algorithm does not require more memory
for data processing than input array, it is called in-situ or “in place” solution [6]. On the
other hand, additional memory may allow to increase the performance.

The Sliding Window Discrete Fourier Transform SDFT is also known. Despite giv-
ing incredible results where time complexity equals O(n), SDFT is associated with error
propagation, as each subsequent result is based on the previous one [7].

Beside this, wide variety of optimization methods was introduced and described [8].
The basic ones are the decimation in time (the time samples are rearranged in alternating
groups) and the decimation in frequency (the frequency samples are computed separately
in alternating groups) [6]. In both cases a different radix may be used. Most often is: radix-2
or radix-4. Also mixed-radix and split-radix approaches are used. Great diversity exists in
the techniques for ordering and accessing the data at each stage of the FFT computation.
Optimizations in bit-reversal permutation are used. The Stockham auto-sort algorithm that
uses the properties of the SIMD (Single Instruction, Multiple Data) architecture should be
mentioned here. Although some digital signal processors (DSPs) provide native bit reversal
operations (hardware solutions), many modern desktop CPUs, do not have an opcode
to perform such function [9]. Another problem is developing an in-place algorithm that
overwrites its input with output with O(1) memory complexity. Popular optimization tricks
such as look-up tables roots of unity are also commonly used. There are also optimizations
designed for hardware implementations such as feed forward STFT.

Research conducted in the last decade on improving the performance of the Fourier
transform focuses primarily on the use of various parallel hardware architectures [10,11].
Particular attention should be paid to implementations that use modern graphics pro-
cessors [9,12–14]. Such solutions have been shown to give good results, both in terms of
efficiency and precision. NVIDIA, a leading manufacturer of graphics processors, Nvidia
offers a highly optimized cuFFT library that enables FFT calculations on its processors [15].
Solutions that use other optimization techniques apart from graphics processors are also
proposed [16,17]. It is also worth mentioning the works on the implementation of FFT in
programmable FPGA structures [18,19]. All of the above optimization techniques also ap-
ply to STFT. The use of GPUs to calculate STFT has been described among others in [20–22].
Attempts to implement STFT in FPGA structures are presented, for example, in [23,24].

A separate group of optimization methods, not yet fully recognized, are metaprogram-
ming techniques. Especially in the relation to STFT, the metaprogramming has proven to
be useful [8]. Previous research, particularly realizations in C++ using functions templates,
has shown the benefits of this approach for FFT [25,26].

Implementing complex algorithms such as STFT usually requires finding a reasonable
compromise between execution time and memory requirements. Resource limitations have
an unquestionable impact on the techniques that may be used. Storage issues are not as
crucial as they were a few years ago, but execution time still remains an issue. Thus, any
improvement to common algorithms increases their usability.

Until recently, metaprogramming was considered a relatively new technique. Nowa-
days we can see a large number of studies on this issue, which is still being devel-
oped [26–29]. Metaprogramming refers to a group of generative programming tech-

Sensors 2021, 21, 4123 3 of 16

niques [28]. It can be explained as programming at a higher level of abstraction, using
another program (metaprogram) to obtain the target application [29]. Metaprogramming
may thus be described as an automatic approach to program creation [30].

Metaprogramming techniques can be divided into three groups:

• aspect programming paradigm (AOP) [27],
• dynamic metaprogramming,
• static metaprogramming.

AOP refers to code injections in an implicit manner [1]. The external part of the script
is applied to the target application in places that have been earlier specified. Adding aspect
code to the program can take place before its launch as well as during operation. Aspect
programming is often used for code optimization and generalization.

Dynamic metaprogramming covers techniques such as introspection, reflection, dy-
namic polymorphism, and interpreters.

Static metaprogramming allows for precise code preparation before runtime, during
which expensive computations are transferred outside. Static metaprogramming covers
multiple solutions, such as preprocessors, compilators, linkers, macro, code templates, in-
line functions, and other code generators. The optimization techniques involve: unwinding
the loop (loop body code multiplication that leads to reduction of expensive ‘if’ or ‘jump’
instruction usage); vectorization [31] (additional SIMD operations utilizations and low-
level instruction execution during runtime); parametrization (the ability to generate final
code based on its domain parameters); code templates (as part of static polymorphism);
loop tiling or lookup table preparation [8].

Although metaprogramming techniques have been known for years, there has been
little attempt to apply them to digital signal processing algorithms so far. Possibilities
of using metaprogramming in DSP are discussed in [32]. An example implementation
of Feedback Delay Network (FDN) artificial reverberation algorithm is also presented
there. In [33] a Python non-uniform fast Fourier transform (PyNUFFT) package has been
presented. Metaprogramming libraries have been employed for its acceleration. GPU
implementation of FFT and DFT using meta programming optimization techniques is
presented in [34].

In particular, a group of static metaprogramming techniques is particularly interesting
for the purpose of optimizing the STFT. STFT algorithm has a large number of intermediate
products obtained during code execution that can be successfully moved into the code
generation phase. Obviously, this is extremely costly in terms of memory, but at the same
time it derives a significant profit in terms of execution time.

The research presented below in the article was aimed at reducing the computa-
tional complexity of the STFT calculation algorithm with the use of various optimization
techniques, with particular emphasis on metaprogramming implementation techniques.

2. Method

In order to increase STFT algorithm performance many optimization methods are used:

• decimation in time or frequency (divide and conquer mechanism),
• radix-4 decimation optimization (omits part of complex computation),
• Euler transform,
• lookup tables for root of unity,
• bit-reversal permutation optimizations (for an instance a SIMD optimizations),
• feedforward techniques,
• in-situ approach (low memory requirements),
• parallelism,
• group of metaprogramming techniques (loop unwinding, vectorization, parametriza-

tion, code templates, arithmetic operation reduction by moving part of them to
metaprogram).

Sensors 2021, 21, 4123 4 of 16

The Danielson-Lanczos lemma enables the Fourier Transform to be computed in a
faster way than using a naive DFT algorithm [6,35]. In this approach, the input sequence
is divided into two subsequences, a consecutive series of odd and even indices. Such
decomposition is called decimation, in this case decimation in time (DIT). There is also
decimation in frequency (DIF), and both methods require N/2*log2(N) complex additions,
subtractions and multiplications. When the decimation base is equal to 2 it is called RADIX-
2 decimation. This has an additional impact on input data. The input series should have
the size of the power of two, to divide the sequence into two subseries of equal length in
recursive stages. The division ends when there are only one-element arrays.

In commonly-used applications, there are several techniques for time series division.
For instance, RADIX-4 or the more efficient Split-RADIX may be used. When the input
array has N elements, and N is not a prime number, factorization is possible, whereby, for
example, from a 15-element array we obtain 3 arrays consisting of 5 elements or 5 arrays
with 3 elements.

Both computations, DIT and DIF can be performed in-situ what means that it doesn’t
require additional memory. The disadvantage is that the output is not in order. It is possible
to obtain output in order, but the computation cannot be done in-situ, and at least one
additional array must be provided [6].

The FFT computation process is presented in Figure 1. On the left-hand side there
is RADIX-2 decimation. This is only a logic decomposition to present the idea of the
second step of real computations. Then two-element sequences are combined (DFT). For
real numbers, such operations are trivial and quite fast. There are no complex number
multiplications. The next stages require complex number arithmetic, which uses so-called
twiddle factors whereby values depend on the subsequence length and the position of the
current computation pair. Twiddle factors are often obtained from a look-up table, as one
memorization technique.

Figure 1. Fast Fourier Transform and bit-reversal permutation; indices division on the left; merge
phase on the right side; final computation requires reordering to obtain expected output.

In metaprogramming, these values also may be explicitly placed in execution code,
significantly increasing its performance. Each stage returns a partial output that is used in
the following stage. The number of stages depends on the length of the input series. When
RADIX-2 decimation is used, there are log2(n) stages, so for example in Figure 1 the given
array is 8 in size and there are 3 stages. Finally, after all processing stages there is a Fourier
Transform output with N complex numbers but disordered (Figure 1).

To obtain an output in the appropriate order, the indexes should be rearranged. Here,
several solutions are allowed. One of them is a bit-reversal permutation [6], which is ap-
plied with time-execution complexity O(n). In the example presented below (Equation (1)),

Sensors 2021, 21, 4123 5 of 16

which describes a situation where the possible values are in the range of [0, 7] giving k = 3
digits in binary system, it can be seen that the values 010 and (2k−1)10 are unchanged.

K = 010 = 000b and k = 3 => bit_rev_permutation(K) = 0002 = 010 ← unchanged

K = 610 = 110b and k = 3 => bit_rev_permutation(K) = 0112 = 3 10

K = 710 = 111b and k = 3 => bit_rev_permutation(K) = 1112 = 710 ← unchanged

(1)

The number of array operations Aop is lower than n (Aop < n). Nonetheless, it is
possible to omit this expensive overhead, as Swarztrauber observed [36]. Basically, each
of the algorithms presented in Swarztrauber’s paper computes the same result. They
differ only in the ways that the intermediate computations are stored. These solutions
present the possibility of adapting FFT mainly to vector computers. Cooley-Tukey and
Pease algorithms compute the FFT in a permuted order, thus often a separate order phase
is used to rearrange the output elements. This operation is time-consuming not only on
vector computers.

In a paper that is fundamental to the early FFT literature [6] W.T. Cochran introduced
an autosort FFT algorithm and attributed it to Stockham. The Stockham autosort algorithm
has received much attention, because it computes the Fourier Transform in the proper
order without an explicit order phase. Despite the fact that solution requires additional
memory, bit-reversed permutations has very expensive arithmetic and read/write overhead
operation, thus it is reasonable to use this method. Listing 1 shows Stockham solution
written in FORTRAN [36]. To omit the sorting phase, an additional table is used that allows
the data to be kept in order.

Listing 1. The code of Stockham solution for FFT computation. Red color presents auxiliary array adjustment for reordering
purposes and green color indicates two procedures that were used (code from [36]).

SUBRUTINE STOCK(IS, M, C, WORK)
C THE STOCKHAM AUTOSORT FFT
COMPLEX C(1), WORK(1)
N = 2 ** M
C Done for each FFT stage—depends on log; N
DO 100 L = 1,M
LS = 2 ** (L-1)
NS = N/(LS + LS)
CALL STOCK1 (IS, LS, NS, C,WORK)
DO 100 I = 1, N
C(I) = WORK(I)
100 CONTINUE
RETURN
END
SUBRUTINE STOCK1(IS, LS, NS, C, CH)
COMPLEX OMEGA, WYK, C(NS,2, LS), CH(NS, LS,2)
ANGLE = FLOAT(IS) * 4. * ATAN(1.)/FLOAT(LS)
OMEGA = CMPLX(COS(ANGLE), SIN(ANGLE)
DO 200 J= 1,NS
WYK = OMEGK * C(J, 2, I)
CH(J,I,1) = C(J,1, I) + WYK
CH(J,I,2) = C(J,1,I) −WYK
OMEGK = OMEGA * OMEGK
200 CONTINUE
RETURN
END

Algorithms presented on Figures 1 and 2 inspired the concept of applying the Stock-
ham solution to metaprogram the STFT algorithm. There was no need to keep additional
table for whole execution time. In fact, it does not matter how the computations are per-
formed during first stages. Only the last stage and its final output is important. In what

Sensors 2021, 21, 4123 6 of 16

follows, STFT modifications are presented that keep output data in order without requiring
additional arithmetic and input/output operations. Depending on the processing stage,
the initial or auxiliary array is used, as shown in Figure 2.

Figure 2. Fast Fourier Transform with Stockham algorithm adaptation; auxiliary array (red) used for
implicit reordering.

While the consecutive stages (up to phase n-2) are executed, the solution remains
in-situ. For phase n-1, the result is saved into an auxiliary array with a length of N-complex.
The calculations themselves remain unchanged. In the final phase, n computations are
performed with data from an aux array and the output is stored in the initial array in
the correct order. To obtain this behavior, the addressing mechanism is changed and
bit-reversal permutation coefficients are used only in the metaprogram. There are no
reordering operations in run-time, so its execution time is reduced.

Figure 3 shows a Short-Time Fourier Transform based on the above solution. In this
example, the first two time windows are presented: m = 0, m = 1. The previous stages have
been calculated as for regular FFT. The output of stage n-1 for the first FFT (m = 0) is written
into an additional array that was highlighted with red color on Figure 3. The output from
the last stage (n) is moved back to the initial array in the appropriate order.

Figure 3. Short-time Fourier Transform with Stockham algorithm adaptation; figure shows auxiliary array adaptation for
feedforward technique; data processing between successive FFT frames.

Sensors 2021, 21, 4123 7 of 16

It is important to note that a feed-forward technique was applied to the metaprogram-
ming solution. This reduces the number of computations, due to the fact that duplicated
butterfly operations exist in the process [37]. This can have a major impact on the applica-
tion. If we introduce an additional array, the data moved from the previous time window
(m−1) should be copied to both the initial and auxiliary arrays, depending on the indices
and the STFT overlapping factor. Figure 4 presents a rectangular time window and an
overlapping factor equal to 1, which means that the time window is moved over the input
data one by one sample. Thanks to this approach, there is no need to perform bit-reversal
permutation rearrangement.

Figure 4. Short-time Fourier Transform with metaprogramming technique block diagram; metapro-
gram on the left; STFT runtime phase on the right side. Solution without Stockham optimization.

Implementation was performed using the Java Platform with the JavaPoet library
(JavaPoet; https://github.com/square/javapoet; accessed on 10 January 2021; author: Jake
Wharton, version: 1.10.0). This enabled a large part of the algorithm to be moved into the
metaprogram, such as indices management in loops, arithmetic and logical operations
that do not depend on input data but only on algorithm structure and other additional
arithmetic operations.

The metaprogram begins and generates a sequence of butterfly operations before the
target code is executed. Previously, it was composed of seven consecutive phases: creating
a model of butterfly operations for time window m = 1; creating a model of butterfly
operations for time window m+oc (feedforward technique), where oc is the overlap coeffi-
cient; preparation of RADIX-2 decimation indices; identification of duplicated operations;
bit-reversal permutation indices preparation and finally target code generation. The basis
of the solution is to generate a model of butterfly operations for time window m = 1 and
the same for time window m > 1 moved over the input array INPUT with the specified
overlapping coefficient (oc). Thanks to these models, RADIX-2 decimation is performed and
duplicated butterfly operations are identified (widely described in [8]). Additionally, this
step provides information on how large the auxiliary array should be for the feedforward
technique. During runtime, while the FFT for time window m =1 is processed, the output
from duplicated operations is moved to the auxiliary array. Then, for FFT and time window
m = 2, data from the auxiliary array is copied into selected parts of the input array that
allows to omit its recalculation [8]. A block diagram of the solution is presented in Figure 4.

The new metaprogram algorithm has been changed to adapt the Stockham solution.
Bit-reversal permutation indices must still be prepared, but only to preserve information
about the place where the final stage output will be written. There is no need to generate

https://github.com/square/javapoet

Sensors 2021, 21, 4123 8 of 16

code for an additional phase of indices rearrangement in the target program. All procedures
connected to this phase belong only to the metaprogram. Listings 2 and 3 and present the
changes that were made in the metaprogram.

Listing 2. Metaprogram that presents a part of butterfly operations generation (BEFORE STOCKHAM ALG. ADJUSTMENT).
The generated code consists of variables like: tempR, tempI, FR, FI, FR2, FI2 (real and imaginary part) and tables: current and
transitiontable for feedforward solution (presented with green color). Last loop stands for bit-reversal permutation. The
array operations_rest stands for the sequence of butterfly operation parameters. Each operation has 5 elements (shown with
red color) . . .

int[] operations_rest = operation_for_rest_stages;
for (int i = 0; i < operations_rest.length; i += 5) {

method_computeImpl_BUILDER.startBlock();
method_computeImpl_BUILDER.addStatement("tempR = current[$L]", operations_rest[i + 1]);
method_computeImpl_BUILDER.addStatement("tempI = current[$L]", operations_rest[i + 1] + 1);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FR", "tempR",
FACTOR2[operations_rest[i + 2]]);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FI", "tempR",
FACTOR3[operations_rest[i + 2]]);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FR2", "tempI",
FACTOR3[operations_rest[i + 2]]);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FI2", "tempI",
FACTOR2[operations_rest[i + 2]]);

if (FACTOR3[operations_rest[i + 2]] != 0) {
method_computeImpl_BUILDER.addStatement("FR -= FR2"); }

if (FACTOR2[operations_rest[i + 2]] != 0) {
method_computeImpl_BUILDER.addStatement("FI += FI2"); }

if (operations_rest[i + 3] >= 0) {
method_computeImpl_BUILDER.addStatement("transitionTable[$L] = current[$L] = current[$L]

- FR", operations_rest[i + 4], operations_rest[i + 1], operations_rest[i]);
method_computeImpl_BUILDER.addStatement("transitionTable[$L] = current[$L] = current[$L]

- FI", operations_rest[i + 4] + 1, operations_rest[i + 1] + 1, operations_rest[i] + 1);
method_computeImpl_BUILDER.addStatement("transitionTable[$L] = current[$L] = current[$L]

+ FR", operations_rest[i + 3], operations_rest[i], operations_rest[i]);
method_computeImpl_BUILDER.addStatement("transitionTable[$L] = current[$L] = current[$L]

+ FI", operations_rest[i + 3] + 1, operations_rest[i] + 1, operations_rest[i] + 1);
} else {

method_computeImpl_BUILDER.addStatement("current[$L] = current[$L] - FR",
operations_rest[i + 1], operations_rest[i]);

method_computeImpl_BUILDER.addStatement("current[$L] = current[$L] - FI",
operations_rest[i + 1] + 1, operations_rest[i] + 1);

method_computeImpl_BUILDER.addStatement("current[$L] = current[$L] + FR",
operations_rest[i], operations_rest[i]);

method_computeImpl_BUILDER.addStatement("current[$L] = current[$L] + FI",
operations_rest[i] + 1, operations_rest[i] + 1);

}
}
// bit reversal permutation
int[] operations_bitReverse = operation_for_bit_reverse;
for (int i = 0; i < operations_bitReverse.length; i += 5) {

method_computeImpl_BUILDER.startBlock();
method_computeImpl_BUILDER.addStatement("tempR = current[$L]", operations_bitReverse[i]);
method_computeImpl_BUILDER.addStatement("tempI = current[$L]", operations_bitReverse[i] + 1);
method_computeImpl_BUILDER.addStatement("current[$L] = current[$L]",

operations_bitReverse[i], operations_bitReverse[i + 1]);
method_computeImpl_BUILDER.addStatement("current[$L] = current[$L]", operations_bitReverse[i]

+ 1, operations_bitReverse[i + 1] + 1);
method_computeImpl_BUILDER.addStatement("current[$L] = tempR", operations_bitReverse[i + 1]);
method_computeImpl_BUILDER.addStatement("current[$L] = tempI", operations_bitReverse[i + 1] +

1);
}

Sensors 2021, 21, 4123 9 of 16

Listing 3. Metaprogram changes that stands for stockham’s idea adjustment. Comparing to Listing 2, there is an additional
array called stockhamtable that is filled depends on FFT stage. Also there is no bit-reversal permutation generation loop.

. . .
int[] operations_rest = operation_for_rest_stages;
for (int i = 0; i < operations_rest.length; i += 6) {

String tableSource = operations_rest[i + 5]==0 ? "stockhamTable":"current";
String tableTarget = operations_rest[i + 5]==1 ? "stockhamTable":"current";

method_computeImpl_BUILDER.startBlock();
method_computeImpl_BUILDER.addStatement("tempR = " + tableSource + "[$L]", operations_rest[i

+ 1]);
method_computeImpl_BUILDER.addStatement("tempI = " + tableSource + "[$L]", operations_rest[i

+ 1] + 1);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FR", "tempR",
FACTOR2[operations_rest[i + 2]]);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FI", "tempR",
FACTOR3[operations_rest[i + 2]]);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FR2", "tempI",
FACTOR3[operations_rest[i + 2]]);

optimizeTwiddleFactorMultiplication(method_computeImpl_BUILDER, "FI2", "tempI",
FACTOR2[operations_rest[i + 2]]);

if (FACTOR3[operations_rest[i + 2]] != 0) {
method_computeImpl_BUILDER.addStatement("FR -= FR2");

}
if (FACTOR2[operations_rest[i + 2]] != 0) {

method_computeImpl_BUILDER.addStatement("FI += FI2");
}

if (operations_rest[i + 3] >= 0) {
method_computeImpl_BUILDER.addStatement("transitionTable[$L] = "

+tableTarget+"[$L] = "+tableSource+"[$L] - FR", operations_rest[i + 4],bitReversed(operation_for_bit_reverse,
operations_rest[i + 1], operations_rest[i + 5]), operations_rest[i]);

method_computeImpl_BUILDER.addStatement("transitionTable[$L] = "+tableTarget+"[$L] = "
+tableSource+"[$L] - FI",operations_rest[i + 4] + 1,bitReversed(operation_for_bit_reverse, operations_rest[i + 1] + 1,
operations_rest[i + 5]), operations_rest[i] + 1);

method_computeImpl_BUILDER.addStatement("transitionTable[$L] = "+tableTarget+"[$L] = "
+tableSource+"[$L] + FR",operations_rest[i + 3], bitReversed(operation_for_bit_reverse,
operations_rest[i],operations_rest[i + 5]), operations_rest[i]);

method_computeImpl_BUILDER.addStatement("transitionTable[$L] = "+tableTarget+"[$L] = "
+tableSource+"[$L] + FI", operations_rest[i + 3] + 1, bitReversed(operation_for_bit_reverse, operations_rest[i] + 1,
operations_rest[i + 5]), operations_rest[i] + 1);

} else {
method_computeImpl_BUILDER.addStatement(tableTarget+"[$L] = "+tableSource+"[$L] - FR",

bitReversed(operation_for_bit_reverse, operations_rest[i + 1],operations_rest[i + 5]), operations_rest[i]);
method_computeImpl_BUILDER.addStatement(tableTarget+"[$L] = "+tableSource+"[$L] - FI",

bitReversed(operation_for_bit_reverse, operations_rest[i + 1] + 1,operations_rest[i + 5]), operations_rest[i] + 1);
method_computeImpl_BUILDER.addStatement(tableTarget+"[$L] = "+tableSource+"[$L] + FR",

bitReversed(operation_for_bit_reverse, operations_rest[i],operations_rest[i + 5]), operations_rest[i]);
method_computeImpl_BUILDER.addStatement(tableTarget+"[$L] = "+tableSource+"[$L] + FI",

bitReversed(operation_for_bit_reverse, operations_rest[i] + 1,operations_rest[i + 5]), operations_rest[i] + 1);
}

}

As it can be seen above (Listing 2, Listing 3) STFT code generator was changed.
Listings show that the main loop that is used to prepare target program goes through all
butterfly operations. Its configuration is stored in operations_rest array, and iterator increase

Sensors 2021, 21, 4123 10 of 16

by 5 for each operation. After change it is increased with 6 because additional parameter
was introduced. This parameter handle information about the processed stage. Last stage
is indicated by value 0, thus for last stage −1 this parameter will be set to 1. If the last stage
is detected, source table name for STFT operation is set to stockhamtable, otherwise it is set
to current. Target table name depends on one before last stage. Thanks to this approach
metaprogram generates the sequence of target application operations, where data is copied
between current and auxiliary array as it was proposed by Stockham.

The result of running the metaprogram is the optimized code of the target application.
For the STFT algorithm, the code fragment is presented in Figure 5. Places in the resulting
program were indicated that best represent the above-mentioned profit. This code was
generated for 8 element FFT series. Main advantage of use metaprogram is to reduce
trigonometric operations, omit indices computations and possibility to remove duplicated
butterfly operations. The solution is not based on conditional operations, but completely
eliminates redundant code in the target application.

Sensors 2021, 21, 4123 12 of 18

the purpose of performance analysis. Data that is processed is compliant with IEEE 754

double precision floating-point arithmetic.

Test procedure consisted of four steps: code preparation, test preparation, test execu-

tion, and results analysis. Code preparation means STFT code generation. This phase is

not measured, because once the code has been generated the result may be saved in the

repository. Next, test parameters are prepared. These consist of the window size (N =

[8…2048]) and the number of windows for STFT (m = 200,000). Finally, an input array of

real values is generated as common data for all the tested algorithms.

The measurement phase starts with a so-called warm-up. This approach is commonly

used to eliminate the influence of Java virtual machine behavior connected with the just-

in-time compilation facility. It was assumed and confirmed that 5 iterations are sufficient

to omit this effect. The tested solutions were jTransform (DoubleFFT_1D.complexForward

method) [38], metaprogramming STFT, and metaprogramming STFT with the Stockham

extension. The results of execution time measurements are presented in Figures 6 and 7.

Figure 5. Profit from the application of the metaprogramming technique (generated code of the Short
Time Fourier Transform algorithm).

3. Results

In order to examine the efficiency of the prepared solution, a personal computer
equipped with an Intel Core i7-4710HQ processor and 12GB RAM was used. The under-
lying operating system was Windows 8. The metaprogram and target STFT code was
implemented on a Java platform [Java(TM) SE Runtime Environment (build 1.8.0_231-b11)].
The whole verification process was supported by a JMH library created specifically for the
purpose of performance analysis. Data that is processed is compliant with IEEE 754 double
precision floating-point arithmetic.

Sensors 2021, 21, 4123 11 of 16

Test procedure consisted of four steps: code preparation, test preparation, test exe-
cution, and results analysis. Code preparation means STFT code generation. This phase
is not measured, because once the code has been generated the result may be saved in
the repository. Next, test parameters are prepared. These consist of the window size
(N = [8 . . . 2048]) and the number of windows for STFT (m = 200,000). Finally, an input
array of real values is generated as common data for all the tested algorithms.

The measurement phase starts with a so-called warm-up. This approach is commonly
used to eliminate the influence of Java virtual machine behavior connected with the just-
in-time compilation facility. It was assumed and confirmed that 5 iterations are sufficient
to omit this effect. The tested solutions were jTransform (DoubleFFT_1D.complexForward
method) [38], metaprogramming STFT, and metaprogramming STFT with the Stockham
extension. The results of execution time measurements are presented in Figures 6 and 7.
For each data input length (N) tests were performed 30 times. Final results presented below
stands for the average values.

Figure 6. Comparison of execution time for jTransform library, metaprogram (metaprog), metaprogram with stockham
extension (metaprog-stock). Analysis of compiled, generated binaries size. (a) execution times; (b) zoom for N = [8 . . . 512].
(c) The size of compiled, generated binaries for the analyzed algorithms.

Figure 7. Performance improvement test results for STFT solutions (metaprog-stock as reference).

Sensors 2021, 21, 4123 12 of 16

The execution times for the three solutions are very similar. Major changes are recorded
above N ≥ 1024, where the jTrans algorithm is clearly better due to its possibility of concur-
rent computing, but when lower N are examined the metaprogramming solutions show
higher performance (zoom). In order to better data presentation, the percentage changes
were computed (Equation (2)) and presented in Figure 7. As the reference algorithm (REF)
the metaprog-stock was used.

P =
τ − τREF

τREF
∗ 100% (2)

Authors performed additional tests on other operating systems to exclude an influence
of execution environment. Linux (Zorin distro) was used. Computer was equipped with
32 GB RAM and Intel® Core™ i7 10gen 10750H processor. Results were different but ratio
between three solutions is similar. Results were presented in Table 1.

Table 1. Execution times for three solutions and two runtime environments: Windows and Linux (values in ms).

N

Solution 8 16 32 64 128 256 512 1024 2048

jTrans
_linux 6.72 13.29 40.96 86.04 186.81 384.91 808.04 1709.00 3849.00

metaprog
_linux 7.57 14.07 30.29 65.71 149.44 321.32 716.68 1815.00 4618.00

metaprog_stock
_linux 6.68 12.16 23.54 58.24 136.54 292.10 688.98 1844.00 4887.00

jTrans (windows) 16.89 33.45 72.47 170.33 335.31 688.22 1501.98 3357.00 7891.00

Metaprog (windows) 18.89 33.13 58.84 102.95 228.34 457.53 1326.59 3943.00 9686.00

metaprog_stock(windows) 14.65 30.08 57.49 100.61 213.99 427.76 1147.36 3956.00 10,072.00

The test stand was prepared at the Laboratory of T. Dyakowski at the Institute of
Applied Computer Science at the Lodz University of Technology. The elements of the
structure and measurement system consisted of: silo model with a diameter of 200 mm
and a height of 2000 mm (wall thickness 4 mm), 8-electrode capacitive sensor with a
tomograph (30 frames/s). During the experiment, time courses of material concentration
vibrations were obtained, which were processed using STFT. Further processing allowed to
extract dominant harmonic which was changing during silo discharging. The experiments
were carried out for non-cohesive and cohesive loose materials. Medium-grain quartz
sand (medium grain diameter) was used as a non-cohesive material d50 = 0.8 × 10−3 m.
A mixture of medium-grained sand and water was used as the cohesive material [1].
Result was presented in Figure 8. Figure presents material concentration changes in silo
cross-section during discharging process. The rectangular window was used.

Figure 8. The result of STFT application for ECT data. Material concentration changes in silo
cross-section during discharging process (own elaboration).

Sensors 2021, 21, 4123 13 of 16

Figure 8 presents that oscillation in range of 7–16 Hz was recorded. This experiment
confirms the significance and value of the research conducted on the optimization of
time-frequency transform algorithms for material conveying systems. Further process
improvements involved dominant harmonic identification algorithms. Algorithm output
presented in Figure 9.

Figure 9. STFT application for ECT data. Dominant harmonic visualization for ECT data while
discharging silo with grain (own elaboration).

4. Analysis and Discussion

The solution was implemented with JavaPoet library. Using this tool, both the metapro-
gram and the final application could be prepared in the same programming language,
which has a significant impact on its maintenance. Programmer is not forced to switch
between different programming languages. JavaPoet is a sufficient tool to keep target
application syntax valid. Even the output code is very extensive. Each line meets Java
syntax requirements and will not cause compilation errors.

The improvement achieves 60% acceleration in the range mainly for N = 64–256,
compared to other common solutions such as the JTransform library. The improvement
was also recorded comparing current solution to the previous one. Difference is around
2.3% to 28% compared to the former solution without the Stockham extension.

Very interesting is fact that for small N (8, 16) and large (1024 and more) the presented
solution performance is slower than the reference (jTransform). This observation I would
divide into two separated problems. First refers to N = 8, 16. As it can be seen in Figure 7
jTransform is better than metaprogram solution but worse than metaprogram with stock-
ham extension. Metaprogram solution had bit reverse permutation for N = 8 and when
it was removed then the code sped up its performance. JTransform for N = 4 and N = 8
doesn’t have reordering phase. For N > 32 there is a function ‘bitrv2conj’ which seems
to be very expensive. Second issue: This results from the fact that jTransform solution
uses strategy pattern and adjust implementation based on input array size N. When N is
larger than allowed array size (hardcoded: N*2 > 1073741824) then so called large array
strategy is performed. If N is not a power of two then Bluestein plan or mixed_radix plan
is triggered otherwise split_radix is used. In initialization mode specific preprocessing is
done. For an example the lookup table with trigonometric values is also generated. It was
possible to retrieve the source code from repository, but despite this, due to the complexity,
the algorithm is difficult to read. For sure algorithm is based on the parallel computing.
It uses ConcurrencyUtils.submit() method to trigger parallel computations that extremely
speed up solution for higher N.

Despite of execution time analysis, the size of generated application was also studied.
As can be seen in Figure 8, the presented solution has some disadvantages. Code size
grows rapidly with increasing window size and finally (for N = 2048) gives almost the
same value as the whole jTransform library. For an instance, metaprog has 245 KB and
metaprog-stock 229 KB for N = 256, and increasing to 554 KB and 522 KB for N = 512,
respectively. Obviously, for modern computers these numbers are not crucial.

Sensors 2021, 21, 4123 14 of 16

Memory complexity was not studied as it change only due to utilizing auxiliary table
that is size of N (length of input array).

Generating the code of the Short Time Fourier Transform algorithm as presented in
this article has many advantages:

• introduction to the solution the domain analysis of the problem; the principle of solv-
ing the problem remains unchanged, but it is possible to improve program efficiency,

• possibility to control the code that is generated,
• removal of loops (reduction of computation time),
• removal of calculations resulting from known parameters,
• control of table indexes during application generation,
• generator parameterization (parameter—time window length, parameter—FFT frame

overlap coefficient),
• reduction of arithmetic operations on the basis of mathematical properties.

The results clearly show that it is beneficial to use the new tool for STFT when the
window size is in the range of N = [8–512]. Despite its restrictions, the solution is sufficient
for short time windows data processing, especially when the non-stationary signal changes
rapidly and the time window should be limited. An example of its possible application may
be the time-frequency analysis of the Electrical Capacitance Tomography data (ECT). ECT
is used to measure the distribution of material concentration in a silo cross-section during
the discharging process. The measurement frequency is low and reaches 30–150 Hz [1].

5. Conclusions

It is extremely difficult to improve such a common signal processing algorithm as
STFT. However, this paper has presented a consecutive solution that allows to further
reduce its execution time.

The method was elaborated as an extension of a previously developed application, in
order to improve its efficiency. Adaptation of the Stockham concept was crucial to omit
bit-reversal output data modification and obtain STFT values in order.

This was possible at the expense of memory needed to transfer intermediate results
between the final two stages. The increased memory requirements are negligible due to
the current capabilities of modern computers. Thanks to use of the metaprogramming
technique, it was possible to move time-consuming operations into the code generation
phase. The improvement achieves 60% acceleration.

It is worth to emphasize that the same as jTransform the solution is characterized by
high portability as it is written in Java language. Future work will explore the possibility of
applying parallel computation approaches to metaprogramming, which can dramatically
increase the performance of STFT computations, particularly for larger input data.

Author Contributions: Investigation, G.R. and K.S.; resources, software, G.R.; G.R.; writing—original
draft, G.R. and K.S. Both authors have read and agreed to the published version of the manuscript.

Funding: This work was partly funded by the Intelligent Development Operational Program 2014-
2020 co-financed by the European Regional Development Fund, project POIR.04.01.02-00-0089/17-00.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rybak, G. Metaprogramming Techniques in the Implementation of Algorithms for Selected Industrial Processes Monitoring.

Ph.D. Thesis, Lodz University of Technology, Łódź, Poland, 2019.
2. Rybak, G.; Chaniecki, Z.; Grudzień, K.; Sankowski, D. Analysis of silo flow dynamic effects using ECT and short time fourier

transform. Flow Meas. Instrum. 2018, 62, 167–175. [CrossRef]

http://doi.org/10.1016/j.flowmeasinst.2018.02.003

Sensors 2021, 21, 4123 15 of 16

3. Gramatikov, B.; Georgiev, I. Wavelets as alternative to short-time Fourier transform in signal-averaged electrocardiography.
Med. Biol. Eng. Comput. 1995, 33, 482–487. [CrossRef] [PubMed]

4. Chen, W.; Kehtarnavaz, N.; Spencer, T.W. An efficient recursive algorithm for time-varying Fourier transform. IEEE Trans.
Signal Process. 1993, 41, 2488–2490. [CrossRef]

5. Kıymık, M.K.; Güler, İ.; Dizibüyük, A.; Akın, M. Comparison of STFT and wavelet transform methods in determining epileptic
seizure activity in EEG signals for real-time application. Comput. Biol. Med. 2005, 35, 603–616. [CrossRef] [PubMed]

6. Cochran, W.T.; Cooley, J.W.; Favin, D.L.; Helms, H.D.; Kaenel, R.A.; Lang, W.W.; Maling, G.C.; Nelson, D.E.; Rader, C.M.; Welch,
P.D. What is the fast Fourier transform? Proc. IEEE 1967, 55, 1664–1674. [CrossRef]

7. Lyons, R. The sliding DFT. IEEE Signal Process. Mag. 2003, 20, 74–80. [CrossRef]
8. Rybak, G.; Chaniecki, Z.; Grudzien, K.; Romanowski, A.; Sankowski, D. Performance analysis of short-time fourier transform

algorithm with selected optimization methods. In Proceedings of the 2018 International Interdisciplinary PhD Workshop
(IIPhDW), Swinoujscie, Poland, 9–12 May 2018; IEEE: New York, NY, USA, 2018; pp. 371–376.

9. Knauth, C.; Adas, B.; Whitfield, D.; Wang, X.; Ickler, L.; Conrad, T.; Serang, O. Practically Efficient Methods for Performing
Bit-reversed Permutation in C++11 on the x86-64 Architecture. Available online: https://arxiv.org/pdf/1708.01873.pdf (accessed
on 10 June 2021).

10. Franchetti, F.; Puschel, M.; Voronenko, Y.; Chellappa, S.; Moura, J. Discrete fourier transform on multicore. IEEE Signal Process. Mag.
2009, 26, 90–102. [CrossRef]

11. Chen, L.; Hu, Z.; Lin, J.; Gao, G.R. Optimizing the Fast Fourier Transform on a Multi-core Architecture. In Proceedings of the 2007
IEEE International Parallel and Distributed Processing Symposium, Rome, Italy, 26–30 March 2007; IEEE: New York, NY, USA,
2007; pp. 1–8.

12. Govindaraju, N.K.; Lloyd, B.; Dotsenko, Y.; Smith, B.; Manferdelli, J. High performance discrete Fourier transforms on graphics
processors. In Proceedings of the 2008 SC—International Conference for High Performance Computing, Networking, Storage
and Analysis, Austin, TX, USA, 15–21 November 2008; IEEE: New York, NY, USA, 2008; pp. 1–12.

13. Mousa, M.H.; Hussein, M.K. Surface approximation using GPU-based localized fourier transform. J. King Saud Univ. Comput.
Inf. Sci. 2020, in press. [CrossRef]

14. Köpcke, B.; Steuwer, M.; Gorlatch, S. Generating efficient FFT GPU code with Lift. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Functional High-Performance and Numerical Computing—FHPNC 2019, Berlin, Germany, 18 August
2019; ACM Press: New York, NY, USA, 2019; pp. 1–13.

15. NVIDIA Corporation CUDA Toolkit Documentation v7.5. Available online: https://developer.nvidia.com/cufft (accessed on 10
June 2021).

16. Sorna, A.; Cheng, X.; D’Azevedo, E.; Won, K.; Tomov, S. Optimizing the Fast Fourier Transform Using Mixed Precision on Tensor
Core Hardware. In Proceedings of the 2018 IEEE 25th International Conference on High Performance Computing Workshops
(HiPCW), Bengaluru, India, 17–20 December 2018; IEEE: New York, NY, USA, 2018; pp. 3–7.

17. Puchala, D.; Stokfiszewski, K.; Yatsymirskyy, M.; Szczepaniak, B. Effectiveness of Fast Fourier Transform implementations on
GPU and CPU. In Proceedings of the 2015 16th International Conference on Computational Problems of Electrical Engineering
(CPEE), Lviv, Ukraine, 2–5 September 2015; IEEE: New York, NY, USA, 2015; pp. 162–164.

18. Ibrahim, M.; Khan, O. Performance analysis of Fast Fourier Transform on Field Programmable Gate Arrays and graphic cards.
In Proceedings of the 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta,
Pakistan, 11–12 April 2016; IEEE: New York, NY, USA, 2016; pp. 158–162.

19. Prasad, M.V.N.V.; Ray, K.C.; Dhar, A.S. FPGA implementation of discrete fractional Fourier transform. In Proceedings of the 2010
International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 18–21 July 2010; IEEE: New
York, NY, USA, 2010; pp. 1–5.

20. Xu, K.; Jin, Y.; Zhao, F.; Ma, H. A Spectrum Analysis Algorithm Based on GPU. In Proceedings of the 2018 International Conference
on Computer Science, Electronics and Communication Engineering (CSECE 2018), Wuhan, China, 7–8 February 2018; Atlantis
Press: Paris, France, 2018; pp. 5–9.

21. Dohnálek, P.; Gajdoš, P.; Peterek, T.; Penhaker, M. Pattern Recognition in EEG Cognitive Signals Accelerated by GPU; Springer:
Warsaw, Poland, 2013; pp. 477–485.

22. Dong, Z.; Meng, S.; Chi, K.; Kang, J. Gear Fault Diagnosis Based on GPU-CNN. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 052008.
[CrossRef]

23. Gui, G.; Qiu, L.P. Implementation and Application of Short-Time Fourier Transform on a New High Speed FPGA.
Appl. Mech. Mater. 2014, 556–562, 1838–1841. [CrossRef]

24. Srinivas, N.; Kumar, P.K.; Pradhan, G. Low latency architecture design and implementation for short-time fourier transform
algorithm on FPGA. In Proceedings of the 2017 IEEE International Conference on Microwaves, Communications and Electronic
Systems (COMCAS), Antennas, Tel-Aviv, Israel, 13–15 November 2017; IEEE: New York, NY, USA, 2017; pp. 1–5.

25. Myrnyy, V. A Simple and Efficient FFT Implementation in C++. Available online: http://www.ddj.com/cpp/199500857 (accessed
on 10 May 2007).

26. Veldhuizen, T. Techniques for Scientists C++. Available online: https://help.luddy.indiana.edu/techreports/TRNNN.cgi?trnum=
TR542 (accessed on 1 June 2021).

http://doi.org/10.1007/BF02510534
http://www.ncbi.nlm.nih.gov/pubmed/7666698
http://doi.org/10.1109/78.224256
http://doi.org/10.1016/j.compbiomed.2004.05.001
http://www.ncbi.nlm.nih.gov/pubmed/15809098
http://doi.org/10.1109/PROC.1967.5957
http://doi.org/10.1109/MSP.2003.1184347
https://arxiv.org/pdf/1708.01873.pdf
http://doi.org/10.1109/MSP.2009.934155
http://doi.org/10.1016/j.jksuci.2020.04.010
https://developer.nvidia.com/cufft
http://doi.org/10.1088/1757-899X/1043/5/052008
http://doi.org/10.4028/www.scientific.net/AMM.556-562.1838
http://www.ddj.com/cpp/199500857
https://help.luddy.indiana.edu/techreports/TRNNN.cgi?trnum=TR542
https://help.luddy.indiana.edu/techreports/TRNNN.cgi?trnum=TR542

Sensors 2021, 21, 4123 16 of 16

27. Tanter, É.; Toledo, R.; Pothier, G.; Noyé, J. Flexible metaprogramming and AOP in Java. Sci. Comput. Program. 2008, 72, 22–30.
[CrossRef]

28. Czarnecki, K. Generative Programming: Methods, Tools, and Applications; Addison-Wesley Professional: Ulm, Germany, 2000;
ISBN 0-201-30977-7.

29. Štuikys, V.; Damaševičius, R. Taxonomy of Fundamental Concepts of Meta-Programming. In Advanced Information and Knowledge
Processing; Springer: London, UK, 2012; Volume 5. [CrossRef]

30. Štuikys, V.; Damaševičius, R. Meta-Programming and Model-Driven Meta-Program Development. In Advanced Information and
Knowledge Processing; Springer: London, UK, 2013; Volume 5, ISBN 978-1-4471-4125-9.

31. Videau, B.; Pouget, K.; Genovese, L.; Deutsch, T.; Komatitsch, D.; Desprez, F.; Méhaut, J.-F. BOAST. Int. J. High Perform.
Comput. Appl. 2018, 32, 28–44. [CrossRef]

32. Gawlik, I.; Pałka, S.; Pędzimąż, T.; Ziółko, B. Meta-Programming and Policy-Based Design as a Technique of Architecting Modular
and Efficient DSP Algorithm Implementations. Comput. INFORMATICS 2018, 37, 269–290. [CrossRef]

33. Lin, J.-M. Python Non-Uniform Fast Fourier Transform (PyNUFFT): An Accelerated Non-Cartesian MRI Package on a Heteroge-
neous Platform (CPU/GPU). J. Imaging 2018, 4, 51. [CrossRef]

34. Vázquez, S.; Amor, M.; Fraguela, B.B. Portable and efficient FFT and DCT algorithms with the Heterogeneous Butterfly Processing
Library. J. Parallel Distrib. Comput. 2019, 125, 135–146. [CrossRef]

35. Mulgrew, B.; Grant, P.; Thompson, J. Digital Signal Processing Concepts and Applications; Palgrave: London, UK, 1999;
ISBN 978-0-333-74531-1.

36. Swarztrauber, P.N. FFT algorithms for vector computers. Parallel Comput. 1984, 1, 45–63. [CrossRef]
37. Garrido, M. The Feedforward Short-Time Fourier Transform. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 868–872.

[CrossRef]
38. Wendykier, P.; Nagy, J.G. Parallel Colt. ACM Trans. Math. Softw. 2010, 37, 1–22. [CrossRef]

http://doi.org/10.1016/j.scico.2007.10.005
http://doi.org/10.1007/978-1-4471-4126-6_2
http://doi.org/10.1177/1094342017718068
http://doi.org/10.4149/cai_2018_2_269
http://doi.org/10.3390/jimaging4030051
http://doi.org/10.1016/j.jpdc.2018.11.011
http://doi.org/10.1016/S0167-8191(84)90413-7
http://doi.org/10.1109/TCSII.2016.2534838
http://doi.org/10.1145/1824801.1824809

	Introduction
	Method
	Results
	Analysis and Discussion
	Conclusions
	References

