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Background

“In the adult centres, the nerve paths are something fixed, 
ended, and immutable. Everything may die, nothing may 
be regenerated.” These words from Ramon y Cajal in 1913 
[1] highlight what has been one of the central dogma’s in 
neuroscience for a long time: the birth of new neurons, i.e., 
neurogenesis, was restricted to prenatal and early postnatal 
development and that the adult mammalian brain was una-
ble to produce new neurons. However, in the 1960s, Joseph 
Altman and colleagues showed first evidence for adult neu-
rogenesis in the brain of rodents [2–4]. Although these data 
were received with skepticism by the scientific community, 
results were reproduced and revealed the neuronal pheno-
type derived from dividing cells in the hippocampus [5].

In the 1990s, pioneering studies by Weiss and colleagues 
identified stem cell-like cells from the adult brain that were 
able to differentiate into neurons and astrocytes [6]. Impor-
tant for the acceptance of the concept of adult neurogenesis 
has been the development of novel techniques and scien-
tific methods. Cell division for example, can be marked 
using bromodeoxyuridine (BrdU) or [3H]thymidine. These 
molecules label and incorporate into DNA of dividing cells 
and can be visualized with electron and confocal micros-
copy [7]. By varying the paradigm and the examination 
time points after injection, these techniques allow quantita-
tive analysis of proliferation, differentiation, and survival. 
During the last decades, it also became clear that develop-
ing neurons express distinct markers during their matura-
tion process [8]. BrdU-labeled DNA in combination with 
immuno-histochemical analysis of the expression of these 
specific neuronal markers by confocal microscopy unam-
biguously revealed the existence of neurogenesis in the 
adult brain [9]. For example, for immature newborn neu-
rons, doublecortin (DCX) is regularly used, while for 
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mature neurons the specific adult neuronal marker of nuclei 
NeuN is mostly used [10–12]. Analysis of adult born neu-
rons can also be performed using retroviral genetic mark-
ing, since retroviruses exclusively enter the target cell dur-
ing mitosis [13]. Adult neurogenesis has been shown in the 
brain of different species of rodents [14, 15], primates [16], 
and even humans [17, 18]. Newborn neurons have been 
observed to integrate into neuronal hippocampal circuits 
and have been functionally associated with complex brain 
processes like cognition, emotion, and pattern separation.

The discovery of environmental factors regulating adult 
neurogenesis in a bi-directional manner has been of key 
importance for the acceptance of the concept [19]. In par-
ticular, the finding that stress and adrenal steroid hormones 
down-regulate adult neurogenesis [14, 20] contributed sig-
nificantly. As aberrant forms of stress and chronic elevation 
of adrenal hormones are also linked to the psychopathology 
of depression, possible involvement of adult neurogenesis 
in psychiatric diseases has been a topic of intense research. 
Nowadays, changing rates of adult neurogenesis have been 
linked to aging, environment, hormones, neurochemicals, 
and behavior as well as to numerous brain diseases ranging 
from depression to epilepsy.

Overthrowing a dogma always attracts attention. There-
fore, an impressive number of papers have appeared in 
the last decade and as a consequence, numerous reviews 
have been published covering specific topics of adult neu-
rogenesis such as general mechanisms and signaling cas-
cades [13, 21], cognition and memory formation [22–24], 
evolution [25], olfaction [26] psychiatric diseases [27], 
paroxysmal disorders such as epilepsy [28, 29], and neu-
rodegenerative disorders [30]. Also, the concept of stress 
and its effect on adult neurogenesis have been reviewed 
extensively [31–35]. Therefore, we will only briefly review 
the general aspects of the stress system and the interplay 
between stress and adult neurogenesis in the hippocampus. 
More extensively, we will highlight novel findings on the 
function of the glucocorticoid receptor, the main mediator 
of the stress response, in neuronal progenitor cells and in 
adult neurogenesis. We will present a novel concept about 
the role of the glucocorticoid receptor in the positioning 
and functional integration of newborn neurons and we dis-
cuss how this concept may contribute to the chronification 
of paroxysmal brain diseases.

Neurogenesis in the adult hippocampus

To understand the possible relevance of adult neurogenesis, 
it is important to understand the anatomy of the hippocam-
pus. The hippocampus can be divided into three main sub-
regions, i.e., CA1, CA3, and dentate gyrus (DG). Neuronal 
cells derived from these three subregions are connected by 

so-called trisynaptic pathways (see Fig. 1a). It is generally 
assumed—but not proven—that information processing by 
this tri-synaptic circuit is crucially involved in learning and 
memory formation. Neurogenesis occurs only in the DG 
and there is no evidence that other hippocampal regions 
generate new neurons [36].

The DG area consists of three layers: the molecular layer 
(ML), the granule cell layer (GCL), and the hilus or poly-
morphic layer (PL; see Fig. 1b). The GCL is densely packed 
and consists of a stack of roughly six granule cell bodies [2, 
3, 37]. These cells have an elliptical cell body of about 10–
18 μm, are tightly packed, and are not ensheathed by glia 
cells. Granule cells have a cone-shaped dendritic tree that 
projects into the ML. At the other site of the cell body, gran-
ule cells give rise to unmyelinated axons called mossy fib-
ers. These fibers have large boutons, which not only connect 
to pyramidal cells of the CA3 but also contact mossy cells 
in the hilus [2, 3, 38]. The border between GCL and hilus is 
called the subgranular zone (SGZ) and inhabits neural stem 
cells (NSCs), which are the source of adult neurogenesis 
and generate excitatory granule cells [5, 36].

Neurogenesis in the adult DG can be divided into three 
main stages (see Fig. 1b) [7, 36]. The first stage is called 
the precursor cell stage and is characterized by cell divi-
sion [6, 39]. The primary NSC in the DG is a radial glia 
(RG)-like astrocyte called the type 1 cell [9, 36]. Like RGs, 
these NSCs have long processes that project into the ML. 
The second phase is called the early postmitotic phase and 
is characterized by neuronal differentiation and migration 
of neuroblasts/immature neurons. Under the influence of 
GABA, they start to develop dendrites and axons towards, 
respectively, the ML and CA3 regions. At this stage, the 
dendrites lack any spines but receive functional GABAe-
rgic input [13, 21, 40]. Initially, GABA has an excitatory 
effect, which induces dendritic growth. When this excita-
tory signaling is blocked, immature neurons develop abnor-
mally [22–24, 41].

The immature neurons/neuroblasts migrate radially into 
the DG. Doublecortin, a gene that is causally involved in 
migration of neuronal precursor cells and neuroblasts [42], 
is a major marker in this process (see Fig. 1b). The major-
ity of newborn cells end up in the inner third layer of the 
DG, while 10–20 % reach the mid third layer and only a few 
cells ends up in the outer third layer [37, 40]. This non-pro-
portional distribution may be explained by the fact that the 
majority of GCs, which inhabit the middle and outer third 
layers, are born during early postnatal development while the 
inner third layer is generated later during development [43].

The third stage is called the late postmitotic matura-
tion stage, wherein surviving cells integrate into the local 
DG network and further mature into genuine granule cells 
[40, 44–46]. Although newborn cells lose the expression of 
immature markers around 4–5  weeks after cell birth, full 
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maturity is reached around 60  days after cell birth [44]. 
After the first weeks, newborn neurons continue to extend 
their dendritic and axonal processes and many new con-
nections are formed with glutamatergic synapses from the 
EC and output to pyramidal cells in the CA3. Not only 
newborn GCs increase and reshape their synaptic connec-
tivity. Due to their interaction with newborn GCs, mature 
GCs also change their connectivity. Spines from newborns’ 
GCs compete at entorhinal boutons with old synapses from 
mature GCs and—possibly due to local glutamate spillover 
at the synapse—will replace the old synaptic connection 
[47–49]. This pattern of competitive synaptic plasticity in 

the molecular layer also seems to be present in the hilus 
and CA3 region at the axonal end of newborn neurons. 
Although boutons actively connect to synapses already 
17 days after cell division, the connections are fully mature 
2 months post-cell division [47, 50].

The stress system, glucocorticoids, and glucocorticoid 
receptors

Stress is the response of an organism aiming to main-
tain a physiological balance called homeostasis. When 

Fig. 1   Overview of the hip-
pocampal formation and adult 
neurogenesis. a Schematic 
representation of the tri-synaptic 
pathway. Axons derived from 
the entorhinal cortex (EC) layer 
II projects via the perforant 
pathway (purple) towards the 
dendrites of the DG granule 
cells (red). The perforant 
pathway projects also towards 
CA3 were they end in boutons, 
which contact dendrites of 
pyramidal cells (blue). Mossy 
fibers (red) originating in the 
DG granule cells project to 
the same pyramidal cells in 
the CA3. Via the Schaffer col-
lateral pathway (blue) the CA3 
projects towards pyramidal 
neurons (green) in the CA1, 
which also receive input from 
the EC layer III. CA1 pyramidal 
neurons project (green) towards 
layer IV of the same EC. Only 
in the DG, new-born granule 
cells (yellow) integrate into this 
network. b Adult neurogenesis 
can be divided in three main 
stages: the precursor cell stage, 
the early postmitotic matura-
tion phase and the late mitotic 
maturation phase. Stem cells 
proliferate in the sub-granular 
zone (SGZ) where after NPCs 
migrate into the granular cell 
layer (GCL). During the late 
postmitotic phase, the newborn 
neurons develop dendritic trees 
protruding into the molecular 
layer (ML). Different stages are 
characterized by expression of 
specific markers. Note that the 
GR is expressed in radial glia 
cells, but not early precursor 
cells. For further details, see 
main text

A

B
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homeostasis is challenged by a stressor, the organism 
responds by behavioral and physiological adaptations, 
resulting in coping and recovery. A stressor can be an envi-
ronmental challenge, e.g., taking a test, or a physical chal-
lenge, e.g., a viral infection. Whatever the nature of the 
stressor, the body reacts in a stereotypical way [51]. Firstly, 
neurohormones, in particular corticotropin-releasing hor-
mone (CRH), are released in the hypothalamus that subse-
quently project to the pituitary [52]. Secondly, activation of 
CRH receptor expressing neuro-endocrine cells in the pitui-
tary leads to the subsequent release of adrenocorticotropic 
hormone (ACTH) into the blood circulation, which acti-
vates endocrine cells in the adrenal cortex. Thirdly, ACTH 
stimulates the release of adrenal glucocorticoid hormones, 
also called stress hormones, which are cortisol in man and 
corticosterone in rodents, here collectively referred to as 
CORT. This adrenal steroid hormone affects many organs 
in the body: it causes release of glucose in the blood cir-
culation, it acts as a repressor of the immune system, and 
in the brain it facilitates information processing in limbic 
neuronal networks involved in emotion, cognition, and 
memory formation [for a review, see 31, 32]. CORT also 
functions as a feedback mechanism to the same brain struc-
tures in the hypothalamus that triggered its release, thereby 
stabilizing the hypothalamus–pituitary–adrenal (HPA) axis 
and preventing sensitive organs in the body from CORT 
overexposure. HPA axis activity is organized in a circa-
dian rhythm with high levels in the morning, enabling indi-
viduals to cope with energy demands ahead of them. It is 
important to note that rapid HPA axis activation by acute 
stress and the subsequent turn-off of the HPA axis by the 
negative feedback response of CORT is healthy, as it helps 
an individual to cope with the stressor. However, dysregula-
tion of the HPA axis by e.g., chronic stress may endanger 
the immune system, cardiovascular functions, the regula-
tion of fear, cognition, and memory formation, and as such 
is associated with numerous diseases, in the brain in par-
ticularly with depression [33, 53].

Lipophilic CORT passes the blood–brain barrier eas-
ily and enters neuronal target cells by penetrating across 
the cell membrane. At the neuronal level, CORT controls 
the stress response through binding to two types of ster-
oid receptors in the cytosol: the mineralocorticoid recep-
tor (MR or NR3C2; [54]) and the glucocorticoid receptor 
(GR or NR3C1; [55–57]). These steroid receptors belong 
to a superfamily of ligand-inducible, highly conserved 
nuclear hormone receptors. Upon binding CORT, GR and 
MR translocate to the nucleus where they affect expres-
sion of specific sets of genes in two ways: (1) by bind-
ing to specific so-called glucocorticoid-response element 
DNA motifs located in promoter regions of target genes; 
a process called transactivation and (2) by protein–protein 
interaction with other transcription factors and co-factors, 

such as cAMP-response element binding (CREB) protein 
and CREB binding protein (CBP), thereby mainly inhibit-
ing the activation of these transcription factors and as such 
is called transrepression (for review, see [58]). In addition, 
CORT evokes fast non-genomic neuronal responses by 
binding to membrane-bound GR and MR [59]. As these 
membrane-bound receptors have not yet been identified in 
NPCs, they are outside the scope of this review.

The hippocampus, a brain area crucially involved in 
cognition and memory formation, expresses both MR and 
GR at high levels, and is therefore particularly sensitive for 
fluctuating levels of CORT. Moreover, as neuronal stem 
cells in the dentate gyrus of the hippocampus are located 
in the close vicinity of blood vessels [60], stress and stress-
induced elevated CORT levels may target NPCs easily and 
may be very profound (environmental) factors affecting 
adult hippocampal neurogenesis.

The glucocorticoid receptor and adult neurogenesis

The general view is that stress and stress hormones inhibit 
adult neurogenesis by inhibiting proliferation of type 
2 cells. For example, several chronic stress paradigms, 
like subordination stress in primates and social defeat in 
rodents showed diminished cell proliferation in the DG 
[16, 61–63]. Also, ground-breaking studies in the early 
1990s showed that administration of adrenal hormones in 
rats negatively affect the incorporation of 3H-thymidine 
while removal of adrenal hormones by adrenalectomy 
booster the appearance of 3H-thymidine labeled cells [14, 
64, 65], suggesting an inhibitory role for stress-induced 
glucocorticoids in adult neurogenesis. However, the rela-
tionship between stress and adult neurogenesis seems far 
more complex than a simple inhibitory role. For exam-
ple, the use of the running wheel by mice is well known 
to booster adult neurogenesis at the proliferation stage 
and promotes neuronal differentiation [45, 66, 67]. At the 
same time, physical exercise is a strong activator of the 
HPA axis, leading to elevated levels of circulating gluco-
corticoids [68, 69]. Similarly, an enriched environment 
stimulates neuronal differentiation and survival of new-
born cells [66, 70, 71], yet it simultaneously increases glu-
cocorticoid levels [72]. Also, several learning paradigms 
not only stimulate survival of newborn neurons but also 
increase HPA axis activity and glucocorticoid levels [73, 
74]. Recently, acute stress, induced by 3  h of immobi-
lization stress resulting in elevated plasma CORT levels, 
was shown to induce (not repress) cell proliferation in the 
DG [75]. Reversely, hippocampal neurogenesis may also 
facilitate normalization of glucocorticoid levels after stress 
[76], suggesting a bi-directional relationship between adult 
hippocampal neurogenesis and regulation of the HPA axis. 
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Clearly, the effect of stress and stress hormones on adult 
neurogenesis is complex. These paradoxical findings may 
be explained by several factors (see also Fig.  2). Firstly, 
neuronal stem cells in the SGZ of the dentate gyrus are 
located in a specialized microenvironment, the so-called 
neurogenic niche, consisting of numerous different cell 
types, including astrocytes, ependymal cells, blood ves-
sels, interneurons, oligodendrocytes, and myeloid cells, 
i.e., microglia cells and dendritic cells. All of these cell 
types may modulate adult neurogenesis. For example, 
depending on the type of microglia and on the challenge, 
activated microglia cells release cytokines that may have 
detrimental or beneficial effects on adult neurogenesis 
(for review, see [77]). Also, these cell types express GRs 
indicating that stress-induced glucocorticoid elevation 
targets these cells as well, and as such these cells may 
modulate the rate of neurogenesis. Secondly, the nature of 
the stressor is an important factor. Control or no control 
over stress may have opposite effects on neuronal plastic-
ity including adult neurogenesis whereby non-controllable 
stress such as social defeat or learned helplessness has a 

negative and controllable stress such as voluntary exercise 
or enriched environment has a positive effect on neuro-
genesis [72]. The precise neurochemical mechanisms that 
are differentially activated by controllable and uncon-
trollable stress are presently unknown but may involve 
desensitized serotonergic signaling via the dorsal raphe 
nucleus [78] as serotonin stimulates adult neurogenesis 
through 5HT1A receptors [79]. Thirdly, the duration of 
stress, acute stress (e.g., during learning) versus chronic 
stress, may have opposite effects on adult neurogenesis. 
Chronic stress has been associated with decreased expres-
sion of 5-HT1A receptor expression [80] and thus likely 
impaired serotonergic signaling in dentate gyrus region of 
the rodent hippocampus [81, for review see 82] while an 
enriched environment stimulates 5HT1A expression [83]. 
Fourthly, early life experiences may also affect the rate of 
neurogenesis in adult life. For example, exposure to E. coli 
bacteria in early life not only affects the responsiveness of 
microglia in the adult brain but also negatively affects the 
rate of adult neurogenesis after infection compared to non- 
E. coli-treated pups [84].

Fig. 2   Relationship between GR activity and neurogenesis GR acti-
vation exerts both positive and negative effects on neurogenesis. We 
propose an inverted U-shaped model in which there is a relationship 
between the amount of GR activation and neurogenesis. Low levels of 
stress seen in animals kept in a poor environment or with a sedentary 
lifestyle induce low levels of proliferation and maturation. Control-
lable stress, like enriched environments, physical activity, and learn-

ing, coincides with increased levels of GR activation and is associ-
ated with increased cell proliferation and correct integration of mature 
neurons. Too much GR activation as seen during uncontrollable stress 
negatively affects proliferation and neuronal integration. Neurogene-
sis-controlling molecular factors, like BDNF, VEGF, and 5-HT sign-
aling, are regulated by low–high GR activity in opposite directions
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Besides serotonergic signaling, controllable versus non-
controllable stress and acute versus chronic stress may also 
affect other transmitter systems. Relevant for adult neuro-
genesis particularly is the interaction with glutamatergic 
signaling, e.g., acute cortisol exposure may facilitate clus-
tering of AMPA receptors [85], thereby facilitating the 
pro-plasticity activities of glutamate in the early and post-
mitotic maturation phase. Another important group that 
interacts with stress and stress hormones is neurotrophins, 
like BDNF, VEGF, and IGF-1 and their Trks. Expression 
of these neurotrophins is not only regulated by stress and 
circulating stress hormones (see e.g., [86]) but also by an 
enriched environment, chronic stress, and by learning, and 
may be differentially regulated by controllable versus non-
controllable stress [87]. The interplay between the stress 
system on the one hand and neurotrophins and excitatory 
stimuli on the other may direct the outcome on the prolif-
eration, maturation, and functional integration of newborn 
cells in the DG. The nature of the stress, e.g., acute versus 
chronic, and the background of an organism—aging, trau-
matic early life events, environmental enrichment—further 
determine the outcome on adult neurogenesis. For more 
in-depth reviews on this topic, we refer to recent excel-
lent papers highlighting the complex interplay between 
stress, stress hormones, and adult neurogenesis [27, 34, 39, 
88–90].

The glucocorticoid receptor

Corticosterone has profound effects on the excitation-
inhibition balance within the hippocampus. This effect is 
not identical in all hippocampal sub areas. In both CA1 
and CA3, high concentrations of corticosterone enhance 
LTP via short-term MR activation. After this acute effect, 
GR-mediated inhibition of the LTP normalizes the exci-
tation-inhibition balance in these brain areas. However, 
within the dentate gyrus, the effect of corticosterone on 
the excitation-inhibition balance seems reversed. Despite 
the abundant expression of the GR within the DG, high 
concentrations of corticosterone do not suppress LTP 
in the long run but, in contrast to the CA1 and CA3, 
enhance LTP [91].

The MR and the GR are the main intracellular media-
tors of the stress response (for review, see [31–33]). In the 
DG, both receptors are abundantly expressed in all GCLs 
except in the SGZ. In neuronal precursor cells, MR expres-
sion is below detection levels and the GR is expressed in 
about 50 % of neuronal precursor cells, both in vivo [65, 92] 
as well as in primary neuronal precursor cell cultures [93]. 
These data suggest that the GR (and not the MR) is the main 
mediator of direct stress-suppressive effects on cell prolifera-
tion. Indeed, pharmacological blockade of the GR prevents 

the negative effect of exogenous CORT administration on the 
proliferation of neuronal progenitor cells [94]. The absence 
of both MR and GR expression in a subpopulation of neu-
ronal progenitor cells opens up the possibility that the effect 
of stress hormones is indirect, likely via NMDA receptors. 
Activation of NMDA receptors inhibits and NMDAR block-
ade promotes cell proliferation in the dentate gyrus [95–97]. 
In addition, stress and CORT are known to stimulate gluta-
mate release [85, 98]. Therefore, it may well be possible that 
the CORT-suppressive effects are mediated by glutamatergic 
signaling. Indeed, pharmacological blockade of NMDAR by 
MK801 prevents the inhibitory effect on cell proliferation 
by CORT administration [99], suggesting that glutamate-
induced inhibition acts downstream of CORT signaling.

The presence of GR expression in a number of progeni-
tor cells and in immature neurons [92] also suggests a direct 
effect of circulating CORT on adult neurogenesis. Such a 
direct role for the GR is further suggested by the fact that 
GR activity and GR mRNA and GR protein levels are tightly 
regulated by a number of factors that also regulate adult 
neurogenesis (see Table 1). One of these factors is double-
cortin-like (DCL), a protein that is specifically expressed 
in radial glia cells during embryonic neuronal development 
[100] and that is co-expressed with DCX in progenitor cells 
in the adult hippocampus [101]. DCL belongs to the DCX 
gene family [102] and is a microtubule-associated protein 
regulating retrograde transport of activated GR proteins to 
the nucleus, indicating that progenitor cells possess spe-
cialized mechanisms to quickly translocate activated GRs. 
Another factor is microRNA(miR)-124, a small non-coding 
RNA that is able to bind to the 3′-untranslated region of 
the GR mRNA thereby reducing GR protein levels to 70 % 
[103]. Interestingly, miR-124 is a neuron-specific micro-
RNA that directs progenitor cells in the brain to differentiate 
into a neuronal phenotype [104, 105]. To achieve neuronal 
fate, miR-124 represses the activity of a number of pro-
teins such as REST [106] and Sox9 [105] that are known 
to antagonize neuronal differentiation. The repression of 
the GR by miR-124 suggests that reduced GR protein lev-
els are critical for proper neuronal differentiation. Indeed, 
downregulation of GR proteins by retroviral and lentiviral 
delivery of GR-targeting small interference (si)RNA mol-
ecules specifically in neuronal progenitor cells in the mouse 
DG [107] accelerates their neuronal differentiation. Moreo-
ver, newborn granule cells with reduced GR protein levels 
exhibit more complex dendritic arbors, have increased num-
bers of mature dendritic spines, and more mature mossy 
fiber boutons. In line with this, cells with reduced GR 
expression exhibit increased basal excitability (see Fig.  3) 
[108]. A striking finding in this study was the positioning 
of newborn granule cells in the GCL: a large percentage of 
the cells with reduced GR levels were located in the middle 
and outer layer. This position is significantly different from 
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newborn granule cells with normal GR expression that were 
predominantly present in the inner and middle layer. These 
data suggest a role for the GR in the accurate migration and 
functional integration of newborn cells in the GCL, a role 
which is in line with the effect of glucocorticoids on cortical 
neuron migration in embryonic development [109] and the 
changed positioning of DCX-positive newborn granule cells 
after adrenalectomy [108].

The altered morphology and mis-positioning of new-
born granule cells with reduced GR expression raise the 
question about the consequences for hippocampal func-
tioning. Contextual fear conditioning, a task that is often 
used to monitor functional consequences of altered adult 
neurogenesis [110, 111], showed impairment of contextual 

but not of cued freezing behavior in mice with reduced GR 
expression in newborn, 5-week-old granule cells [108]. 
This behavioral finding is remarkable, as only a limited 
number of cells, approximately 20,000, are transduced 
by the lentivirus [107], which further underscores the 
importance of adult neurogenesis for proper hippocampal 
functioning.

Aberrant placement of newborn granule cells has also 
been found in other disease-related models. Neuronal dis-
eases, characterized by extensive glutamate release, such as 
epilepsy and stroke, are associated with massive neurogen-
esis [112, 113], dendritic abnormalities, and ectopic posi-
tioning of newborn cells [114]. Remarkably, in the case of 
status epilepticus-induced changes in neurogenesis, newly 

Table 1   Overview of factors affecting glucocorticoid receptor activity and adult neurogenesis

GR Adult neurogenesis

mRNA Protein Activity Proliferation Differentiation Maturation

Molecular factors

 DNA Methylation ↓  
[137, 138, 140, 
170]

GR-KO ↓ [171] NA NA NA GR-KO ↓ [172]

 miRNA miR-124 ↓ [103, 
173]

↓ miR-124 ↓ [103, 
173]

miR-124 ↑ [105] miR-124 ↑ Nd

 GR Co-regula-
tors

NA NA DCL ↑ [136] 
Ube3a ↑ [134]

SMO ↑ [174] 
DKK1 ↓ [175] 
Ube3a = [133]

Ube3a = [133] Ube3a ↓ [133]

 Genes with 
GREs

NA NA CALD1 ↑ [109] 
SGK1 ↑ [130] 
Npas4 ↓ [176]

SGK1 ↓ [130] 
Npas4 = [177]

CALD1 ↓ [109] Npas4 ↓ [177]

 GR siRNA GR ↓ [108] NA GR = [108] GR ↑ [108] GR ↑ [108]

 CORT NA NA CORT injection ↑ 
[64, 178, 179]

Adrenal ectomy ↓ 
[14, 64]

CORT injection ↓ 
[178]

Adrenal ectomy ↑ 
[14]

CORT injection ↓ 
[179]

CORT injection ↓ 
[64]

Adrenal ectomy ↑ 
[64]

Environmental factors

 Early life Maternal care ↑ 
[180]

NA Prenatal stress ↑ 
[181–183]

Maternal care ↑ 
[180]

Prenatal stress ↓ 
[181, 183]

Maternal 
care = [184]

Maternal depriva-
tion ↓ [141]

Maternal depriva-
tion ↓ [141]

Prenatal stress ↓ 
[182]& = [181]

Maternal care ↑ 
[184]

Maternal depriva-
tion = [141]

 Aging NA ↓ [92, 146, 147] ↑ [185, 186] ↓ [143] ↓ [145, 187]

 Social interac-
tion

NA NA Social housing ↑ 
[188]

Isolation ↓ [69]
Defeat ↑ [189]

Social housing ↑ 
[188]

Isolation ↓ [69, 
190]

Defeat ↓ [61–63, 
191]

Defeat ↓ [192] Defeat ↓ [192]
Social avoidance 

↑ [63]
Communal nesting 

↑ [193]

 Physical activity NA NA Running ↑ [69]
Running = [66, 

194]

Running ↑ [69]
Stressed = [194]

Running ↑ [69] Running ↑ [195]

 Stress NA NA Acute ↑ [99]
Chronic ↑ [196]

Acute ↓ [99, 197, 
198]

Chronic ↓ 
[199–201]

Acute ↓ [197, 198]
Chronic ↓ [200]

Chronic = [199]
Chronic ↓ [200]
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formed neurons are found at ectopic locations [115]. Simi-
larly, as after GR reduction, these ectopic adult-born neurons 
are hyper-excitable, and are believed to be part of the mecha-
nisms underlying increased susceptibility towards seizures 
(see Fig. 4) [29, 116, 117]. Reduced levels of disrupted-in-
schizophrenia-1 (DISC1) in newborn granule cells cause a 
highly similar phenotype as after reduced GR levels. DISC1 
knockdown in NPCs exhibit accelerated neuronal differenti-
ation, functional integration at ectopic locations and impair-
ment in hippocampus-dependent memory consolidation 
[118, 119]. Collectively, these studies suggest that integra-
tion of newborn granule cells at ectopic locations may con-
tribute to the pathogenesis of both neurological and psychiat-
ric diseases and possibly are part of mechanisms underlying 
chronification of paroxysmal disorders such as stroke, epi-
lepsy, and schizophrenia [117]. As the GR has been impli-
cated in epilepsy and schizophrenia [120–126], aberrant GR 
signaling might be part of the mechanisms underlying aber-
rant integration of newborn cells in these diseases.

The studies outlined above suggest that the level of 
GR expression is important for adequate adult neurogen-
esis and should be in a narrow window. Too low expres-
sion leads to ectopic integration of newborn granule cells 
and too high expression may block proliferation and dif-
ferentiation of NPCs. In line with the importance of a nar-
row window for GR expression is the finding that a 30 % 
reduction of GR protein levels results in a 70 % reduction 
of the expression of glucocorticoid-induced leucine zip-
per (GILZ), a GR-responsive gene [103]. Indeed, inten-
sive research of the last decades has revealed a myriad of 
mechanisms all aiming at the regulation of GR activity 
(see Table 1). Alternative splicing of the GR gene results 
in at least three different GR isoforms. In addition, alter-
native translation initiation results in the formation of 
another eight different GR isoforms. Each of these GR 
isoforms is expressed in a cell-specific way and control 
the expression of a unique set of genes [127, 128]. As 
such, these GR isoforms may contribute to mechanisms 

Fig. 3   GR knockdown stimulates differentiation of post-mitotic 
neuronal precursor cells. GR knockdown increases the number of 
dendritic mature mushroom spines (1), axonal bouton size (2), and 
number of mini-excitatory postsynaptic currents (mEPSC; 4). GR 

knockdown also leads to more complex dendritic arbors (2) and 
ectopically located new-born granule cells (not illustrated). After 
[108]
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underlying cell-specific responses to CORT. GR activ-
ity can also be modulated by GR phosphorylation [129]. 
In human neuronal progenitor cells, GR responsiveness 
towards CORT also depends on GR phosphorylation by 
serum- and glucocorticoid-inducible kinase 1 phospho-
rylation, a target gene for activated GRs [130]. A further 
complicating factor for the outcome of GR action is the 
interaction with other proteins, in particular co-activators 
and co-inhibitors that are expressed in a cell-specific man-
ner in the brain (for review, see [131]). Relevant for adult 
neurogenesis is Ube3a, a co-activator of the GR, which is 
crucially involved in the Angelman syndrome [132]. Lack 
of Ube3a expression not only leads to impaired cognition 
and decreased numbers of NeuN/BrdU-positive cells [133] 
but may also result in impaired GR signaling [134]. CBP 
is another important cofactor and integration point, bridg-
ing CREB or zif68/egr1 activity with GR signaling [131, 
135]. Together with the regulation of GR levels by neu-
rogenesis-related microRNA-124 [103] and the presence 
of specific retrograde transport mechanisms for the GR in 
neuronal progenitor cells such as DCL [136], the differ-
ent mechanisms outlined above clearly indicate that GR 
expression and activity are under tight control in neuronal 
progenitor cells.

An important question that emerges is what type of (envi-
ronmental) factors regulating adult neurogenesis also affect 
GR levels in neuronal progenitor cells (see Table 1). Inter-
estingly, early life events, such as maternal separation and 
parental care, are known to reduce GR levels at adult age 

by epigenetic programming of the GR promoter [137–140] 
and is also associated with impaired adult neurogenesis [141, 
142]. Aging is associated with lower rates of hippocam-
pal neurogenesis [143–145], impaired negative feedback of 
CORT on the HPA axis, and reduced levels of the GR [146, 
147]. Chronic stress is another factor negatively affecting 
both GR levels and adult neurogenesis [61, 148–150]. It is 
unknown whether aging, early life events, and chronic stress 
directly affect GR levels, thereby impairing proliferation and 
differentiation of neuronal progenitor cells. It is likely, how-
ever, that these effects are indirect, as proliferation, differen-
tiation, migration, and survival depend on neurotrophins and 
excitatory input, first by GABA input and later in develop-
ment by glutamatergic input. In other words, different phases 
of adult neurogenesis require excitatory neuronal activity 
[for review, see 151]. Chronic stress not only reduces GR 
levels but also impairs glutamate release via BDNF [152] 
and reduces expression of other neurotrophins as well [86, 
153]. Thus, it seems likely that environmental factors nega-
tively affecting adult neurogenesis attenuate multiple excita-
tory and inhibitory signaling cascades through the GR.

The glucocorticoid receptor and the 
excitation‑inhibition balance in neuronal progenitor 
cells

The precise mechanisms by which GR levels directly regu-
late proliferation and neuronal differentiation in neuronal 

Fig. 4   The excitation–inhibition balance determines the number 
and final positioning of newborn granule cells. Excessive excitation, 
as is the case after seizures, stroke, and GR knockdown, leads to an 
increase and ectopic location of newborn granule cells. Reversely, 

excessive inhibition leads to reduced numbers of newborn cells. 
Although suggested in this cartoon, it is unknown whether newborn 
granule cells are ectopically located in the GCL. For further details, 
see main text
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progenitor cells are unknown. As a transcription factor, 
the GR affects the expression of hundreds of genes in the 
hippocampus [154, 155] and without a doubt a number of 
these genes are involved in the differentiation of neuronal 
progenitor cells. We suggest that the majority of these GR-
responsive genes are regulated by a transrepression model 
(see also Fig. 5). Studies aiming at the identification of GR-
responsive genes in the hippocampus showed that 1 h after 
corticosterone exposure all responsive genes are down-
regulated, suggesting a GR-mediated transrepression effect 
of fast glucocorticoid action [156]. Also, a GR-mediated 

transactivation mechanism seems to underlie retarded 
migration of immature neurons in the developing rat brain 
[109]. This finding strongly suggests that proliferation and 
neuronal differentiation of neuronal progenitor cells require 
reduced GR activation, which seems more in line with a 
transrepression model. Also, this finding is in line with the 
repression of GR translation of the proneurogenic micro-
RNA-124 [103]. However, recent in vitro studies indicate 
involvement of a GR-mediated transactivation effect in 
the pro-neurogenic action of antidepressants [157], which 
suggest that the GR function in neuronal progenitor cells 

Fig. 5   Hypothetical model 
illustrating possible molecular 
mechanisms underlying the 
action of the glucocorticoid 
receptor in the excitation-inhibi-
tion balance in NPCs. Activa-
tion of NMDA and AMPA 
receptors lead to an intracellular 
signaling cascade leading to the 
activation of the pro-neurogenic 
transcription factors CREB 
and zif68/EGR via CaMK. 
Likewise, binding of neuro-
trophins (e.g., BDNF) to Trks 
leads to activation of CREB 
and zif68/egr1 via the MAPK 
pathway. CORT-activated GR 
is retrograde transported by 
doublecortin-like (DCL) along 
the microtubules towards the 
nucleus. GR may interact with 
p-CREB by interaction with co-
factors such as CREB binding 
protein (CPB). The net result of 
this GR-CPB-CREB interaction 
is the decreased CREB activity 
and subsequent inhibition of 
neurogenesis. Pro-neurogenic 
miR-124 represses GR activity, 
which may facilitate neuronal 
differentiation via NMDAR 
and/or Trk activation
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is context dependent, for example depending on serotonin 
signaling.

Proper proliferation and neuronal differentiation of 
neuronal progenitor cells require excitatory input. As out-
lined before, in early stages this is excitatory GABA [41] 
and later this is glutamate that act on AMPA receptors 
and NMDA receptors [158, 159]. Another group of mol-
ecules that stimulate neurogenesis are neurotrophins, such 
as BDNF and VEGF, which are induced and released by 
environmental enrichment and learning, thereby promot-
ing neurogenesis. Neurotrophins bind to tyrosine kinase 
receptors (Trk), membrane-bound receptors that are neces-
sary for adult neurogenesis [160]. Activated AMPA recep-
tors, NMDA receptors, and Trk receptors are all known 
to activate an intracellular signaling cascade that results 
in the activation of transcription factors that subsequently 
stimulate proliferation of neuronal precursor cells, their 
differentiation, and functional integration in hippocampal 
circuits (for review, see [161]). Examples of such tran-
scription factors are Zif68/egr1 [162] and CREB [163–
165], which are key transcription factors in the develop-
ment and survival of newborn granule cells. Activated 
GR may interact with these pathways either by binding 
directly to these transcription factors and/or by interac-
tion with co-factors such as CBP [166] (for review, see 
[131]). The net result of this GR–CPB–CREB interaction 
is the decreased CREB activity. The emerging picture in 
this concept is that CORT and the activated GR dampen 
excitatory input in neuronal progenitor cells thereby pre-
venting the neurogenesis process from overshoot. Reduc-
tion of GR levels, e.g., by miR-124 (see Fig. 5) in NPCs or 
removal of CORT by adrenalectomy will relief this func-
tional brake on excitatory signaling leading to increased 
proliferation, differentiation and (aberrant) integration of 
newborn granule cells in hippocampal circuits. Extrapola-
tion of this model may explain ectopic newborn granule 
cells in the hilus after seizures, which are characterized by 
excessive glutamate and neurotrophin release, in particular 
BDNF. Other paroxysmal disorders like migraine are often 
also explained by a disturbed excitation-inhibition bal-
ance [167] with high levels of cortical glutamate release, 
which may reach limbic structures during cortical spread-
ing depression [168] and increases proliferative activity in 
the dentate gyrus [112]. Reversely, chronic high levels of 
CORT and diminished neuronal activity, i.e., diminished 
glutamate signaling and neurotrophin release—often asso-
ciated with psychiatric diseases like depression—may lead 
to reduced proliferation, differentiation and survival of 
newborn granule cells (see Fig. 4) [27, 34, 89]. However, 
it is presently unknown if this high CORT-low glutamate 
signaling will lead to diminished neuronal migration and 
functional integration of newborn granule cells mainly in 
the inner layer of the GCL.

Perspectives

During the last decade, tremendous progress has been 
made in understanding adult neurogenesis. The process 
of morphological changes of neuronal stem cells leading 
to mature excitatory granule cells, the synaptic connectiv-
ity, functional integration and, to a lesser extent, the func-
tional implications for learning and cognition, has been 
described in considerable detail. Similarly, many genes that 
are orchestrating the different stages of adult neurogenesis 
have been identified and numerous intrinsic and extrin-
sic factors influencing the rate of proliferation and fate of 
resulting newborn granule cells have been documented. 
Strangely, despite the fact that stress and stress hormones 
were one of the earliest discovered factors that manipu-
late adult neurogenesis [14, 64], their action on neurogen-
esis is still not fully understood. Likely, this is due to the 
complexity of the stress system that is controlled by sev-
eral brain areas and peripheral tissues, i.e., the HPA axis; to 
different physiological responses after acute stress versus 
chronic stress and as outlined above, to the complex control 
of the GR, the main mediator of the stress response in rela-
tion to adult neurogenesis. A number of issues remain to be 
resolved. For example, which GR isoforms are expressed 
in neuronal progenitor cells. Perhaps more importantly, can 
reduced GR levels, as observed after chronic stress, aging, 
and traumatic early life events, also be found in NPCs? 
Does epigenetic programming of the GR promoter by early 
life stress also take place in NPCs? If so, what will be the 
consequences for adult neurogenesis with respect to the 
positioning of newborn granule cells?

Both chronic stress, a dysfunctional HPA axis, and aber-
rant neurogenesis have been implicated in psychiatric dis-
eases [27, 33]. A proper excitation-inhibition balance seems 
key for the control of both the stress system and adult neu-
rogenesis. Both the MR and GR are important mediators for 
the stress response and interact with proteins that are acti-
vated by neuronal activity. Therefore, the question emerges: 
are these receptors suitable therapeutic targets for restoring 
excitation-inhibition balances in not only psychiatric diseases 
[53] but also in paroxysmal disorders like epilepsy [169]? 
With availability of numerous potent GR and MR antagonists 
and agonists, which have been developed by the pharmaceuti-
cal companies during the last 50 years, and modern genetic 
technologies like in vivo viral delivery of RNA-interference 
molecules, these questions can now be addressed.
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