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Abstract: Self-assembling protein nanoparticles (SAPN) serve as a repetitive antigen delivery plat-
form with high-density epitope display; however, antigen characteristics such as size and epitope
presentation can influence the immunogenicity of the assembled particle and are aspects to consider
for a rationally designed effective vaccine. Here, we characterize the folding and immunogenicity of
heterogeneous antigen display by integrating (a) dual-stage antigen SAPN presenting the P. falciparum
(Pf ) merozoite surface protein 1 subunit, PfMSP119, and Pf cell-traversal protein for ookinetes and
sporozoites, PfCelTOS, in addition to (b) a homogenous antigen SAPN displaying two copies of
PfCelTOS. Mice and rabbits were utilized to evaluate antigen-specific humoral and cellular induction
as well as functional antibodies via growth inhibition of the blood-stage parasite. We demonstrate
that antigen orientation and folding influence the elicited immune response, and when appropriately
designed, SAPN can serve as an adaptable platform for an effective multi-antigen display.

Keywords: self-assembling protein nanoparticles; PfCelTOS; PfMSP119; vaccine; multi-stage; display

1. Introduction

In 2019, the World Health Organization estimated 229 million cases of malaria and
roughly 409,000 deaths worldwide, underscoring its continued prevalence as a global
health threat [1]. In high-transmission areas, children under the age of five are among the
most vulnerable, accounting for 67% of global malaria deaths [1]. Malaria infection occurs
when infected Anopheles mosquitoes introduce Plasmodium parasites into the host during a
blood meal. The introduced sporozoites invade hepatocytes, and subsequent blood-stage
parasitemia leads to the symptoms of malaria. Notably, Plasmodium falciparum (Pf) is the
leading cause of malaria morbidity and mortality, and in 2017, 2.6 billion people inhabited
areas at risk of P. falciparum transmission, prompting this parasite species to be the focus of
extensive efforts for vaccine development [2].

Although antimalarial drugs, exposure-reduction through use of bed nets, and vector
control have reduced the incidence of malaria [3–5], to date, there is no licensed, efficacious
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malaria vaccine to support effective control and elimination of disease. The most advanced
candidates, RTS,S and PfSPZ vaccines, while attaining high levels of protection against
homologous strain parasites in controlled human malaria infections [6,7], achieved partial
efficacy against natural infection [7–14]. The lack of effective vaccines and the severity of
malaria infections necessitate the evaluation of novel vaccine technologies.

Given that P. falciparum displays highly variable antigens and shifts its dominant
antigen expression throughout its life stages, a broadly effective vaccine will require a
combination of antigens targeting discrete stages of development. The strategy described
here combines a pre-erythrocytic and a blood-stage target to increase the breadth of im-
mune responses. The latter, the major merozoite surface protein 1 (PfMSP1), is an exten-
sively studied erythrocytic-stage parasite antigen thought to play a role in the invasion
of red blood cells [15] and the focus of malaria blood-stage vaccine development [16–18].
PfMSP1 undergoes two essential, successive proteolytic events, resulting in the cleavage
of the C-terminal 42 kDa fragment (PfMSP142) into a 33 kDa (PfMSP133) and a 19 kDa
fragment (PfMSP119) [19,20]. The latter remains GPI-anchored to the merozoite surface
during invasion [19–22] and comprises two structured epidermal growth factor-like (EGF)
domains [19,23], each containing three disulfide bridges [23] that assemble to form well-
defined B cell epitopes [24,25]. Studies in endemic populations have supported the role of
antibodies targeted to the C-terminus of PfMSP1 in a protective response [26–28]. Vaccine
efforts to PfMSP1 have focused on the C-terminal portion, and several clinical studies have
been undertaken to evaluate recombinant protein vaccines based on PfMSP1 fragments,
including PfMSP119 [29] and PfMSP142 [30–32]. The latter vaccine, based on a PfMSP142
3D7 allele, FMP1/AS02A, advanced to a pediatric Phase 2b trial in Western Kenya, and
while the vaccine elicited high antibody titers, it failed to reduce parasitemia or incidence of
clinical malaria against the predominant circulating parasite strains [33]. Nominally, of the
recombinant protein approaches, none elicited high levels of functional antibodies against
parasites in in vitro growth inhibition assays (GIA) [29]. Therefore, strategies leading to
improvements in antigen expression, presentation, and delivery are the focus for this target.
Alternately, the cell-traversal protein for ookinetes and sporozoites (PfCelTOS) is a con-
served pre-erythrocytic-stage antigen, having a role in traversal of both the mosquito and
vertebrate host cells [34]. Pre-clinical studies of recombinant PfCelTOS demonstrated that
vaccines based on this target induce functional immunity against the parasite developmen-
tal stages [35–39]. A vaccine against PfCelTOS offers the possibility to halt development
during both mosquito and liver stages, respectively [34,40].

Recently, particulate delivery systems such as protein nanoparticles have emerged
as promising platforms for vaccine development, overcoming the potentially limited im-
munogenicity of soluble subunit vaccines [41–50]. One particularly encouraging particulate
delivery system is the self-assembling protein nanoparticle (SAPN), a versatile vaccine
platform for multi-epitope display. SAPN form through the oligomerization of N-terminal
pentameric and C-terminal trimeric coiled-coil sequence elements [51,52]. As the protein
monomers oligomerize, the densely packed surface antigens present across icosahedral
symmetry, forming a roughly spherical nanoparticle. This packed and ordered array of
epitopes mimics that of strongly immunogenic virus capsids [53], while promoting highly
specific immune responses similar to those elicited by peptide-based vaccines. In contrast
to soluble proteins, the organized array of antigens on these particle surfaces are configured
for T-cell independent, B-cell activation, by stimulating B-cell receptors to induce prolif-
eration, thereby improving the immunogenicity of poorly immunogenic antigens [54,55].
Furthermore, SAPN offer the possibility to customize display on both the N- and C-termini
to gain a more native-like, unconstrained structure, allowing conformational epitopes to
form. In the same way, linear T-cell epitopes can be incorporated in the coiled-coil core
sequence to activate both cellular and humoral immune responses [56]. In contrast to multi-
ple antigenic peptides (MAP) [57,58], the production of SAPN vaccines is relatively robust,
efficient, and cost-reductive. To date, SAPN have been engineered to display epitopes for
malaria [59], influenza [60,61], HIV [62,63], SARS [64], and toxoplasmosis [65].
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Motivated by the promise of SAPN’s flexible-by-design nature, we sought to in-
vestigate the influence of antigen orientation on elicited immune responses in mice and
rabbits. SAPN co-displaying PfCelTOS and PfMSP119 were expressed from both the N- and
C-termini on monomers in alternate configurations (redPfMSP119-PfCelTOS, oxPfMSP119-
PfCelTOS, and PfCelTOS-oxPfMSP119). The constructs were purified under either non-
denaturing, oxidative-purification conditions (oxPfMSP119) or denaturing, reductive con-
ditions, (redPfMSP119) followed by a four-step refolding process. In addition, a SAPN
displaying a copy of PfCelTOS on each-termini was developed to determine whether a ho-
mogeneous molecule was superior to the chimeras that included PfMSP119, addressing the
possibility of immune competition, interference, or diversion. BALB/c mice were immu-
nized with SAPN in adjuvant, either AddaVax™, an MF-59-like squalene-based oil-in-water
emulsion, or Army Liposomal Formulation (ALF) containing a synthetic form of monophos-
phoryl lipid A (3D-PHAD) and the detoxified derivative QS-21 (ALFQ). Adjuvants with
similar immunostimulatory molecules have been extensively used in human studies [66]
and have been shown to enhance specific immune responses to antigen targets [67]. The
impact of antigen localization to the N- or C-terminus on epitope accessibility was assessed
by dot blotting using positional and conformational monoclonal antibodies. Humoral and
cellular responses were assessed by antigen-specific ELISAs, parasite growth inhibition
assays (GIA), indirect immunofluorescence assays (IFA), and by ELISpot and MSD, to
assess cellular cytokine profiles, respectively, in mice and rabbits. In mice, humoral and
cellular responses indicated that antigen conformation and localization on SAPN played a
significant role on host immune responses. In rabbits, the growth inhibition assay (GIA)
was performed to evaluate the ability of antibodies to limit blood-stage parasite growth
in vitro. Thus, the simultaneous display of an erythrocytic antigen, PfMSP1, and a pre-
erythrocytic antigen, PfCelTOS, on SAPNs potentially overcomes the requirement for ad
hoc combinations of two antigens, i.e., cocktail, in a vaccine approach.

2. Materials and Methods
2.1. SAPN Design and Molecular Clones

Malaria-specific sequences integrated into monomer polypeptides of SAPN proteins
were derived from P. falciparum MSP119 Vietnam Oak-Knoll (FVO) strain (accession #
L20092.1) or P. falciparum CelTOS 3D7 strain (accession # AB194052.1) [35]. Malaria genes
were codon harmonized for optimal expression in E. coli [68]. Coding sequences were
synthesized by ATUM (DNA2.0, Newark, CA, USA) and cloned into a modified pET (K-)
expression vector (Novagen, Madison, WI, USA). Full-length PfCelTOS comprises amino
acids 25–182 from the native sequence. Recombinant subunit fragments of N-terminal
and C-terminal PfCelTOS comprise amino acids 25–148 and 83–182, respectively. All
recombinant clones included a 16 amino acid N-terminal histidine tag and linker sequence
(Figure 1a). Details of the SAPN amino acid sequences are provided in Supplementary
Figure S1.

2.2. Expression in BL21 [DE3] E. coli

BL21 [DE3] E. coli was transformed by electroporation using BioRad® Gene Pulser
Xcell™ according to standard protocol. Protein expression was performed using terrific
broth (TB) media and 40 µg/mL kanamycin and expression induced by addition of 0.1 mM
IPTG at mid-log growth phase. Expression levels were monitored by SDS PAGE/Coomassie
blue staining (data not shown).

2.3. Protein Purification
2.3.1. Ni-NTA

Briefly, cells were resuspended in 12 volumes of Lysis buffer per gram of cell paste
(w/v) and homogenized using an Ultra Turrax™ homogenizer (all buffer conditions are
described in Supplementary Table S1). The cell suspension was mircofluidized (M110Y
Microfluidizer®) and the final buffer adjusted to match the Ni+2-NTA Equilibration buffer.
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The lysate was lightly stirred at room temperature before centrifugation at 13,000 rpm
(4 ◦C, 30 min). Supernatant was applied onto a gravity flow column followed by 15 column
volumes (cv) of Equilibration buffer and 10 cv of each Wash buffer. The protein was eluted
with 5cv Elution buffer and dialyzed using 12–14,000 molecular weight cut-off (MWCO)
regenerated cellulose membrane (Spectrum Spectra/Por, New Brunswick, NJ) overnight at
4 ◦C in either Q-Sepharose Equilibration or SP-Sepharose Equilibration buffer depending
on the product.
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Figure 1. Self-assembling protein nanoparticles’ (SAPN) composition and particle quality. (a)
Schematic diagram of SAPN with a theoretical model of PfCelTOS-oxPfMSP119 monomers assum-
ing icosahedral symmetry. (b–d) TEM of oxPfMSP119-PfCelTOS (b), PfCelTOS-oxPfMSP119 (c), and
PfCelTOS-PfCelTOS (d). (e–g) Hydrodynamic diameter size distribution of oxPfMSP119-PfCelTOS
(e), PfCelTOS-oxPfMSP119 (f), and PfCelTOS-PfCelTOS (g) determined by dynamic light scattering
(DLS).

2.3.2. SP-Sepharose

An SP-Sepharose column (GE Healthcare, Chicago, IL, USA) was equilibrated with
10cv SP-Equilibration buffer (4 ◦C, overnight). Dialysate was applied to the column, washed
with 10cv SP Equilibration buffer, 10cv SP-Wash buffer, and eluted with 7cv SP-Elution
buffer (Supplementary Table S1). The elution fraction was dialyzed in a 12–14,000 MWCO
membrane in Q-Equilibration buffer (4 ◦C, overnight).

2.3.3. Q-Sepharose

A Q-Sepharose column (GE Healthcare, Chicago, IL, USA) was equilibrated with 10 cv
Q-Equilibration buffer before applying the dialyzed Ni-NTA or SP-Sepharose elution. The
column was washed with 10 cv Q-Equilibration buffer, 10 cv Q-Wash buffer, and eluted
with 5 cv Q-Elution buffer (Supplementary Table S1). The elution fraction was dialyzed
using a 12–14,000 MWCO membrane in Refolding buffer 1 (4 ◦C, overnight).

2.4. Stepwise Refolding

To allow for the proper assembly of SAPN particles, the purified proteins were di-
alyzed using a 12–14,000 MWCO membrane at 2 h intervals at room temperature, in
refolding buffers with decreasing concentrations of urea until the final buffer conditions
were achieved (Supplementary Table S2). To ensure homogeneity, the final samples were
centrifuged at 14,000 rpm and then filtered through either a 0.1 or 0.2 µm syringe filter.
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Bacterial endotoxin content was determined using the Limulus Amebocyte Lysate (LAL)
Endotoxin Analysis Kit (Associates of Cape Cod Inc., E. Falmouth, MA, USA).

2.5. Dynamic Light Scattering (DLS)

SAPN were analyzed by dynamic light scattering (DLS) using a Malvern Zetasizer
Nano S (Malvern, Worcestershire, UK) with a 633 nm laser and a ZEN2112 High Precision
Cell quartz cuvette (Malvern, Worcestershire, UK). Particle size distributions were deter-
mined through the measurement of the hydrodynamic diameter at 25 ◦C. Each sample was
run twice, and the average reading was recorded. Particle size and the polydispersity index
was calculated using Malvern Panalytical Software. Polydispersity is calculated using the
following formula PDI = Mw/Mn, where Mw is the weight average molar mass, and Mn
is number average molar mass [69].

2.6. Transmission Electron Microscopy (TEM)

SAPN were adsorbed onto carbon-coated grids (Electron Microscopy Sciences Inc.,
Hatfield, PA, USA), washed twice with double distilled water, and negatively stained
with 2% uranyl acetate (Electron Microscopy Sciences Inc., Hatfield, PA, USA). Electron
micrographs were taken on a Hitachi HT7700 Transmission Electron Microscope with a
LaB6 electron gun.

2.7. Dot Blot

Two hundred and fifty nanograms of each protein were spotted on a nitrocellulose
membrane (Invitrogen, Carlsbad, CA, USA) and blocked in Milk Powder Solution (1X PBS,
0.1% Tween 20, 0.5 g/10mL milk powder) for 30 min at room temperature. Membranes
were incubated with the appropriate primary antibodies, diluted in 1X PBS with 0.1%
Tween 20, for 1 h at room temperature. Rabbit polyclonal antibodies (anti-PfCelTOS and
anti-PfMSP142) were diluted at 1:20,000, and monoclonal antibodies (3D11.D4, 4H9.C3,
3C3.B3, 5.2, 12.10, 1E1, and 2.2) were diluted at 1:10,000. Membranes were washed three
times at five-minute intervals with 1XPBS with 0.1% Tween 20. Membranes were incubated
with the appropriate secondary antibodies, diluted in 1X PBS with 0.1% Tween 20 for
1 h at room temperature. Membranes incubated with a polyclonal primary antibody
were incubated with goat anti-rabbit IgG (AP) secondary antibody (1:10,000 [Invitrogen,
Carlsbad, CA, USA]), and membranes incubated with a monoclonal primary antibody were
incubated with goat anti-mouse IgG (H + L) AP secondary antibody (1:5,000 [Invitrogen,
Carlsbad, CA, USA]). Membranes were washed as described above. Membranes were
developed in alkaline phosphatase (AP) buffer (5M NaCl, 1M MgCl2, 1M Tris-HCl, pH 9.5)
with 5-bromo-4-chloro-3′-indolyphosphate/nitro-blue tetrazolium (BCIP/NBT) (Sigma-
Aldrich, St. Louis, MO, USA) for 15 min, or until development was complete. Development
was arrested by washing with UltraPure Water, and membranes were air-dried between
filter paper overnight.

2.8. Immunization

Female, BALB/c mice (The Jackson Laboratory, Bar Harbor, ME, USA) were immu-
nized with 0.3, 1, 3, 10, or 30 µg of SAPN, 10 µg of recombinant protein rPfCelTOS, or
5 µg of recombinant protein rPfMSP142 in the thigh muscle (50 µL in each thigh) three
times at three-week intervals. All SAPN and recombinant proteins were formulated with
AddaVax™ adjuvant (squalene-based oil-in-water emulsion [Invivogen, San Diego, CA,
USA]), except for the PfCelTOS-PfCelTOS SAPN, which was formulated with and without
Army Liposome Formulation with QS-21 (ALFQ) adjuvant. Mice were bled from the tail
vein the day before each immunization and two weeks after the third immunization, at
which time they were exsanguinated, and the corresponding sera were stored at−80 ◦C. All
mouse procedures were conducted per the Institutional Animal Care and Use Committee
(IACUC) at Walter Reed Army Institute of Research, Silver Spring, MD, USA.
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Female, New Zealand white rabbits were immunized via intramuscular route three
times at three-week intervals with either 0.5, 5, 15, or 50 µg PfCelTOS-PfMSP19, 50 µg
PfMSP19-PfCelTOS or 50 µg rPfMSP142 FVO in AddaVax™. Rabbits were exsanguinated
two weeks following the last immunization. Noble Life Sciences Inc. performed rabbit
studies, under AAALAC accreditation, OLAW assurance, USDA license, and efficient
IACUC review processes.

2.9. Antibody Concentration ELISA

Ninety-six-well 2HB Immulon plates (Thermo Scientific, Waltham, MA, USA) were
coated with 25 ng/well of rPfCelTOS, 15 ng/well of N-terminal PfCelTOS, 15 ng/well of
C-Terminal PfCelTOS, or 35 ng/well of rPfMSP142 in 1XPBS, pH 7.4 (Quality Biological,
Gaithersburg, MD). An IgG standard plate run in parallel with the test plates was coated
with two-fold serial dilutions of mouse IgG (1 mg/mL [Invitrogen, Waltham, MA, USA])
in 1XPBS, pH 7.4, starting with a 1:1000 dilution, then applied in triplicate on a 96-well
plate. All plates were incubated overnight at 4 ◦C in a humidity chamber. Following
the incubation, wells were blocked with 1X PBS/1% BSA (VWR, Chicago, IL, USA) for
1 h at 22 ◦C in a humidity chamber. Individual sera were diluted in 1X PBS/1% BSA to
appropriate dilutions, then applied in triplicate to the test plate. Known concentrations of
antibody to rPfCelTOS were applied in triplicates to the test plate as a positive control. 1X
PBS/1% BSA was added to all wells of the standard plate, and all plates were incubated for
2 h at 37 ◦C. The secondary antibody (anti-mouse AP Conjugate [Promega, Madison, WI,
USA]) was diluted in 1X PBS/1% BSA at 1:1000 and added to all wells, then incubated for
1 h at 22 ◦C in a humidity chamber. Wells were developed using the BluePhos Phosphatase
Substrate 2-Component System (KPL, Milford, MA, USA) for 15 min at 22 ◦C. Development
was arrested with 2X AP Stop Solution (SeraCare, Milford, MA, USA), then wells were
detected using an M2 spectrophotometer (Molecular Devices, Downington, PA) at 630 nm.
Between steps, wells were washed three times with wash buffer (1X PBS, 0.05% Tween 20,
0.1% chlorohexidine [w/v]).

2.10. Titration ELISA

Ninety-six-well 2HB Immulon plates (Thermo Scientific, Waltham, MA, USA) were
coated with 35 ng/well of rPfMSP142 antigens: FVO or 3D7, 25 ng/well of rPfCelTOS,
15 ng/well of N-terminal PfCelTOS, or 15 ng/well of C-Terminal PfCelTOS in 1X PBS,
pH 7.4 and incubated overnight at 4 ◦C in a humidity chamber. Following the incubation,
wells were blocked with 1X PBS/1% BSA (VWR, Chicago, IL, USA) for 1 h at 22 ◦C in a
humidity chamber. Individual sera were diluted in 1X PBS/1% BSA, then serially diluted
2-fold down the plate and incubated for 2 h at 22 ◦C in a humidity chamber. The secondary
antibody (HRP conjugated goat anti-mouse IgG [KPL, Milford, MA, USA] or AP-conjugated
anti-rabbit IgG antibody [Promega, Madison, WI, USA]) was diluted in 1X PBS/1% BSA at
1:4000 and added to all wells, then incubated for 1 h at 22 ◦C in a humidity chamber. Wells
were developed using the ABTS Peroxidase Substrate 2-Component System (for mouse
[KPL, Milford, MA, USA]) or p-nitrophenyl phosphate (pNPP) tablets (Thermo Scientific,
Rockford, IL, USA) dissolved in AP buffer (for rabbit [100 mM NaCl, 5 mM MgCl2, 100 mM
Tris-HCl, pH 9.5]) for 1 h at 22 ◦C and detected using an M2 spectrophotometer (Molecular
Devices, Downington, PA, USA) at 414 or 405 nm, respectively. Between steps, wells were
washed three times with wash buffer (1X PBS, 0.05% Tween 20, 0.1% chlorohexidine [w/v]).
Antibody titer is the dilution factor required to achieve an optical density of 1.0.

2.11. Growth Inhibition Assay (GIA)

Two weeks following the last immunization, rabbits were exsanguinated, and total
IgG was purified using Protein G Sepharose. Growth inhibition assays were performed
using purified IgGs. Briefly, each test IgG (5, 2.5 or 1.25 mg/mL in a final test well) was
incubated with synchronized late trophozoite P. falciparum FVO (homologous) or 3D7
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(heterologous) parasites for 44–48 h, and relative parasitemia levels were quantified by
measuring the level of parasite lactate dehydrogenase.

2.12. Immunofluorescence Assay

Immunofluorescence assays (IFA) were performed as previously described [35] using
salivary gland P. falciparum sporozoites. Spots were incubated with DAPI (1:50, Southern
Biotech, Birmingham, AL, USA) in addition to goat anti-mouse IgG-FITC (1:100, Southern
Biotech, Birmingham, AL, USA).

2.13. ELISpot

ELISpot was performed as previously described [35] and according to the manufac-
turer’s instructions (R&D Systems, SEL485 and SEL404, Minneapolis, MN, USA). Briefly,
rPfCelTOS (10 µg/mL) was used as the stimulating antigen. Hamster anti-mouse CD3e
(1 µg/mL [BD Biosciences, 553057, San Jose, CA, USA]) was used as a positive control
for cell stimulation. The negative control was culture media in place of a stimulating
antigen. Splenocytes were plated at 2 × 105 cell/well. Plates were incubated for 48 h at
37 ◦C with 5% carbon dioxide. Spot counting was performed using an AID ELISpot Reader
(Autoimmun Diagnostika, Strassberg, Germany).

2.14. Meso Scale Discovery Assay

Mouse splenocytes were plated at 400,000 cells/well in 96-well flat bottom plates
(Costar 3595). Cells were stimulated with 10 µg/mL rPfCelTOS protein for 48 h at
37 ◦C with 5% carbon dioxide, after which cell culture supernatants were harvested.
Pro-inflammatory cytokines were quantified using V-PLEX Proinflammatory Panel 1
Mouse Kit (Meso Scale Discovery, K15048D) according to the manufacturer’s instruc-
tions. Cytokine levels were normalized for background secretion using the levels detected
with cells incubated in culture media alone.

2.15. Statistical Analysis

Statistical significance of mouse serological responses and cellular and fine specificity
responses were evaluated using the Kruskal–Wallis test with Dunn’s multiple comparisons
test and Wilcoxon matched-pairs signed rank test, respectively. Rabbit responses were
evaluated using single comparisons to the rMSP142 group using multiple t tests, and the
Holm-Sidak method. Differences in PfMSP142 antigen strain responses were compared
using Mann–Whitney multiple t tests, where p < 0.05 indicates statistical significance
(GraphPad Prism 6.0, La Jolla, CA, USA).

3. Results
3.1. SAPN Design and Particle Quality

The SAPN structures generated in this study aimed to explore the effect of orientation
of antigen display on the immunogenicity of a multi-stage malaria vaccine candidate.
Sequences for the MSP119 protein fragment from the Vietnam Oak-Knoll (FVO) strain
of P. falciparum (PfMSP119) and the full-length CelTOS protein from the 3D7 strain of P.
falciparum (PfCelTOS) (Supplementary Figure S1) were designed for display on either the
N- or C-termini of SAPN monomers (Figure 1a). SAPN were purified by consecutive
Ni-NTA affinity and ion-exchange chromatography followed by a four-step refolding
dilution process to remove chaotropic and reductive agents (Supplementary Tables S1
and S2). SAPN displaying PfMSP119 and PfCelTOS were generated by two purification
processes, one allowing for disulfide bridges to form first under non-denaturing, oxidative
affinity chromatography (oxPfMSP119) followed by denaturing conditions on ion exchange
and the second using denaturing/reductive conditions throughout the chromatography
(redPfMSP119), which allowed for disulfide bridges to form during the final refolding steps.
A SAPN displaying PfCelTOS (PfCelTOS-PfCelTOS) on both the N- and C- termini was
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generated to evaluate the influence of a homogeneous, albeit alternative configuration, on
CelTOS-specific immune responses (Figure 1a, bottom).

Prior to evaluating the immunogenicity of SAPN, particle quality was assessed by
DLS and TEM. TEM demonstrated the formation of homogenous populations of parti-
cles, revealing nearly spherical assembled particles approximately 20 nm in diameter
(Figure 1b–d). DLS analysis confirmed the homogeneity of the populations and indicated
hydrodynamic diameters of oxPfMSP119-PfCelTOS, PfCelTOS-oxPfMSP119, and PfCelTOS-
PfCelTOS of 34, 38, and 29 nm, respectively (Figure 1e–g) [70]. Polydispersity indices (PdI)
calculated by Malvern Panalytical Software ranged from 0.180 to 0.190, indicating low
propensity for aggregation. Therefore, these results suggest that SAPN form into homoge-
nous populations and their formation is not affected by antigen localization, at least for
these targets. Importantly, the particle sizes estimated by these methods are consistent with
previous SAPN [71] and are indicative of the coiled-coil structure forcing self-assembly of
the monomers as predicted in the theoretical model (Figure 1a).

3.2. SAPN Immunoreactivity Using CelTOS and MSP119 mAbs

The immunoreactivity of SAPN was evaluated by using conformation-dependent/antigen-
specific monoclonal antibodies. Immune recognition on SAPN is dependent on target
epitope accessibility and the display of properly folded conformational epitopes. To char-
acterize epitope accessibility and recognition, SAPN were spotted on nitrocellulose mem-
branes and probed with antigen-specific polyclonal antibodies raised against either rPfCel-
TOS or rPfMSP142 FVO and disulfide-dependent, conformation-specific PfMSP119 and
C-terminal PfCelTOS-specific mAbs. SAPN in which the disulfide bonds were formed
in conjunction with the refolding step (redPfMSP119-PfCelTOS) were not readily detected
with PfMSP119 mAbs, 2.2 and 12.10 [24], and 1E1 [20], while those oxidized prior to
the refolding step (oxPfMSP119-PfCelTOS) were recognized by all four PfMSP119 mAbs
(Figure 2a). redPfMSP119-PfCelTOS was weakly detected with mAb 5.2 suggesting some rel-
evant structure formation (Figure 2a). Detection by PfCelTOS mAbs was not influenced by
the purification conditions used for disulfide bridge formation on redPfMSP119-PfCelTOS
versus oxPfMSP119-PfCelTOS, since it lacks disulfide structure and, in both cases, is local-
ized to the C-terminus (Figure 2b). In contrast, PfCelTOS mAbs, either 4H9.C3 or 3C3.B8,
did not recognize PfCelTOS on the N-terminus (PfCelTOS-oxPfMSP119), possibly due to
misfolding or epitope constrains. Only mAb 3D11.D4 recognized PfCelTOS oriented on
the N-terminus of SAPN (Figure 2b). All PfMSP1 antibodies detected the recombinant,
soluble PfMSP142, but not rPfCelTOS, while, conversely, all PfCelTOS antibodies detected
the recombinant, soluble PfCelTOS, but not the rPfMSP142, indicating no cross-reactivity
between these antigens (Figure 2a,b).
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3.3. Epitope Density Influences Immunogenicity

Coiled coil proteins/peptides are attractive units for de novo design of ordered
assemblies forming polyhedral, ring structures, and planar and linear lattices. Formation
of high-density, repetitive, and ordered displays allow for enhanced immunogenicity
compared to that induced by soluble proteins [72]. Immunogenicity of the SAPN and
soluble proteins, rPfCelTOS and rPfMSP142, were tested in BALB/c mice. Mice were
immunized three times at three-week intervals with 0.3 µg SAPN and 10 µg rPfCelTOS or
5 µg rPfMSP142 formulated in AddaVax™. Vaccine dosing based on molar equivalents of
PfCelTOS delivered on SAPN approximated a 73-fold lower dose relative to the soluble
protein (PfMSP119-PfCelTOS, at 7.58 pmoles; PfCelTOS, at 555.6 pmoles, respectively).
Similarly, for PfMSP119 displaying SAPN, the moles of target antigen approximated a
16-fold lower dose than for the rPfMSP142 (7.58 pmoles and 119.1 pmoles, respectively).
The doses selected for the recombinant proteins are based on previous studies and served
as reference controls [35]. The SAPN doses were nominally selected to assess the potential
for antigen dose sparing. Negative controls, AddaVax™ alone, irrelevant SAPN, and
0.3 µg redPfMSP119-PfCelTOS in PBS (Figure 3a,b, denoted as SAPN w/o AddaVax™) were
included to explore background responses elicited by the adjuvant or the SAPN core.
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Figure 3. Antigen localization and epitope density on SAPN influences immunogenicity and anti-
body fine specificity. (a–c) BALB/c mice were immunized I.M. 3 times at a 3-week interval with
redPfMSP119-PfCelTOS ((a,b), n = 39), oxPfMSP119-PfCelTOS ((a), n = 40; (b), n = 25; (c), n = 15),
PfCelTOS-oxPfMSP119 ((a,b), n = 38; (c), n = 15), or 1:1 Combo ((a,b), n = 30; (c), n = 15) SAPN
(0.3 µg for (a,b) and 1 µg for (c)), recombinant P. falciparum CelTOS (10 µg, n = 35), or recombinant
P. falciparum MSP142 (5 µg, n = 25) in AddaVax™. The 1:1 Combo is an assembled 1:1 admixture of
oxPfMSP119-PfCelTOS and PfCelTOS-oxPfMSP119. Negative controls include immunization with
AddaVax™ alone ((a,b), n = 25), irrelevant SAPN (a,b), n = 25), and 0.3 µg redPfMSP119-PfCelTOS
in PBS (denoted as SAPN w/o AddaVax™; (a,b), n = 5). Antigen-specific antibody concentrations
against P. falciparum CelTOS (a) and P. falciparum MSP142 (b) and antigen-specific IgG titers against P.
falciparum CelTOS and its N- and C-terminal subunits (c) were quantified in sera 2 weeks post-final
immunization by ELISA. Final titers are shown for individual mice, with the geometric mean and
95% confidence intervals (CI). *: p < 0.05; ***: p < 0.001; ****: p < 0.0001 by the Kruskal–Wallis test with
Dunn’s multiple comparisons (a,b) and the Wilcoxon matched-pairs signed rank test (c) (GraphPad
Prism 6.0). Results are a meta-analysis of five independent experiments. Dotted lines separate the
results for each SAPN.
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Localization of PfCelTOS to the C-terminus of SAPN (redPfMSP119-PfCelTOS and
oxPfMSP119-PfCelTOS) yielded a statistically higher antibody concentration relative to its
N-terminal display (PfCelTOS-oxPfMSP119) (Figure 3a). To address the effect of an alternate
packing density, a 1:1 admixture comprising both N-terminal and C-terminal localized
PfCelTOS was co-assembled (Combo [oxPfMSP119-PfCelTOS and PfCelTOS-oxPfMSP119]).
Interestingly, the Combo SAPN yielded lower PfCelTOS antibody concentrations relative
to the C-terminal PfCelTOS SAPN, but similar PfCelTOS antibody concentrations relative
to the N-terminal PfCelTOS SAPN (Figure 3a). Therefore, antibody responses to PfCelTOS
were reduced by either localizing to the N-terminus or by halving the epitope density at
the C-terminus in the 1:1 Combo SAPN.

In contrast, N-terminal PfMSP119 (oxPfMSP119-PfCelTOS) yielded significantly higher
PfMSP1 antibodies compared to redPfMSP119-PfCelTOS (Figure 3b), which lacked some
disulfide bridge structures (Figure 2a). Localizing oxPfMSP119 to the N-terminus (oxPfMSP119-
PfCelTOS) or the C-terminus (PfCelTOS-oxPfMSP119) did not yield significantly different
antibody concentrations; however, PfCelTOS- oxPfMSP119 elicited lower antibody concen-
trations relative to rPfMSP142 (Figure 3b). Antibody concentrations elicited by oxPfMSP119-
PfCelTOS did not significantly differ from the 1:1 Combo, nor rPfMSP142. Relative to
the SAPN configuration, the results for MSP1 suggest that disulfide bond structure was
more essential to the elicited response, rather than the antigen localization or epitope
density. Importantly, the negative controls (AddaVax™ alone, empty SAPN, and 0.3 µg
redPfMSP119-PfCelTOS in PBS) elicited universally negligible responses, suggesting no
notable background response, and highlighted the need for adjuvant to induce antibody
production (Figure 3a,b). Together, these results reveal that, for PfCelTOS, display on
the C-terminus of SAPN and, for PfMSP119, disulfide-dependent structure defined the
immunogenicity outcome.

3.4. Orientation of PfCelTOS on SAPN Influences Antibody Specificity

To assess for antibody fine specificity induced by SAPN, BALB/c mice were im-
munized with 1 µg of oxPfMSP119-PfCelTOS, PfCelTOS-oxPfMSP119, or a 1:1 assembled
admixture (“Combo”; DLS, Z-average 29.14 nm, particle data not shown) formulated
in AddaVax™. Antibody titers against full-length PfCelTOS, and the subunit fragments,
N-terminus and C-terminus of PfCelTOS, were evaluated to assess whether antibody
specificities were influenced by localization on SAPN. Localization of PfCelTOS to the
C-terminus of the SAPN (oxPfMSP119-PfCelTOS) elicited a significantly higher antibody
titer against the PfCelTOS C-terminal subunit relative to the PfCelTOS N-terminal subunit
(Figure 3c). The 1:1 Combo SAPN yielded antibody titers that mirrored the specificities
elicited by PfCelTOS localized to the C-terminus but at a lower magnitude overall. In
contrast, localization of PfCelTOS to the N-terminus of the SAPN (PfCelTOS-oxPfMSP119)
significantly diminished the antibody responses against the C-terminal subunit. The re-
sponses to the N-terminal subunit of PfCelTOS were universally weak, as each SAPN
configuration produced an equally low antibody titer to this fragment. These results sug-
gest that the location of PfCelTOS on SAPN mainly influenced antibodies targeting to the
C-terminus of the antigen.

3.5. SAPN Induces Antibodies that Inhibit Parasites In Vitro

Given the establishment of potent humoral immune responses in the murine model,
the functionality of MSP1 antibodies against parasite growth in vitro was assessed in
outbred, New Zealand white rabbits. Three rabbits per group were immunized with the
respective immunogen formulated in AddaVax™ and sera were collected two weeks after
the final immunizations. Ig titers were measured against rPfMSP142 alleles, 3D7 and FVO
(Figure 4a,b) and rPfCelTOS, in addition to PfCelTOS subunit fragments in order to deduce
antibody fine specificities (Supplementary Figure S2a). Due to the immunodominant nature
of the PfMSP1 response and the relatively lower PfCelTOS-specific titers, SAPN constructs
and their dose-response relationships were only assessed for their MSP1 responses, and
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these were compared to a recombinant, soluble PfMSP142 FVO (rPfMSP142) protein, a
vaccine candidate previously evaluated in the clinic [31].
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Figure 4. SAPN induces antibodies that inhibit parasites in vitro. Two weeks following the third
I.M. immunization, rabbits were exsanguinated, and serum antibody titers were measured against
recombinant proteins and blood-stage parasites. (a) Fifty micrograms dose response of PfCelTOS-
oxPfMSP119 (n = 3), oxPfMSP119-PfCelTOS (n = 3), and rPfMSP142 (n = 3) to the Vietnam Oak-Knoll
(FVO) and 3D7 PfMSP142 antigens. (b) PfCelTOS-oxPfMSP119 dose-response relationship compared
to the previous 50 µg PfCelTOS-oxPfMSP119 and rMSP142 groups. (c) Total IgG was normalized
to 1.25, 2.5, and 5 mg/mL. Fifty micrograms of each SAPN construct and rPfMSP142 were tested
for FVO and 3D7 parasite-specific growth inhibition by measuring the amount of parasite lactate
dehydrogenase present. (d) Correlation graphs between purified IgG ELISA titer and percent
inhibition at 1.25, 2.5, and 5 mg/mL with linear regression analysis. FVO strain titer and percent
inhibition are represented by filled symbols and a solid trend line, while 3D7 strain titer and percent
inhibition are represented by open symbols with a dash trend line. Note: there are overlapping
symbols on the 2.5 mg/mL graph, where an oxPfMSP119-PfCelTOS sample has nearly identical titer
(12,587, 11,760) and identical percent inhibition (23.6) for both FVO and 3D7 strains, respectively. Data
are shown as the mean with +/− standard error of the mean. Statistical significance was determined
using nonparametric multiple t test, the Holm–Sidak method comparing to the rPfMSP142 standard
group with *: p < 0.05; **: p < 0.01. Differences in PfMSP142 strain responses were compared using
Mann–Whitney tests.

The rPfMSP142 protein stimulated higher overall antibody titers against both alleles
of MSP142 than either SAPN oxPfMSP119-PfCelTOS or PfCelTOS-oxPfMSP119. Markedly,
oxPfMSP119-PfCelTOS, when delivered at an equivalent dose, 50 µg (equal molar rela-
tive to MSP119), with the N-terminal oriented MSP119, induced significantly lower titers
(Figure 4a). Conversely, for PfMSP119 located on the C-terminal end of SAPN, antibodies
were seven-fold higher compared to the inverse orientation. Interestingly, this difference
was not observed in mice where antibody titers were not significantly impacted by ori-
entation on SAPN for MSP119 (Figure 4b). Cross-reactive antibody responses were not
significantly different between the FVO and 3D7 plate antigens no matter the immunogen.
These findings corroborated previous work with the FVO allele of PfMSP1 for inducing
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superior cross-reactive responses and was the basis for its selection in the current study [73].
Next, rabbits were vaccinated with PfCelTOS-oxPfMSP119 in AddaVax™ at various antigen
doses (0.5, 5, 15, and 50 µg) to deduce an optimal dose response curve. Antibody titers
revealed a relative lack of responsiveness in the dose range tested (Figure 4b). Notably, this
lack of dose responsiveness was paralleled for both alleles of rPfMSP142, FVO and 3D7.
While these findings may be intriguing, a larger sample size is warranted to fully assess
SAPN dose response in rabbits, and therefore, the current findings may be more indicative
of the small sample size.

To assess antibodies functionality against parasite growth, in vitro parasite growth
inhibition assays (GIA) were performed using individual purified immunoglobulins
from rabbits vaccinated with 50 µg of oxPfMSP119-PfCelTOS, PfCelTOS-oxPfMSP119, or
rPfMSP142 formulated in AddaVax™. Protein G purified Igs were normalized to 1.25,
2.5, and 5 mg/mL and incubated with the blood stages of FVO or 3D7 parasites in vitro.
Growth inhibition activity was quantified based on parasite lactate dehydrogenase de-
tection [73]. At each concentration of Ig, inhibition trends were oxPfMSP119-PfCelTOS
< PfCelTOS-oxPfMSP119 < rPfMSP142, against P. falciparum FVO parasites (Figure 4c). A
similar trend was observed against P. falciparum 3D7 parasites. Generally, SAPN with
PfMSP119 localized on the N-terminus induced lower inhibition than in the inverse ori-
entation (PfCelTOS-oxPfMSP119), where there was no significant difference in inhibition
detected compared to soluble rPfMSP142, at any concentration of Ig. Similar to the antibody
titers, there was no significant difference in parasite growth inhibition between the FVO
and 3D7 strain parasites. Not surprisingly, in all cases, the purified Ig antibody titers
(Supplementary Figure S2b) and percentage growth inhibition were directly correlated
(r2 = 0.8082, 0.7736, 0.6854; 1.25, 2.5, 5 mg/mL, respectively, P. falciparum FVO responses)
(Figure 4d: filled symbols with solid trend line); however, for the P. falciparum 3D7 re-
sponses, the r2 values were generally lower (r2 = 0.6218, 0.5392, 0.5297; 1.25, 2.5, 5 mg/mL,
respectively, P. falciparum 3D7 responses) (Figure 4d: open symbols with dash trend line).
For both sets of response curves, r2 values decreased as Ig concentrations increased, sug-
gesting at higher antibody concentrations, responses reached a saturating limit. Thus,
SAPN induced humoral responses to the conformation-dependent MSP119, which were
cross-reactive, functional, and compared favorably to the reference, rMSP142.

3.6. Immunogenicity of Dual-Displaying PfCelTOS SAPN

Despite the favorable immunogenicity of PfMSP119 SAPN in rabbits, we sought to
evaluate whether immune responses could be improved by increasing epitope density
through the simultaneous display of a single target on both the N- and C-terminus of SAPN.
A PfCelTOS-PfCelTOS SAPN (PfCel-PfCel) was produced and its immune recognition on
dot blots and immunogenicity in mice was tested. To characterize the PfCel-PfCel SAPN
relative to the single-antigen display SAPN, oxPfMSP119-PfCelTOS, PfCelTOS-oxPfMSP119,
and a soluble rPfCelTOS, 250 ng of protein was spotted onto nitrocellulose membranes
and detected by PfCelTOS-specific polyclonal and monoclonal antibodies. C-terminal-
specific mAbs detected epitopes on the C-terminally localized PfCelTOS SAPN (PfCel-PfCel
and oxPfMSP119-PfCelTOS) at high densities relative to the recombinant, soluble protein;
however, detection was significantly reduced when the PfCelTOS was localized to the
N-terminus (PfCelTOS-oxPfMSP119) for mAbs 4H9.C3 and 3C3.B3, but not mAb 3D11.D4,
whose epitopes appear accessible in this configuration (Figure 5a). Not surprisingly, the
dual displaying PfCelTOS SAPN (PfCel-PfCel) was recognized by all mAbs.
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Figure 5. Immunogenicity of N-terminal and C-terminal displayed PfCelTOS on PfCel-PfCel SAPN.
(a) Reactivity of P. falciparum CelTOS antibodies to PfCel-PfCel SAPN. Nitrocellulose membrane was
spotted with 250 ng of folded proteins and incubated with antibodies as described in Materials and
Methods. (b) BALB/c mice were immunized I.M. 3 times at a 3-week interval with PfCel-PfCel SAPN
with (0.3 µg, n = 5; 1 µg, n = 5; 3 µg, n = 20; 10 µg, n = 25) and without (1 µg, n = 5; 3 µg, n = 5; 10 µg,
n = 5; 30 µg, n = 5) Army Liposome Formulation with QS-21 (ALFQ) adjuvant, recombinant PfCelTOS
(10 µg, n = 5) with ALFQ, or ALFQ alone (n = 20). Antigen-specific antibody concentrations against
rPfCelTOS were quantified by ELISA. Final antibody concentrations are shown for individual mice,
with the geometric mean and 95% CI. (c) IFN-γ- and IL-4-secreting cells were quantified by ELISpot
after stimulation of splenocytes with rPfCelTOS. The number of cytokine-specific spot-forming cells
(SFC) per 106 splenocytes is shown for individual mice (n = 5 for all groups except the 3 µg and 10 µg
doses with ALFQ and ALFQ alone groups, which have n = 10, n = 15, n = 15, respectively), with the
mean and SD. (d) Cytokine production was quantified using the Meso Scale Discovery immunoassay.
Cytokine-specific concentrations are shown for individual mice (n = 10 for groups with ALFQ, n = 5
for groups without ALFQ, except IL-12p70 for which some mice were below the level of detection),
with the mean and SD. Results are representative of three independent experiments.
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Next, we assessed the immunogenicity of PfCel-PfCel with increasing doses with and
without potent adjuvant, ALFQ. ALFQ was selected for its’ reported balanced Th1/Th2 re-
sponse compared to AddaVax™, which biases toward Th2 immunity. Notably, formulation
with ALFQ yielded a significantly higher antibody concentration across all doses; whereas,
in the absence of adjuvant, the responses were overall lower (Figure 5b). Increasing the
SAPN dose did not yield significant differences in geometric mean antibody concentrations;
however, the 95% confidence interval of the antibody responses narrowed with increasing
doses. The range of antibody responses and the smaller confidence interval are likely due to
the larger number of mice immunized with the higher doses than with lower doses. While
the mean antibody concentrations elicited by SAPN varied, no differences were detected
with responses induced by the rPfCelTOS. However, a trend was observed for higher doses
leading to higher mean antibody concentrations. Importantly, antibodies raised to this
SAPN were capable of recognizing native antigen on the P. falciparum sporozoites, by IFA
(Supplementary Figure S3), suggesting display of some natural structure.

Given the relatively balanced Th1 and Th2 immunity [74] and the demonstrated
potency of ALFQ in preclinical models [75], and CelTOS-induced cell-mediated immu-
nity [36], we sought to characterize cellular immune responses induced by PfCel-PfCel. The
frequencies of PfCelTOS-specific IFN-γ- or IL-4-producing splenocytes of the BALB/c mice
were quantified by ELISpot. Similar to the induced humoral response, characterization of
the cellular response revealed that ALFQ enhanced the production of PfCelTOS-specific
IFN-γ and IL-4 across all doses compared to SAPN delivered without adjuvant, as well
as rPfCelTOS (Figure 5c). Although the mean frequencies of IFN-γ- and IL-4-producing
splenocytes increased with dose, they did not significantly differ. To further explore cy-
tokine production by PfCel-PfCel at the higher doses (3 and 10 µg); PfCelTOS-specific
cytokine concentrations were determined using the Meso Scale Discovery immunoassay.
As previously observed, adjuvant was required to induce cytokine production; with the
exception of Th1-skewed TNF-α and pro-inflammatory KC/GRO (Figure 5d). The elicited
PfCelTOS-specific cytokine concentrations did not statistically differ between the low (3 µg)
and the high dose (10 µg). Together, these results suggest that adjuvant was required to
elicit potent humoral and cellular responses, and that increased epitope density through
dual-display of PfCelTOS on PfCel-PfCel SAPN improved cellular, but not humoral, im-
munity relative to the soluble, rPfCelTOS.

4. Discussion

De novo, computationally designed self-assembling protein nanoparticles (SAPN)
provide a modular strategy to present well-defined targets to the host immune system.
This type of multi-valency offers the possibility to enhance immune responses through the
simultaneous cross-linking of epitopes on nanoparticles and host B cell receptors, leading
to efficient immune activation, thus overcoming the limitations of subunit or conventional
vaccine approaches. A major advantage of the SAPN technology is the ability to include
two B cell antigens, one on each terminus of the monomer. We demonstrated that two
antigens expressed from different stages of the malaria life cycle could be displayed on
the surface of a protein nanoparticle. We investigated the influence of the target antigen’s
orientation on the SAPN monomer on immunity in mice and rabbits. Notably, immune
responses were dependent on localization, protein disulfide-bridge structure, and epi-
tope accessibility. Disulfide bond formation prior to urea denaturation and refolding of
PfMSP119 SAPN improved recognition by disulfide-dependent mAbs, suggesting some
correct folding, and improved in vivo immune responses. Alternately, PfCelTOS displayed
in various orientations yielded variable immune recognition that was likely more depen-
dent on localization and epitope accessibility. Interestingly, PfCelTOS displayed from
the C-terminal position more closely mimics the natural protein folding in this region,
being primarily unconstrained. While for PfMSP119, the opposite is true, where disulfide
structure rather than positional location had a greater impact on immunogenicity given
that correct disulfide structure at the N-terminus overcame the potentially less favorable
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localization on SAPN. Contrary to the soluble PfCelTOS, native MSP119 is naturally con-
strained on the parasite membrane surface through a GPI anchor, thus the N-terminal
localization is potentially more native-like in structure [17,19]. While these are compelling
observations, they highlight the importance of protein folding and antigen localization for
SAPN target display.

Proper folding of proteins with numerous disulfide bridges can be especially challeng-
ing. E. coli as an expression system has advantages as well as disadvantages. Notably, the
cytosolic environment of E. coli is reductive, thus restricting the spontaneous formation
of disulfide bridges. These bonds play a critical role in stabilizing protein structures, al-
lowing for crosslinking between non-consecutive polypeptide segments. PfMSP119 has a
complex folded structure with six disulfide bridges that dictate its final conformation. The
formation of correct disulfide bonds prior to urea denaturation appear to guide the subse-
quent refolding steps, confirmed by positive immunoreactivity on dot blots with MSP119
conformation-dependent mAbs. The correctly folded PfMSP119 on oxPfMSP119-PfCelTOS
significantly improved immunogenicity in mice compared to the alternate purified form,
redPfMSP119-PfCelTOS, leading to a ten-fold increase in geometric mean antibody con-
centrations. As such, formation of correct disulfide-dependent structures is essential to
eliciting functional antibody responses against native malarial antigens, i.e., CSP, TRAP,
AMA1, MSP1, Pfs25, Pfs48/45 [76–78], to name a few.

A number of studies have reported that antibodies to the C-terminal MSP142 [16]
and/or MSP119 [79–81] are associated with protection in nonhuman primate and murine
infection models, respectively, and that antibodies to MSP119 are associated with reduced
risk of symptomatic P. falciparum infection in the field [82]. To explore whether SAPN can in-
duce in vitro functional antibodies as a surrogate to a potentially protective response, New
Zealand white rabbits were vaccinated with SAPNs displaying PfMSP119 in AddaVaxTM.
Contrary to the mouse model, examining PfMSP119 immunogenicity in rabbits uncovered
that N-terminal PfMSP119 on SAPN was less immunogenic, resulting in lower PfMSP1
titers and concomitantly lower inhibition of parasite growth. The opposite was true for
the PfCelTOS-oxPfMSP119 SAPN, where localizing PfMSP119 on the C-terminus induced
significant inhibition that was comparable to rPfMSP142. Differences in responses between
mice and rabbits may be partially related to antigen processing and presentation [83]. The
impact of epitope accessibility on SAPN and humoral responses was reported for another
asexual blood-stage antigen, P27 [84]. Unlike for PfMSP119, the surface exposed portions
of the P27-NC SAPN, i.e., the C-terminal portion, induced a stronger immune response
compared to responses against the N-terminal region, which was concealed within the
core of the SAPN. Alternatively, others have reported the importance of T helper epitope
regions on MSP133 for the production of anti-MSP119 inhibitory antibodies [85,86]. Thus,
the inferior anti-MSP119 antibody response in rabbits relative to rPfMSP142 may be partially
due to the lack of antigen-specific T-cell help from the MSP133 portion of MSP142. While our
data reveal interesting trends, further investigation is needed to elucidate the mechanism
of B-cell receptor recognition and differentiation of high-epitope-density nanoparticles.

For CelTOS, the C-terminal localization of PfCelTOS yielded improved immune
recognition that was largely targeted to the C-terminus of the PfCelTOS protein. Immune
responses targeting this portion of the molecule are biologically relevant, since genetic
diversity and single nucleotide polymorphisms in the P. falciparum celtos gene are localized
to this region [87]. Orienting the immunodominant C-terminal end on the C-terminus
of the monomer of the assembled SAPN yielded a preferred, unconstrained and free-
folding structure. Conversely, PfCelTOS displayed on the N-terminus yielded overall
reduced immune responses, likely due to occlusion of the C-terminal end in the SAPN core.
This configuration may conceal immunodominant epitopes or is evidence of inadequate
display or antigen presentation. Improvements can be made to SAPN by either including
longer linker segments between the N-terminus of the target and the core structure, or by
displaying antigens in the reverse orientation. These findings reveal that for some target
antigens, orientation on SAPN may be critical to elicit relevant responses.
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The influence of CelTOS localization on immunogenicity was further explored by
measuring cell-mediated immune responses elicited by a dual-antigen displaying PfCel-
PfCel SAPN. While PfCel-PfCel did not necessarily improve humoral responses compared
to a soluble rPfCelTOS, the PfCel-PfCel yielded higher numbers of cytokine-producing
cells reactive to PfCelTOS compared to the soluble protein. This may be due to the repeti-
tive nature, high-density display on SAPN activating cellular recruitment in conjunction
with efficient delivery of increased molar equivalents by the two copies of PfCelTOS on
PfCel-PfCel SAPN. Previously, we reported that mice immunized with rPfCelTOS/ISA
720 elicited CelTOS-specific antibodies, CD4+ and CD8+ T cells, and protection from het-
erologous infective challenge using Plasmodium berghei (Pb) sporozoites, demonstrating
heterologous cross-epitope recognition or presentation [35]. BALB/c mice immunized with
rPbCelTOS/ISA 720 yielded homologous protective immunity that was partially depen-
dent on antibodies and CD4+ and CD8+ T cells to PbCelTOS [36]. Conversely, more recently,
viral vectors encoding PfCelTOS did not yield protective immunity in either BALB/c or
CD1 mice using rodent malaria transgenic parasites, even in the presence of antibodies and
PfCelTOS-specific CD4+ and CD8+ T cells [88]. Collectively, while nominally identified as
a conserved antigen and immunogenic in various mouse strains, CelTOS has yet to present
clear evidence of sterile protection against falciparum species targets.

In summary, an ideal multi-antigen SAPN vaccine can be designed to present both
B- and T-cell epitopes. These ordered antigenic arrays present high epitope densities that
facilitate simultaneous binding between nanoparticles and host B cell receptors, leading
to induction of potent immune responses. SAPN have been used to present peptides
that form epitopes on the surface by the nature of their proximity and, depending on the
target, variably elicit conformation-dependent neutralizing antibodies [62–64]. Importantly,
SAPN can be applied to present structural B cell antigens, overcoming limitations of
constrained genetic fusions of conformational antigens and their assembly on the surface
of virus capsid proteins, i.e., VLPs [89–91]. Recently, a SAPN expressing segments of the
malaria P. falciparum CSP, the C-terminal structural domain, α-TSR, on the N-terminus,
and the central (NANP)6 repeat on the C-terminus was cGMP-produced and advanced
to a first in human clinical investigation (FMP014/ALFQ; ClinicalTrials.gov Identifier:
NCT04296279). An optimized PfCSP/PvCSP-based SAPN incorporating several different
HLA and CSP-specific CD8+ T cell epitopes and the universal CD4+ T-helper Pan DR
epitope (PADRE) induced protective cellular immune responses in mice, demonstrating
the versatility of the platform [92]. Here, bivalent SAPN were used to elicit humoral and
cellular immune responses in vivo. Relative to orientation on the SAPN, immune responses
were dependent on the antigen localization, epitope accessibility, and on the disulfide bond
structure for MSP1. These findings suggest that a characteristic understanding of the SAPN
platform and the antigen target is essential to develop a multi-antigen, combination vaccine
using this approach. Taken together, these results demonstrate that the SAPN approach is
sufficiently adaptable for multiple structural antigens display.

5. Conclusions

The present study provides evidence for the influence of antigen localization and
protein folding, as well as epitope density on SAPN on the host immune response. The
immunogenicity of SAPN-presenting malaria antigens, PfCelTOS and PfMSP119, in various
orientations was characterized in mice and rabbits. SAPN displaying PfCelTOS on the
C-terminus achieved superior PfCelTOS-specific antibody concentrations compared to N-
terminal localization, which occluded important epitopes in the SAPN core. The formation
of proper disulfide bonds in PfMSP119 by an oxidative purification approach, confirmed by
immunoreactivity to conformation-dependent monoclonal antibodies, yielded increased
immunogenicity relative to PfMSP119-displaying SAPN purified by a fully denaturing
and reductive process. Importantly, PfMSP119-specific antibodies were functional against
blood-stage parasite growth. Increased epitope density through display of PfCelTOS on
both termini of SAPN yielded improved cellular, but not humoral, responses. This work
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highlights the potential advantages of using SAPN as scaffolds for multivalent antigen
display. A systematic investigation of the structural determinants and their influence on
immunogenicity highlights the importance of antigen selection and design. Thus, SAPN
lends itself well to a de novo computational design approach for vaccine development.

6. Patents

Peter Burkhard holds intellectual property on the use of SAPN platform as a vaccine
technology. Zoltan Beck is an inventor in a US-government-owned and issued US patent
based on ALFQ adjuvant. Evelina Angov and Elke Bergmann-Leitner are inventors in
a US-government-owned and issued US patent based on the recombinant soluble PfCel-
TOS. Evelina Angov is an inventor in US-government owned and US patent based on
recombinant, soluble PfMSP142 (FVO).

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-393
X/9/2/103/s1, Figure S1: SAPN amino acid sequences. Figure S2: Rabbit anti-PfCelTOS and purified
IgG PfMSP119 responses, Figure S3: Reactivity of polyclonal anti-PfCel-PfCel and anti-rPfCelTOS
antibodies against P. falciparum sporozoites. Table S1: Purification buffer conditions by column for
the SAPN, Table S2: Buffer conditions for stepwise refolding of the SAPN.
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