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ABSTRACT: Homogeneous and heterogeneous catalyzed reac-
tions can seldom operate synergistically under the same conditions.
Here we communicate the use of a single rhodium precursor that
acts in both the homogeneous and heterogeneous phases for the
asymmetric full saturation of vinylarenes that, to date, constitute an
unmet bottleneck in the field. A simple asymmetric hydrogenation
of a styrenic olefin, enabled by a ligand accelerated effect,
accounted for the facial selectivity in the consecutive arene
hydrogenation. Tuning the ratio between the phosphine ligand and
the rhodium precursor controlled the formation of homogeneous
and heterogeneous catalytic species that operate without
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interference from each other. The system is flexible in terms of both the chiral ligand and the nature of the external olefin. We
anticipate that our findings will promote the development of asymmetric arene hydrogenations.

B INTRODUCTION

Catalysis plays a fundamental and key role in organic synthesis
and is used as a tool for the production of numerous
pharmaceuticals, natural products, agrochemicals, and fine
chemicals.”” Homogeneous and heterogeneous catalyzed
hydrogenation constitute two well-developed areas in both
industry and academia and have independently been awarded
shares of Nobel prizes (1912, Sabatier; 2001, Noyori and
Knowles).”™> Over the past decades, rhodium has emerged as
a robust metal for homogeneous as well as heterogeneous
catalyzed hydrogenation. The development of chiral ligands
(mainly diphosphines) that in many cases are commercially
available presently has driven and expanded homogeneous
rhodium-catalyzed hydrogenation of diversely substituted
olefins largely to become a powerful strategy for the
production of optically active compounds (Figure 1a).*” On
the other hand, heterogeneous rhodium catalysts have been
found to be reactive toward the hydrogenation of aromatic
unsaturated bonds and applied therein (Figure. 1b).* However,
asymmetric hydrogenation of aromatic compounds is restricted
to heteroaromatic rings and fused arenes, whereas the
asymmetric hydrogenation of simple substituted benzenes
remains a formidable goal.”'* This is mainly attributed to the
relatively high resonance stability of all-carbon aromatic rings
compared to the hetero- or fused- aromatic ring systems.
Despite the reduction of arenes having been known for many
decades, no chiral catalyst is known for the asymmetric
hydrogenation of simple substituted arenes; yet, it is highly
sought after. Traditionally, the hydrogenation of arenes is
achieved by using solid supported heterogeneous rhodium
catalysts."> In recent years, homogeneous precursors are more
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frequently used as an alternative that can form nanoparticles
under the reaction conditions.'"*™' These nanoparticles
showed higher reactivity and a larger functional group
tolerance compared to solid supported metal catalysts. To
date, a clear separation between homogeneous and heteroge-
neous rhodium-catalyzed hydrogenation exists. Ideally, the
advances in both fields of catalysis combined could tackle the
asymmetric hydrogenation of arenes that remains a largely
unsolved bottleneck in state-of-the-art hydrogenation.
Dearomative transformations, reactions able to break and
functionalize the 77-system in aromatic compounds, are of high
interest.”””* In particular the pharmaceutical industry stands to
benefit since it allows late-stage introduction of complex
structural diversity into lead compounds.”* Most importantly,
aromatic precursors are readily accessible, and various
methodologies targeting aromatic sp*-hybridized carbons
have been developed.25 Therefore, dearomatization offers a
direct opportunity to escape flat land out of relatively simple
and abundant starting materials. A convenient and atom
efficient strategy would be to use molecular hydrogen for this
purpose. This hydrogenative strategy would largely increase in
value if used in an asymmetric fashion since it is known that
stereoisomers often exhibit different pharmacological proper-
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Figure 1. Rhodium-catalyzed hydrogenation of olefins and aromatic rings. (a) Homogeneous rhodium-catalyzed asymmetric hydrogenation of
olefins. (b) Heterogeneous rhodium-catalyzed hydrogenation of aromatic rings. (c) This work: Asymmetric dearomative hydrogenation with

cooperative homogeneous and heterogeneous rhodium catalysis.

ties.”® Here we communicate the use of diphosphine ligands in
combination with common rhodium precursors for the
asymmetric full saturation of vinylarenes that operates via
cooperative homogeneous and heterogeneous catalysis (Figure
Ic). This protocol offers a very flexible and conceptionally
novel approach that relies on a dual system: an irreversible
binding between diphosphine and rhodium, a very eflicient
ligand accelerated asymmetric hydrogenation of an olefin, and
the in situ aggregation of nonligated rhodium into a very active
nanoparticle for the hydrogenation of the aromatic ring that
results in the facile construction of chiral cyclohexane motifs.

B RESULTS AND DISCUSSION
Discovery of the Duality of [Rh(COD),]BF,. Seeking the

development of an asymmetric hydrogenation of arenes, initial
studies on the reactivity of rhodium catalysts demonstrated
that common rhodium precursors in the form of [Rh(COD),]-
X (X = anion) aggregate into very reactive nanoparticles for
the hydrogenation of substituted benzenes (Figure 2a). We
realized that the exact same precursors are frequently used for
the homogeneous rhodium-diphosphine-catalyzed asymmetric
hydrogenation of olefins, which is one of the most studied
types of asymmetric hydrogenation.””” Notably, although
some neutral rhodium cornzplexes (such as [Rh(COD)CI1],**
and [Rh(7°-C4Me,)Cl,],"*°) were found as effective
precatalysts for dearomative (transfer) hydrogenations, the
duality of commonly used cationic rhodium precursors
([Rh(COD),]X) has not been reported so far. The active
catalyst in these homogeneous asymmetric hydrogenations is
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normally formed in situ by mixing a rhodium-precursor and
diphosphine ligand. Usually, a slight excess of ligand is used to
ensure full complexation of all monomeric rhodium and thus
prevent a racemic background reaction by nonligated catalyst.
The very strong binding affinity between rhodium and
diphosphine ligands makes ligation practically irreversible
and prevents the persistence of nonligated rhodium mono-
mers.”’ We anticipated that a single rhodium precursor can
simultaneously form both chiral homogeneous complexes and
the heterogeneous nanoparticles.’”” Our envisioned strategy
would use an excess of rhodium precursors to direct the
hydrogenation of arenes by first forming a stereogenic center
by an enantioselective hydrogenation of styrenic olefins.
Kinetic Studies. First, kinetic experiments were performed
to study the relative reactivity of the catalytic homogeneous
and heterogeneous species. The hydrogenation of the olefin
was monitored first (Figure 2b). Using [Rh(COD),]BF, as the
catalyst, an induction period was observed and the hydro-
genation started after a period of 12—15 min (green line).
From this point hydrogenation proceeded gradually to reach
45% of 2a in 2 h. A large rate acceleration of the hydrogenation
was observed when [Rh(COD),]BF, and the diphosphine L1
were used in an equimolar ratio and under these conditions
hydrogenation was complete in 15 min and gave rise to the
product in high stereoselectivity (blue line, 99% ee).
Intriguingly, using [Rh(COD),]BF, and L1 in a 2:1 ratio,
full conversion and 99% ee was again reached within 15 min
(red line). These observations demonstrate that rhodium
catalyzed hydrogenation of olefins is a very efficient form of
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Figure 2. Development of arene hydrogenation based on classical Rh/diphosphine system. (a) Discovery of the duality of [Rh(COD),]BF, as the
active catalyst for olefin/arene hydrogenation. (b) Kinetics of olefin hydrogenation. The green line refers to the total amount of 2a and 3a. (c)

Kinetics of arene hydrogenation.

ligand accelerated catalysis™® in which the addition of a
diphosphine ligand leads to an enormous rate acceleration (k;
> ky, Figure lc). Since no loss in enantioselectivity was
observed when using a sub stoichiometric amount of ligand, it
was demonstrated that the ligand accelerating effect using L1 is
of a sufficient magnitude to completely outperform the
hydrogenation by nonligated rhodium particles that will not
interfere with asymmetric olefin hydrogenation. The relatively
low reactivity of [Rh(COD),]BF, compared to that of
[Rh(COD),]BF, and L1 (2:1) indicates that the [Rh(COD)-
(solvent),]BF, complex is stabilized by styrenes and forms
nanoparticles more easily once the styrenic olefin has been
reduced.

Next, the hydrogenation of the aromatic ring was monitored
using rac-2a as the substrate (Figure 2c). The Rh-L1 complex
did not catalyze the hydrogenation of the aromatic ring (blue
line) whereas 4 mol % of [Rh(COD),]BF, alone gave rise to a
fast reaction and full conversion in 3 h (green line). A control
experiment was carried out doping the reaction with
benzothiophene (see the SI) that inhibit the reaction and
demonstrated that the arene hydrogenation involves hetero-
geneous catalysis.”* The in situ formation of heterogeneous Rh-
nanoparticles was further confirmed by HR-TEM images
(Figure S3). Interestingly, 8 mol % of [Rh(COD),]BF,
together with 4 mol % L1 hydrogenates arene significantly
slower (red line, 73% conversion in S h) as compared to 4 mol
% of [Rh(COD),]BF, alone (full conversion in 3 h). Many
studies demonstrated that the presence of phosphine ligands in
solution affects the nanoparticle properties and thus can alter
the reactivity toward arene hydrogenation.”>™>* The kinetic
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data suggests that both the olefin and the arene hydrogenation
are two separate processes that can cooperate as a result of
ligand binding and ligand accelerated catalysis.

Evaluation of Rh-Precursors and the Generality of
Diphosphine Ligands. Based on the understanding of the
kinetics of both olefin and arene hydrogenation processes, we
then proceeded to explore the potential of the well-established
Rh/diphosphine system for the asymmetric dearomative
hydrogenation. First, a series of commonly used rhodium
precursors were tested for the hydrogenation of compound 4a
that is normally used as a benchmark substrate for the
rhodium-catalyzed asymmetric hydrogenation of olefins (Table
1). This olefin was completely hydrogenated in all cases and in
addition, the aromatic ring was reduced to a varying extent
(entries 1—6, 23—86% of 6a). [Rh(COD),|BF, and [Rh-
(COD),]SbF; were found to be most reactive catalysts and
formed 6a in 85% and 86% yield respectively (entries 2 and 4).
Addition of a slight excess of L2 (1.1 equiv) to the
hydrogenation produced exclusively Sa in 99% ee, as
anticipated (entry 7). Intriguingly, we found that 6a could
be formed in the exact same enantioselectivity as Sa is formed
by using a well-chosen 2:1 ratio between the rhodium
precursor and L2 (entries 8—13). To our delight, full
conversion toward 6a in 99% ee was obtained when
[Rh(COD),]BF, and [Rh(COD),]SbF, were used as rhodium
precursors (entries 9 and 11). Thus, nonligated rhodium can
be present in solution without interference in the olefin
hydrogenation. Most important, the same precursor also forms
a reactive catalyst for the hydrogenation of arenes that allows
the formation of optically pure saturated cyclohexanes. In a
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Table 1. Evaluation of Rh Precursors”

\-COOMe R:_zp(rli:rzzr“_ . COOMe - . COOMe
[ j NHAc m [ j NHAc [ ] NHAc
4a 5a 6a
entry Rh-precursor Rh /L2 (mol%) conv. (%) 5a 6a

1 [Rh(COD)Cl], 2/0 >99 70% (rac) 30% (rac)

2 [Rh(COD),]BF, 2/0 >99 15% (rac) 85% (rac)

3 [Rh(COD),]PF4g 2/0 >99 37% (rac) 63% (rac)

4 [Rh(COD),]SbFg 2/0 >99 14% (rac) 86% (rac)

5 [Rh(COD),]OTf 2/0 >99 47% (rac) 53% (rac)

6 [Rh(COD),]BAr: 2/0 >99 77% (rac) 23% (rac)
T [RhCODLIBF,  2/22 599 >99% (9% ee) -
s RhCODICI,  4/2 83%  65%(80%ce)  18% (80% ce)

9 [Rh(COD),]BF4 4/2 >99 >99% (99% ee)

10 [Rh(COD),]PFg 4/2 >99 13% (99% ee) 87% (99% ee)

1 [Rh(COD),]SbFg 4/2 >99 >99% (99% ee)

12 [Rh(COD),]OTf 4/2 >99 81% (99% ee) 19% (99% ee)

13 [Rh(COD),]BAr: 4/2 >99 19% (52% ee) 81% (52% ee)

14 [Rh(COD),]BAre /RhC  2/2/2 >99 >99% (79% ee)

“The reactions were carried out with 4a (0.05 mmol) in 1.0 mL of i-
PrOH at room temperature. Conversions (conv.) were determined by
'H NMR spectroscopy. Enantiomeric excesses (ee) were determined
by GC analysis using chiral stationary phase.

control experiment (entry 14), Rh on carbon was used instead
of the in situ generated Rh-nanoparticles, a significant decrease
of enantioselectvity (79% ee) was observed.

In principle, any Rh/diphosphine catalyzed hydrogenation
of olefins can be followed up with the consecutive hydro-
genation of the arene using this concept. The generality in
terms of chiral ligand was demonstrated using structurally
diverse diphosphine ligands® (Table 2). When L2 was used in
a 1:1 ratio with [Rh(COD),]BF,, 4a was fully converted to Sa
in 99% ee (entry 1). The arene was also hydrogenated when
the Rh:L2 ratio was increased to 2:1 and product 6a was
obtained in a clean manner (entry 2, 99% ec). The
hydrogenation of 4a to either of the products proceeded also
in 99% ee when L3 and L4 were used (entries 3—6). Even
though LS5 and L6 produced 6a in a lower enantiomeric excess
compared to L2-4 (entries 7—10), using the conditions
developed herein, still produced 6a in the same range of ee
as Sa.

Evaluation of Substrate Classes. With the proof of
concept established, various acyclic and cyclic substituted
benzene substrate classes including di-, tri-, and tetra-
substituted olefins were evaluated (Scheme 1). Starting with
acyclic terminal olefins, electron-donating groups and electron-
withdrawing groups in the para-position were found to be
compatible and the corresponding fully saturated acetamides
(6b-e) were formed in excellent yield with 92—99% e¢ and 76/
24—90/10 d.r.. Both arenes were reduced with excellent
enantioselectivity when benzamide derived enamides 4f—g
(80/20—86/14 d.r.) or pyridine-substituted olefin 4h (55/45
d.r.) were hydrogenated. The meta-substituted substrate 4i was
fully reduced in 99% ee but with a poor diastereoselectivity.
The ortho-substituted terminal enamide 4j was also evaluated,
however, this substrate was found to be much slower in the
olefin hydrogenation step. It was known®® that the
enantiocontrol in the hydrogenation of ortho-substituted
terminal enamides is challenging and requires specialized

Table 2. Generality of Diphosphine Ligands®

\COOMe  Hp (15 bar) . COOMe . COOMe
Rh-precursor/L m
NHAc NHA
i-PrOH, rt, 16 h © NHAC
4a 5a

6a

entry Ligand [Rh(COD),|BF,/ Ligand (mol%) 5a 6a

1 L2 1/1 >99% (99% ee, R)

2 L2 4/2 >99% (99% ee, R)
3 L3 171 >99% (99% ee, R)
4 L3 4/2 >99% (99% ee, R)
5 L4 171 >99% (99% ee, R)
6 L4 4/2 >99% (99% ee, R)
7 L5 171 >99% (80% ee, S)
8 L5 4/2 >99% (74% ee, S)
9 L6 171 >99% (78% ee, S)
10 L6 4/2 >99% (69% ee, S)

E(u.._q ©
N P Ns P\tBuE‘E’ 7:3 ; OMe
H @[ ‘ I wu P p P
patBu B N P Et
g

i Et

H Et MeO

(Ro.Sp)-DuanPhos (R,R)-EtDuPhos (RR)-QuinoxP  (S,S)}-Et-BPE (RR)-DIPAMP
L2 L3 L4 LS L6

“The reactions were carried out with 4a (0.0S mmol) in 1.0 mL of i-

PrOH at room temperature. Conversions were determined by 'H

NMR spectroscopy. Enantiomeric excesses (e¢) were determined by

GC analysis using chiral stationary phase.

ligands, 89% ee and 88/12 d.r. were achieved by using a
bidentate phosphine-phosphoramidite ligand L9*' with a two-
step procedure. Notably, this strategy might be further ap;lied
as a possible alternative to the chiral auxiliary approaches.**~**
Then, numerous trisubstituted olefins that bear the prochiral
center either in the benzylic or homobenzylic position were
hydrogenated and formed the desired products in high
stereoselectivities and yields (6k-p). To our delight, tetrasub-
stituted enamide 4q was also hydrogenated in high
enantioselectivity. The diastereoselectivity in the heteroge-
neous dearomative hydrogenation is highly substrate depend-
ent. Encouraged by the excellent enantioselectivities obtained,
we proceeded in evaluating substrates bearing cyclic olefins
that have been reduced in higher diastereoselectivity in
previous studies.”>*° Different nitrogen- and oxygen 3-
substituted 1H-indenes were well tolerated (1a-e). The facial
selectivity in the hydrogenation of the cyclic arene is sterically
controlled, and as a result more sterically demanding groups in
the benzylic position ensured higher diastereomeric ratio (3a-
c) (from 66/34 to 82/18). Interestingly, trifluoromethyl-
enamides 3d were found to induce even higher diastereose-
lecitvities (93/7). Indenes bearing a tetrasubstituted olefins
(1f-g) as well as a substitution in the 4-, 5- or 6-position (1h-
k) were also smoothly hydrogenated and produced products
with 4 stereogenic centers in excellent stereocontrol (up to 99/
1 d.r. and 99% ee). Diverse six-membered fused arenes li-r
yielded the desired product in high isolated yields and good
stereoselectivities. Carbon—oxygen bond cleavage was ob-
served during the hydrogenation of cyclic enol-esters that
accounted for the decreased yields.

Scale-up Asymmetric Full Saturation of Vinylarene
and Applications. The hydrogenation of 1f was performed
on a gram-scale to produce 3f in high yield as a single
stereoisomer, showing the scalability of this protocol (Scheme

https://doi.org/10.1021/jacs.1c09975
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Scheme 1. Evaluation of Substrate Classes”
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96% yield 93% vyield 96% yield 94% yield 90% yield 97% yield

99% ee, 76/24 d.r.

f NHCOCF,4 ;

b o :

6h (L2) 6i (L1) 6j (L9) :
84% yield 95% yield 98% yield E

98% ee, 55/45 d.r.

96% ee, 82/18 d.r.

NHAC :

H CO,Me - COzMe CO,Me :

'H co,Me O e \f<H O \K z ;

" h\\\“ NHAc W' NHAc o™ NHA
6m (L4) 6n (L2) 60 (L2) 6p (L2) :

91% yield 97% yield 98% yield 90% yield

96% ee, 82/18 d.r.

99% ee, 47/44/5/4 d.r.

99% ee, 77/23 d.r

96% ee, 82/18 d.r.

92% ee, 90/10 d.r.

89% ee, 88/12d.r.

99% ee, 87/13 d.r

5-membered cyclic olefins ------

97% ee, 86/14 d.r.

NHAc
wH

6k (L7)
90% conv.
96% ee, 82/18 d.r.

96% ee, 81/19 d.r

b NHAC K NHCOWPr H NHCOMBu b NHCOCF, H OCOtBu
ﬁ A A H, H
L) 3’ (L1) 3a%(L1) 3d’(L8) 3e (L8)

96% yield 99% yield 99% yield 96% yield 68% yield

96% ee, 66/34 d.r.

99% ee, 76/24 d.r.

99% ee, 82/18 d.r. 99% ee, 93/7 d.r.

99% ee, 95/5 d.r.

H NHCOtBu H NHCOCF, H NHCOCF, H NHCOCF, H NHCOCF3
/ MeO,,

H ) H S H H :H

3g (L8) 3h (L8) 3i (L8) 3j (L8) 3k (L8)

98% yield 97% yield 98% yield 98% yield 95% yield

99%ee, 99/1 d.r.

99% ee, 97/3 d.r.

99% ee, 97/3 d.r. 99% ee, 95/5 d.r.

6-membered cyclic olefins

" NHCOBu , OCOMBu i NHCOCF, , 9COtBu
A H R © i

3m (L1) n’°(L8) 30 (L8) 3p (L8)

88% yield 73% yield 81% yield 60% yield

94% ee, 90/10 d.r.

99% ee, 97/3 d.r.

96% ee, 93/7 d.r. 99% ee, 89/11 d.r.

99% ee, 90/6/2/2 d.r.

MeO
3q (L8)
47% yield
99% ee, 87/13 d.r.

99% ee, 80/20 d.r.

6l (L4)
98% yield
90% ee, 81/19 d.r.

tetrasubstituted olefin ---

«L(D‘COzMe
O HAc
W

6q (L3)
96% yield
99% ee, 85/15 d.r

Zim

H NHCOfBu
"

H
3f (L8)
97% yield
99% ee, >99/1 d.r.

31(L1)
90% yield
91% ee, 69/30/1 d.r.

g T

ocotB
H g

‘, : i i

H
3r (L8)
64% yield
98% ee, 96/4 d.r.

“Reaction conditions: substrate (0.2 mmol), 3 mol % ligand and 8 mol % [Rh(COD),]SbFq in i-PrOH (2.0 mL) under 50 bar H, at room
temperature for 24 h. Isolated yield. Enantiomeric excesses and diastereomeric ratios were determined by GC analysis using chiral statlonary phase.
bAdditional [Rh(COD),]SbE, (5 mol %) was added after 12 h, then S0 bar H, for 12 h. “2 mol % ligand and 2 mol % [Rh(COD),] SbF6 were used

in CF;CH,OH (2.0 mL) under 10 bar H, for 12 h, then 5 mol % [Rh(COD),]SbF¢ was added under SO bar H, for 12 h.

°[Rh(COD),]BF, was used instead of [Rh(COD),]SbFq.

910 bar H,.

2). Compound 1d could also be hydrogenated on a gram-scale
and consecutive cleavage of the amide group provided 7 as an
all-sp® carbon analogue to the widely used 1-aminoindane
motif in pharmaceuticals.”” The reaction of 7 with propargyl
bromide yielded the arene saturated analogue 8 to the anti-
Parkinson’s therapeutic Rasagiline*® in good yield. Analysis of
large data sets on medicinal bioisosters in previous literature

20381

correlates both increased sp’-content and the number of
stereogenic centers with the enhanced likelihood that lead
compounds proceed to clinical trials.””* Given this knowl-
edge, the methodology presented herein can grant access to
chiral cyclohexane scaffolds and thus positively influence both

. . . 24,51
factors in an efficient and atom-economical way.”™
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Scheme 2. Gram Scale Reaction and Applications

NHCOtBu L8 (2 mol%) H :l\lHCOtBu

[Rh(COD),ISbF¢ (4 mol%) C@
10 bar H,

i-PrOH, rt, 24 h H

1 1.060 g 3f 1.090 g, 99% vyield

4.62 mmol 99% ee, 99/1 d.r.
NHCOCF; L8 (2 mol%) H NHCOCF;
O‘ [Rh(COD),]SbFg (4 mol%) .
10 bar H,
i-PrOH, rt, 24 h H

1d 1.000 g 3d 1.012 g, 98% yield

4.40 mmol 99% ee, 93/7 d.r.

1-Aminoindane '
' [common used i
' pharmaceutic module]

Rasagiline

Ho N2 HN
K,CO4 ] BN H H
—_—
MeOH, H,0 K,CO3, CH5CN C@
rt, 24 h H 30°C, 16h
83% 7 75% Hy

all-sp® carbon analog Rasagiline analog

B CONCLUSIONS

In summary, the results presented herein suggest that the
developed protocol shows potential for application of the well-
established classical homogeneous rhodium catalytic system to
the formidable asymmetric arene hydrogenation and demon-
strate the power of merging homogeneous and heterogeneous
catalysis in organic synthesis. It is also anticipated that this
practical dearomative hydrogenation will be of interest to the
pharmaceutical industry for the rapid buildup of the complex-
ity in the lead compounds from abundant aromatic feedstocks.
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