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ABSTRACT
Species of the Sternoptychidae teleost family display an impressive morphology, including their
extreme reduced size. Here, we report the first mitochondrial genome of the diaphanous hatchet fish
Sternoptyx diaphana. By using short-read sequencing Illumina HiSeq, we generated two mitochondrial
contigs which were later physically assembled by PCR. The mitochondrial genome of S. diaphana was
17,224bp in length (excluding the control region) and is composed of 13 PCGs and 2 ribosomal RNA
genes. Strikingly, we could not identify the tRNA-Phe and two copies of tRNA-Met were differently
positioned. Additionally, the mitogenome displays a completely new gene rearrangement among verte-
brates. We expect that the study presented here will pave the way for further molecular studies with
this underrepresented group of illusive teleost fish.
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Members of the marine teleost Sternoptychidae family
(Stomiiformes) are characterized by their extremely small size
(<100mm). Moreover, they display a bright silver lateral pig-
mentation, large eyes, numerous lateral and ventral photo-
phores, and a highly variable body morphology which is
gender-specific (Nelson et al. 2016). The family consists of
two subfamilies, the Maurolicinae and Sternoptychinae
(Weitzman 1974), which include 70 species distributed over
10 genera. One of these species Sternoptyx diaphana
Hermann 1781, is a very small (up to 45mm) deep-sea ray-
finned fish, with large eyes and short snout, and a laterally
compressed body, with the mouth being nearly vertical.

A specimen of S. diaphana was captured in North Atlantic
(48.0695N; 47.0857W) from the EU Groundfish Survey (Flet�an
Negro 3 L-2019) and stored in ethanol 96%. Due to its small
dimension, the whole individual (except the digestive tract)
was used for total genomic DNA extraction and subsequent
whole-genome library preparation (350 bp Truseq DNA PCR-
free Illumina kit) and sequencing (150 bp Paired-end on
HiseqX150) done at Macrogen Inc., Korea. Nevertheless, other
specimens of the same species simultaneously collected are
stored in ethanol at Interdisciplinary Center of Marine and
Environmental Research and the Instituto Espa~nol de

Oceanograf�ıa, Centro Oceanogr�afico de Vigo with vouchers
S.DIAPNA_1_3L19 and S.DIAPNA_2_3L19, respectively.

Mitogenome assembly was performed using a subsample
of the whole genome sequencing using mode all of MitoZ
(Meng et al. 2019). Despite various attempts, it was not pos-
sible to obtain a single contig from the NGS data alone, with
a final assembly being constituted of two contigs. To scaffold
over the two contigs, two primers matching the edge of
both contigs, P8F 50-GGTATTTGGTGCTTGAGC-30 P8R and 50-
GCT AACACAAATACCCAGTCCG-30, were designed and used
for PCR amplification and Sanger sequencing. Each PCR reac-
tion contained 2.5 lL 10� Invitrogen PCR Buffer, 1.5 lL
50 mmolL�1 MgCl2, 0.5 lL 10 mmolL�1 of each primer, and
10 mmolL�1 dNTPs, 0.1 lL Invitrogen Taq DNA Polymerase
and approximately 1lL DNA template. The cycle conditions
(repeated for 36�) were as follows, initial denaturation at
94 �C for 3min, denaturation at 94 �C (30 s), annealing at
54 �C (40 s), and extension at 72 �C (60 s) with a final exten-
sion at 72 �C for 10min. Chromatograms were visually
inspected using ChromasPro version 1.41 (technelysium.co-
m.au) and scaffolding performed manually using BioEdit ver-
sion 5.0.9 (Hall 1999). The final mitogenome was annotated
in MITOS2 (Bernt et al. 2013) and manually validated by

CONTACT L. Filipe C. Castro filipe.castro@ciimar.up.pt; Elsa Froufe elsafroufe@gmail.com CIIMAR/CIMAR – Interdisciplinary Centre of Marine and
Environmental Research, University of Porto, Terminal de Cruzeiros de Leix~oes. Av. General Norton de Matos s/n 4450208 Matosinhos, Portugal�These authors contributed equally to this work.
� 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

MITOCHONDRIAL DNA PART B
2020, VOL. 5, NO. 3, 2850–2852
https://doi.org/10.1080/23802359.2020.1790325

http://crossmark.crossref.org/dialog/?doi=10.1080/23802359.2020.1790325&domain=pdf&date_stamp=2020-12-17
http://orcid.org/0000-0001-9973-4861
http://orcid.org/0000-0003-0262-0791
http://orcid.org/0000-0001-7697-386X
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


comparison with annotations from other Stomiiformes avail-
able at GenBank.

For phylogenetic analysis, all Stomiiformes mitogenomes
(n¼ 7) and five outgroup taxa, were retrieved from GenBank
(accessed in May 2020). BI and ML phylogenetic analysis
were performed using all 13 protein-coding genes (PCG),
individually aligned using GUIDANCE2 (Sela et al. 2015) with
MAFFT (Katoh and Standley 2013) and concatenated in
SequenceMatrix (Vaidya et al. 2011). The final alignment was
11,349 nt long. PartitionFinder2 on XSEDE (Lanfear et al.
2016) was applied to determine the partition schemes and
best molecular evolutionary models for those partitions and
the retrieved information used for phylogenetic analyses.
These analyses were conducted using MrBayes on XSEDE
(Ronquist et al. 2012) (GTRþ IþG, GTRþ IþG, HKYþ IþG, and
HKYþG) with two independent runs (107 generations,
sampling frequency one tree for 1000 generations) and
RAxML-HPC BlackBox (Stamatakis, 2014) (GTRþ IþG). Both
phylogenetic analyses and PartitionFinder2 were imple-
mented through CIPRES (Miller et al. 2010).

The mitogenome of S. diaphana here obtained represents
the first mitogenome of a deep-sea fish from the family
Sternoptychidae and has been deposited in
GenBank (MT588184).

The mitogenome length (control region excluded) is
17,224 bp, within the observed size of other Stomiiformes
mitogenomes (Miya et al. 2001; Miya and Nishida 1999, 2000;
Aguilar et al. 2018; Ijichi et al. 2018). Regarding gene content,
as expected 13 PCGs and 2 ribosomal RNA genes are present.
Although 22 transfer RNAs were also annotated, we could
not detect tRNA-Phe and two copies of tRNA-Met were differ-
ently positioned in the mitogenome. Furthermore, the S.
diaphana mitogenome shows a completely new gene
rearrangement among vertebrates (Satoh et al. 2016): -trnC
-trnQ nad2 -trnY trnW cox1 trnD -trnS2 cox2 trnK atp8 atp6
cox3 trnG nad3 trnR nad4l nad4 trnH trnS1 trnL1 nad5 -trnE
cob trnT nad1 trnI trnM trnL2 trnN trnA -nad6 -trnP -trnM rrnS
trnV rrnL. Notwithstanding, despite several attempts, we

could not circularize the mitogenome and the control region
could not be detected. The inability to detect both the con-
trol region and the tRNA-Phe (generally adjacent to the con-
trol region) may result from the limitation of using Illumina
short-read sequencing (Goodwin et al. 2016) and therefore
requires future validation.

Both BI and ML phylogenetic trees, rooted with Coregonus
lavaretus (Linnaeus, 1758), Salmonidae (following Ijichi et al.
2018), show the same topology (Figure 1). The phylogenetic
analysis separates with high support, the group Stomiiformes
from a cluster formed by families Synodontidae,
Ateleopodidae, Myctophidae, and Trachipteridae.

The Order Stomiiformes is divided into two well-supported
groups, one comprising two families, i.e. Gonostomatidae
and Stomiidae, and the other including Phosichthyidae,
Diplophidae, and Sternoptychidae, represented by the here
newly sequenced species S. diaphana. Although we have
included all Stomiiformes available mitogenomes, this num-
ber is still reduced reinforcing the need to increase
data sampling.
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Figure 1. Bayesian Inference phylogenetic tree based on 13 concatenated protein-coding genes from 12 mitogenomes, including 7 Stomiiformes species and five
outgroup taxa. Only supports above 92% are shown. The asterisk (�) on the nodes indicate that both posterior probabilities and bootstrap support values are 100%.
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