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A B S T R A C T   

Background: In application studies of latent class analysis (LCA) evaluating imperfect diagnostic tests, residual 
dependence among the diagnostic tests still remain even after conditioning on the true disease status due to 
measured variables known to affect prevalence and/or alter diagnostic test accuracy. Presence of severe 
comorbidities such as HIV in pulmonary tuberculosis (PTB) diagnosis alter the prevalence of PTB and affect the 
diagnostic performance of the available imperfect tests in use. This violates two key assumptions of LCA: (1) that 
the diagnostic tests are independent conditional on the true disease status (2) that the sensitivity and specificity 
remain constant across subpopulations. This leads to incorrect inferences. 
Methods: Through simulation we examined implications of likely model violations on estimation of prevalence, 
sensitivity and specificity among passive case-finding presumptive PTB patients with or without HIV. Jointly 
conditioning on PTB and HIV, we generated independent results for five diagnostic tests and analyzed using 
Bayesian LCA with Probit regression, separately for sets of five and three diagnostic tests using four working 
models allowing: (1) constant PTB prevalence and diagnostic accuracy (2) varying PTB prevalence but constant 
diagnostic accuracy (3) constant PTB prevalence but varying diagnostic accuracy (4) varying PTB prevalence and 
diagnostic accuracy across HIV subpopulations. Vague Gaussian priors with mean 1 and unknown variance were 
assigned to the model parameters with unknown variance assigned Inverse Gamma prior. 
Results: Models accounting for heterogeneity in diagnostic accuracy produced consistent estimates while the 
model ignoring it produces biased estimates. The model ignoring heterogeneity in PTB prevalence only is less 
problematic. With five diagnostic tests, the model assuming homogenous population is robust to violation of the 
assumptions. 
Conclusion: Well-chosen covariate-specific adaptations of the model can avoid bias implied by recognized het
erogeneity in PTB patient populations generating otherwise dependent test results in LCA.   

1. Introduction 

Lack of a perfect reference standard complicates evaluation of new 
diagnostic tests and quantification of disease prevalence. Ideally, new 
diagnostic tests are evaluated by comparison to a gold standard (GS) test 
that conclusively determines the diagnosis. However, in practice, the GS 
test is rarely available. As a result, new diagnostic tests are assessed by 
comparison to available imperfect reference tests. Due to the inherent 

limitation of imperfect reference tests, discrepant resolution and com
posite reference standard methods were proposed to alleviate imperfect 
reference standard bias [1]. Both methods, however, yield biased esti
mates [2–4]. Another promising approach is the use of latent class 
analysis (LCA) [5–7]. This approach is used for identifying unobserved 
subgroups in the population [8]. It has enjoyed extensive application in 
many disciplines [9]. Over the past few decades, it has attracted atten
tion in biomedical field, including evaluation of diagnostic tests in the 
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absence of a gold standard in the field of infectious disease [9,10]. 
Consider, for example, the diagnosis of pulmonary tuberculosis 

(PTB). The current conventional diagnostic methods for PTB involve 
culture, smear microscopy, Xpert MTB/RIF, Xpert MTB/RIF Ultra, and 
imaging (chest X-ray, Computed Tomography) in a patient with pre
sumptive TB. Recently, Computer-Aided Detection for TB (CAD4TB) and 
C-reactive protein (CRP) were proposed as triage tests in presumptive TB 
patients before ordering an expensive but more accurate Xpert MTB/RIF 
[11]. Lateral Flow test for lipoarabinomannan (LAM) in urine is rec
ommended for diagnosis of TB in patients with advanced HIV disease 
[12–14]. The conventional reference standard for diagnosis of PTB is 
culture for Mycobacterium tuberculosis complex. While culture is the most 
specific test available, an imperfect sensitivity (76%–92%) is a limita
tion [15]. Thus, a negative culture test result does not rule out the 
presence of TB. PTB diagnosis could use as few as two symptoms/tests e. 
g. ‘cough lasting more than two weeks and chest X-ray’ or ‘any TB 
symptom and chest X-ray’, to more elaborate combinations of three e.g. 
‘any TB symptom, chest X-ray and Xpert MTB/RIF’ or four e.g. adding 
culture to the set [16]. In this context we consider any TB symptom as a 
diagnostic test. A combination of tests that does not include TB symp
toms in the set has also been considered [17]. Using a combination of 
imperfect diagnostic tests as the reference standard will potentially lead 
to biased estimates [18]. Composite reference standard (CRS) does not 
take into account the underlying uncertainties attributable to each 
imperfect test while assessing the diagnostic accuracy of the new test. A 
detailed discussion on the concerns of CRS has been provided elsewhere 
[4]. Alternatively, with such a set of test results jointly available for a 
sample of patients, LCA allows not only for improved patient diagnosis 
but further allows evaluation of the diagnostic tests themselves. It yields 
correct estimates of disease prevalence and diagnostic test accuracy 
under nontrivial assumptions [19]. These strong assumptions are 
violated when a serious comorbidity affects the diagnostic test accuracy 
and/or risk of the targeted disease. This then results in biased estimates 
of disease prevalence and diagnostic test accuracy [3,20–22]. However, 
there is scanty evidence on the performance of latent class models in the 
presence of differential diagnostic test accuracy induced by an observed 
external covariate that is also associated with the risk of the targeted 
disease. 

Previous authors in their work have adjusted for covariates known to 
influence diagnostic test accuracy based on expert opinion [22,23], 
some did not adjust for covariates [24] while others adjust for the effect 
of covariates on disease prevalence only [5,6,21]. Thus, the differing 
approaches on how to conduct LCA leaves an important gap in diag
nostic test evaluation, especially in TB where factors such as HIV status, 
history of TB and malnutrition affect the performance of Xpert MTB/RIF, 
TB symptoms and tuberculin skin test among others [16,22,25]. It is 
unclear whether studies that fail to adjust for measured covariates as 
well as those that partly adjust for the effects of measured covariates on 
diagnostic test accuracy only yield biased estimates while those that 
correctly adjust for the effect of measured covariates have a better 
chance of obtaining correct inferences. Using simulation, we performed 
Bayesian LCA separately for a set of three (any PTB symptom, CAD4TB, 
Xpert MTB/RIF) and a set of five diagnostic tests (any PTB symptom, 
CRP, CAD4TB, Xpert MTB/RIF and culture) for PTB with the aim of 
assessing the impact of covariate induced diagnostic test dependence on 
the performance of latent class models. We evaluated the likelihood of 
four proposed models, representing common situations under which the 
standard assumptions are violated for a set of three and a set of five 
diagnostic tests and offer recommendations for analysis. 

2. Simulation conditions: the generated data 

We generated data mimicking a setting of passive case-finding 
among presumptive PTB patients with or without HIV. Our goal is to 
show the effect of residual dependence induced by a measured covariate 
on the diagnostic performance of LCA after conditioning on the true PTB 

status and isolating the dependence between the diagnostic tests 
attributable to other sources. Based on realistic sensitivities and speci
ficities of five diagnostic tests for PTB (any PTB symptom, CRP, CAD4TB, 
Xpert MTB/RIF and culture) we simulated independent test results 
conditional on PTB and HIV (Table A.1 in Appendix A). We thus simu
lated 20% HIV+ patients with 5% PTB prevalence in HIV− and 10% in 
HIV+, for an overall prevalence of 6% [26,27]. The accuracy used for 
culture was based on a composite reference standard of BACTEC 960/ 
MGIT, BACTEC 460 and solid media [15] For the other diagnostic tests it 
was based on culture as the reference standard. The overall sensitivity 
(specificity) averages the test-related sensitivity (specificity) over the 
HIV subpopulations. Thus, the joint probability of the jth diagnostic test 
Yj, j = 1,2, 3,⋯, J, PTB status D and covariate (HIV status) X was 
generated using the following model. 

Pr
(
Yj,D,X

)
= Pr

(
Yj|D,X

)
Pr(D|X)Pr(X)

Hence for the set of test results under conditional independence 
given D and X: 

Pr(Y1,Y2,⋯, YJ ,D,X) =
∏J

j=1
Pr

(
Yj|D,X

)
Pr(D|X)Pr(X)

where Yj = 1 if the jth test result is positive, 0 otherwise; D = 1 if the 
latent PTB status is positive, 0 otherwise; X = 1 if HIV status is positive 
(i.e HIV+ ), 0 otherwise. 

We introduced the observed covariate X in the relevant models to 
handle dependence of diagnostic tests induced by this covariate. 

We thus generated three pseudo-random populations of 1000, 2000 
and 5000 individuals with their true PTB and HIV status. Each of the 
three pseudo-random populations were replicated 100 times. The 
covariance and correlation structures are presented in Appendix A 
(Table A.2–A.5). 

3. Working models 

The standard two-class LCA assumes that the study population con
sists of at least two separate, internally homogenous latent classes. We 
consider a person’s true PTB status consisting of two mutually exclusive 
and exhaustive categories: ‘PTB’ and ‘non-PTB’. We acknowledge that 
this may not be true in practice because PTB status for an individual may 
be any of (1) active-TB (2) no TB (3) latent/subclinical TB [28]. How
ever, we restrict ourselves to the case where we have two classes: PTB 
and non-PTB, for the purpose of assessing violation of model assump
tions. The model further assumes that the result of one diagnostic test 
does not depend on the results of other tests (and persons) in the latent 
class, with a constant chance of error across individuals in a latent class, 
implying constant test sensitivity and specificity across subpopulations 
[5]. In practice, these standard latent class model assumptions are 
violated, especially in the field of TB where, for example, HIV disease is 
known to influence the performance of some diagnostic tests including 
TB symptoms and Xpert MTB/RIF. To assess the effect of the measured 
covariate on the performance of latent class analysis, we analyzed the 
data using four working models: from most simple – with no HIV 
dependence – to the accurate (or complex) model representing the true 
model used to generate the data (Fig. 1). These are variants of the 
standard two-class latent class model. Their detailed description is given 
in Appendix A. 

The joint probability Pr
(
Yi1 = yi1,Yi2 = yi2,Yi3 = yi3,⋯,YiJ =

yiJ|Xi = xi
)
= Pr

(
Yi = yi|Xi = xi

)
of observing a combination of J test 

results yi1, yi2, yi3,⋯, yiJ applied to the ith individual,i = 1,2,3,⋯,N, was 
derived from the assumption of constant (or varying) PTB prevalence 
and diagnostic test accuracy across the HIV subpopulations as. 

Model I: assuming independence of (Y, D) from X 
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Pr(yi) =
∑d=1

d=0

∏J

j=1
Pr

(
Yij = yij|Di = d

)
Pr(Di = d)

Model II: assuming.Pr
(

Yij = yij|Di = d,Xi = xi

)
= Pr

(
Yij = yij|Di =

d
)

Pr(yi|Xi = xi) =
∑d=1

d=0

∏J

j=1
Pr

(
Yij = yij|Di = d

)
Pr(Di= d|Xi = xi)

Model III: assuming.Pr(Di= d|Xi = xi) = Pr(Di = d)

Pr(yi|Xi = xi) =
∑d=1

d=0

∏J

j=1
Pr

(
Yij = yij|Di = d,Xi = xi

)
Pr(Di = d)

Model IV 

Pr(yi|Xi = xi) =
∑d=1

d=0

∏J

j=1
Pr

(
Yij = yij|Di = d,Xi = xi

)
Pr(Di= d|Xi = xi)

4. Analysis 

We implemented Bayesian LCA to evaluate diagnostic test properties 
of a set of five diagnostic tests: any PTB symptom, CAD4TB, CRP, Culture 
and Xpert MTB/RIF. A subset of any PTB symptom, CAD4TB and Xpert 
MTB/RIF were also evaluated. The number of parameters to be 

estimated for LCA with five diagnostic tests is less than the number 
estimable from the degrees of freedom in the data. Hence the data could 
support estimation of disease prevalence and diagnostic accuracy of the 
five diagnostic tests. With three diagnostic tests, however, there are 
more parameters than degrees of freedom in the data. This introduces a 
statistical non-identifiability problem unless additional information 
enters, for instance through informative prior distributions for some 
parameters [8]. 

The dependence of sensitivity and specificity on the covariate was 
expressed through a Probit model. Similarly, for PTB prevalence. (Ap
pendix A). Independent Gaussian priors N

(
μ, σ2) with unknown variance 

σ2 ∼ InvGamma(shape = α, rate = β) were used to model the uncer
tainty in sensitivity and specificity as well as the PTB prevalence. 

Amongst the HIV− (x = 0), sensitivity and specificity were assigned a 
normal prior with mean of 1 on the Probit scale translating to 84% on 
the probability scale, for the prevalence this was mean − 1 on the Probit 
scale translating to 16% on the probability scale. The difference in 
sensitivity and specificity and the difference in prevalence between the 
HIV− and HIV+ subpopulations were assigned priors from normal dis
tributions with mean 0 and unknown variance. When evaluating five 
diagnostic tests, the variance parameters were assigned near- 
uninformative InvGamma

(
1⋅0− 3,1⋅0− 3) priors (Appendix A: 

Figs. A.3–A.13). Given the identifiability issues when evaluating three 
diagnostic tests, the variance parameters for prevalence, sensitivity and 
specificity were assigned informative InvGamma(2,3) priors (Appendix 

Fig. 1. Graphical presentation of the working models.  
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A: Figs. A.14–A.20). The variance parameters of the difference in 
prevalence and the difference in sensitivity and specificity between the 
HIV− and HIV+ were assigned priors from InvGamma(3,1). The values 
of the inverse Gamma distribution were chosen such that the variation in 
the estimate would span the range of plausible values for the parameter 
(Appendix A: Table A.6, Figs. A.1 and A.2). Marginal sensitivity, speci
ficity and prevalence were assigned priors similar to those of the HIV−
subpopulation. Given the lack of a perfect reference standard, correct 
informative priors for the parameters of the model may not be readily 
known. Nonetheless, based on expert knowledge, using the most accu
rate imperfect reference standard a diagnostic test that is promising for 
diagnosis of a disease often has a sensitivity and a specificity >50%. 
Thus, we chose prior distributions for sensitivity and specificity with 
mode around 84% on the probability scale that reflected the degree of 
confidence in the performance of the diagnostic tests. The prior chosen 
for the prevalence was based on the general understanding about the 
prevalence of the disease spanning a range of plausible values in the 
population rather than knowledge of the actual estimate. 

For each replicate dataset, we calculated the median of the posterior 
distribution of PTB prevalence, diagnostic test sensitivity and specificity 
as our point estimate with the corresponding 95% credible intervals 
(95% CrI), defined as 2⋅5%–97⋅5% percentiles of the posterior distri
bution. For each combination of the four working models and three 
sample sizes, we calculated the median of the distribution of posterior 
median estimates of the one hundred replicate datasets. The corre
sponding 2⋅5% and 97⋅5% percentiles of the distribution of the one 
hundred posterior median estimates were derived. These intervals were 
referred to as 95% reference intervals (95% RI). We also calculated the 
mean and the corresponding 95% confidence intervals (95% CI) as well 
as the root mean squared error (RMSE) from the distribution of the one 
hundred posterior median estimates. Using the lower and upper esti
mates of the 95% CrI for each posterior distribution of the one hundred 
replicate datasets we derived the coverage rates. Posterior inferences 
were based on 50,000 Monte Carlo iterations with the first 25,000 dis
carded as “burn-in”. Convergence in model fitting was assessed by 
running three chains. In order to reduce autocorrelation between 
consecutive values in the chain, every 10th iteration was saved (“thin
ning”) [29]. Trace plots and Gelman-Rubin convergence statistic <1⋅05 
were used to monitor mixing in the chains [30]. Trace plots for the 
posterior samples of the parameters obtained from analysis of the first 
replicate dataset of size 1000, 2000 and 5000 using working model IV 
are provided in Appendix A (Figs. A.21–A.22). Analysis was imple
mented in R version 4.0.3 using R2jags package for R version 4.0.3 
[31,32]. 

5. Simulation results 

5.1. Pulmonary TB prevalence 

In Table 1 we present the frequentist evaluation of the posterior 
distributions of total population pulmonary TB (PTB) prevalence. True 
values as presented in Table 1 in this section and in the following sections 
refers to the actual values used in the simulation. We present the fre
quentist median with 95% reference intervals (95% RI), mean with 95% 
confidence intervals (95% CI) and the true value of the total population 
PTB prevalence for five and three diagnostic tests analyzed using the 
four working models. We also present the root mean squared error 
(RMSE) and coverage rates of the 95% credible intervals (95% CrI) 
around the median estimates of the posterior distributions. All estimates 
are based on the analysis of one hundred replicate datasets. From this 
point going forward we refer to the coverage rates of the 95% CrI around 
the median estimates of the posterior distributions as coverages of the 
95% CrI. 

When evaluating five diagnostic tests, the working models account
ing for heterogeneity in diagnostic test performance (working models III 
and IV) as well as the model assuming homogeneous population 

Table 1 
Frequentist evaluation of Bayesian estimates of total population pulmonary 
tuberculosis (PTB) prevalence obtained using four working models in the anal
ysis of five and three diagnostic test results.     

Five diagnostic tests 

Model N True 
value 

Median 
(95% RI) 

Mean 
(95% CI) 

RMSEx100 Coverage 

I 1000 6⋅0 6⋅3 (4⋅4, 
8⋅9) 

6⋅4 (6⋅1, 
6⋅6) 

1⋅2 95⋅0  

2000 6⋅0 6⋅1 (5⋅0, 
7⋅3) 

6⋅1 (6⋅0, 
6⋅2) 

0⋅6 95⋅0  

5000 6⋅0 6⋅0 (5⋅2, 
6⋅9) 

6⋅9 (5⋅2, 
8⋅6) 

8⋅8 93⋅0 

II 1000 6⋅0 7⋅3 (5⋅5, 
10⋅6) 

7⋅5 (7⋅1, 
7⋅8) 

2⋅3 81⋅0  

2000 6⋅0 6⋅5 (5⋅1, 
7⋅9) 

6⋅5 (6⋅4, 
6⋅6) 

0⋅8 90⋅0  

5000 6⋅0 6⋅2 (5⋅4, 
6⋅9) 

6⋅2 (6⋅1, 
6⋅3) 

0⋅4 93⋅0 

III 1000 6⋅0 6⋅4 (4⋅4, 
11⋅4) 

6⋅6 (6⋅3, 
6⋅9) 

1⋅7 94⋅0  

2000 6⋅0 6⋅0 (4⋅7, 
7⋅4) 

6⋅0 (5⋅9, 
6⋅1) 

0⋅7 93⋅0  

5000 6⋅0 5⋅9 (5⋅2, 
6⋅7) 

5⋅9 (5⋅9, 
6⋅0) 

0⋅4 95⋅0 

IV 1000 6⋅0 6⋅7 (4⋅7, 
9⋅5) 

6⋅8 (6⋅5, 
7⋅1) 

1⋅6 93⋅0  

2000 6⋅0 6⋅2 (4⋅8, 
7⋅7) 

6⋅3 (6⋅1, 
6⋅4) 

0⋅7 93⋅0  

5000 6⋅0 6⋅1 (5⋅3, 
6⋅9) 

6⋅1 (6⋅0, 
6⋅2) 

0⋅4 94⋅0     

Three diagnostic tests 

Model N True 
value 

Median 
(95% RI) 

Mean 
(95% CI) 

RMSEx100 Coverage 

I 1000 6⋅0 5⋅7 (3⋅0, 
16⋅2) 

6⋅6 (5⋅9, 
7⋅3) 

3⋅4 96⋅0  

2000 6⋅0 6⋅1 (4⋅0, 
13⋅1) 

6⋅6 (6⋅2, 
7⋅1) 

2⋅4 98⋅0  

5000 6⋅0 6⋅7 (4⋅4, 
12⋅7) 

7⋅3 (6⋅8, 
7⋅7) 

2⋅4 94⋅0 

II 1000 6⋅0 23⋅1 (7⋅0, 
39⋅8) 

23⋅4 
(21⋅7, 
25⋅1) 

19⋅4 17⋅0  

2000 6⋅0 23⋅0 (14⋅6, 
37⋅3) 

24⋅0 
(22⋅8, 
25⋅2) 

19⋅0 0⋅0  

5000 6⋅0 25⋅5 (18⋅7, 
36⋅3) 

26⋅1 
(24⋅8, 
27⋅4) 

21⋅2 0⋅0 

III 1000 6⋅0 4⋅9 (2⋅7, 
12⋅9) 

5⋅3 (4⋅8, 
5⋅8) 

2⋅5 94⋅0  

2000 6⋅0 5⋅0 (3⋅2, 
8⋅5) 

5⋅3 (5⋅0, 
5⋅5) 

1⋅6 98⋅0  

5000 6⋅0 5⋅6 (3⋅8, 
10⋅5) 

5⋅9 (5⋅6, 
6⋅2) 

1⋅6 92⋅0 

IV 1000 6⋅0 5⋅1 (2⋅9, 
15⋅2) 

5⋅7 (5⋅1, 
6⋅4) 

3⋅2 96⋅0  

2000 6⋅0 5⋅4 (3⋅5, 
8⋅0) 

5⋅5 (5⋅2, 
5⋅7) 

1⋅3 99⋅0  

5000 6⋅0 5⋅6 (4⋅1, 
8⋅2) 

5⋅7 (5⋅4, 
5⋅9) 

1⋅2 95⋅0 

N – Sample size. 
RI – Reference Intervals and was calculated as the 2⋅5% and 97⋅5% percentiles of 
the distribution of median estimates of the posterior distributions from the one 
hundred replicate datasets. 
CI – Confidence Intervals. 
RMSE – Root Mean Square Error. 
Five diagnostic tests: any PTB symptom, CAD4TB, CRP, culture and Xpert MTB/ 
RIF. 
Three diagnostic tests: any PTB symptom, CAD4TB and Xpert MTB/RIF. 
Model I – Model restricting PTB prevalence and the diagnostic test accuracy to 
remain constant across the HIV subpopulations. 
Model II – Model allowing PTB prevalence but not the diagnostic test accuracy to 
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produced consistent estimates of the total population PTB prevalence. 
There was evidence of some systematic bias for smaller sample size. The 
model assuming heterogeneity in PTB prevalence but constant diag
nostic accuracy across the subpopulations yielded systematically biased 
but consistent estimates of total population PTB prevalence. 

In the evaluation of three diagnostic tests, working models I and II 
yielded systematically biased estimates of the total population PTB 
prevalence. Model II yielded large RMSE and poor coverages of 95% CrI. 
Working models III and IV yielded consistent estimates of total popu
lation PTB prevalence with modest systematic bias. 

5.2. Sensitivity and specificity of the diagnostic tests 

5.2.1. Evaluation of five diagnostic tests 
Fig. 2 presents the estimates of sensitivity and specificity for five 

diagnostic tests analyzed using working models I and II. The models 
produced asymptotically consistent estimates of the total population 
sensitivity and specificity with small systematic bias. The RMSE were 
good with acceptable coverages of the 95% credible intervals (95% CrI). 
Working model II, however, yielded estimates of sensitivity for CRP that 
were different from the true value with tendency towards the mean of 
prior distribution. 

Fig. 3 presents the estimates of sensitivity and specificity by HIV 
status for five diagnostic tests evaluated using working model IV (true 
model). The model yielded estimates of sensitivity that matched the true 
values. The estimates of sensitivity among the HIV− were skewed in the 
direction of the prior. There was no evidence of serious systematic bias 

vary across the HIV subpopulations. 
Model III – Model restricting PTB prevalence but not the diagnostic test accuracy 
to remain constant across the HIV subpopulations. 
Model IV – Model allowing PTB prevalence and the diagnostic test accuracy to 
vary across the HIV subpopulations. 

Fig. 2. Median (95% reference intervals (RI)) and mean (95% confidence intervals (CI)) estimates of total population sensitivity (left) and specificity (right) with 
corresponding root mean squared error (RMSE) and coverages of 95% credible intervals (CrI) for true total population sensitivity and specificity for five diagnostic 
tests evaluated using working model I (top panel) and working model II (lower panel) – Working model I restricts the diagnostic test accuracy and disease prevalence 
to remain constant across the HIV subpopulations, Working model II restricts the diagnostic test accuracy to remain constant but allows the disease prevalence to vary 
across the HIV subpopulations. 
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in the estimates of specificity. Similar findings were obtained using 
working model III (Fig. B.1 in Appendix B). 

5.2.2. Evaluation of three diagnostic tests 
Fig. 4 shows the estimates of sensitivity and specificity by HIV status 

for three diagnostic tests evaluated using working model IV (true 
model). 

The estimates of sensitivity and specificity indicate some systematic 
bias. Similar findings were obtained using working model III (Fig. B.3 in 
Appendix B). Fig. B.2 in Appendix B shows the estimates of sensitivity 
and specificity for three diagnostic tests analyzed using working models 
I & II. 

6. Discussion 

Our aim was to investigate implications of violation of model as
sumptions induced by an observed external covariate that is associated 
with diagnostic test accuracy and risk of the targeted disease. We 

assessed some likely model violations on estimation of total population 
prevalence of the disease, sensitivity and specificity. We supported our 
results with finite sample simulations mimicking a setting of passive 
case-finding among presumptive pulmonary tuberculosis (PTB) patients 
with or without HIV. Based on realistic sensitivities and specificities of 
five diagnostic tests used for PTB, we simulated independent test results 
in samples of various sizes with different PTB prevalence within the HIV 
subpopulations. Due to instability of the estimates with small sample 
size, we endeavored to be as realistic as possible by choosing different 
sample sizes (1000, 2000, 5000) to help us evaluate the performance of 
LCA when the number of true PTB cases is as low as 60 (20 in the HIV+
and 40 in the HIV− subpopulations) when N = 1000 and when it is as 
high as 300 (100 in the HIV+ and 200 in the HIV− subpopulations) 
when N = 5000 with 6% overall TB prevalence (5% in HIV− and 10% 
HIV+). For five and three diagnostic tests, we performed Bayesian LCA 
using four working models assuming constant (or varying) PTB preva
lence and diagnostic test accuracy across the HIV subpopulations. We 
have shown that in the analysis of five and three diagnostic tests the 

Fig. 3. Median (95% reference intervals (RI)) and mean (95% confidence intervals (CI)) estimates of sensitivity (left) and specificity (right) for HIV+ (top panel) and 
HIV− (lower panel) with corresponding root mean squared error (RMSE) and coverages of 95% credible intervals (CrI) for true sensitivity and specificity for five 
diagnostic tests evaluated using the model allowing the diagnostic test accuracy and disease prevalence to vary across the HIV subpopulations (working model IV). 
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model ignoring heterogeneity in diagnostic test accuracy but allowing 
the prevalence of PTB to vary across the subpopulations (working model 
II) produced systematically biased estimates of total population PTB 
prevalence and diagnostic test accuracy. However, the models ac
counting for heterogeneity in diagnostic test accuracy across the sub
populations (working models III and IV) yielded consistent estimates 
with modest systematic bias. 

Working models I and II violated the assumption of conditional in
dependence when the diagnostic test accuracy was restricted to remain 
constant. When used to evaluate five diagnostic tests, working model I 
appeared robust to violation of the assumption of conditional indepen
dence. Working model II yielded systematically biased but consistent 
estimates. Working models III and IV produced consistent estimates of 
total population PTB prevalence and modestly biased estimates of 
sensitivity with greater uncertainty. The specificity estimates matched 
the true values while the sensitivity estimates were skewed in the di
rection of the prior in the HIV− subpopulation. With small sample size 
(few cases with PTB) Bayesian estimation is driven more by the prior 

rather than the likelihood. This finding emphasizes the need to carefully 
choose the prior distribution as alluded to by others [33–35]. An addi
tional analysis evaluating three diagnostic tests using the same working 
models but different priors revealed the unavoidable dependency of the 
results on the (informative) prior (Table B.1 and Figs. B.4 – B.6 in Ap
pendix B). In our analyses we chose prior distributions that reflected the 
degree of confidence in the performance of the diagnostic tests and the 
general understanding about the prevalence of the disease rather than 
knowledge of the actual estimate. This was intentional to avoid 
presuming knowledge of the performance of the diagnostic tests given 
the lack of a gold standard. 

In the analysis of three diagnostic tests, working models I and II 
yielded systematically biased estimates of total population PTB preva
lence. The models also produced systematically biased and highly un
stable estimates of total population sensitivity. Thus, Bayesian LCA with 
fewer diagnostic tests that violate the assumption of constant diagnostic 
test accuracy across the underlying subpopulations may suffer from 
limited information that contribute to bias as established by others 

Fig. 4. Median (95% reference intervals (RI)) and mean (95% confidence intervals (CI)) estimates of sensitivity (left) and specificity (right) for HIV+ (top panel) and 
HIV− (lower panel) with corresponding root mean squared error (RMSE) and coverages of 95% credible intervals (CrI) for true sensitivity and specificity for three 
diagnostic tests evaluated using the model allowing the diagnostic test accuracy and disease prevalence to vary across the HIV subpopulations (working model IV). 
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[20,33,34,36]. Using working models III and IV demonstrated modest 
bias in the sensitivity but reliable estimates of specificity. Failure to 
account for varying disease prevalence in working model III did not 
noticeably impact the estimates of diagnostic test accuracy. 

Residual dependence induced by a measured covariate remains even 
after conditioning analysis on the latent disease status. This leads to 
incorrect inferences. Potential remedies to such problems in real studies 
was evaluated through simulations. Though not applied to real dataset, 
this may not be viewed as a weakness of the study but should serve as a 
guide to experts intending to apply LCA to carefully consider plausibility 
of the model, especially in TB where severe comorbidities are known to 
affect diagnostic test performance. LCA uses all the available imperfect 
diagnostic tests, including symptoms, to determine the likelihood of the 
presence of PTB for an individual. Therefore, incorrectly specified model 
not only yields biased inferences for diagnostic test accuracy and disease 
prevalence but also contributes to incorrect diagnosis and treatment of 
cases. This has serious implications in terms of allocation of resources, 
unnecessary harm to individuals without the disease, and onward 
transmission of infectious disease by those missed due to incorrect 
diagnosis. Our approach reveals the need for a rigorous process that 
involves experts in the field of study. Besides their knowledge on the 
diagnostic tests known to be dependent conditional on the (unknown) 
disease status, their input regarding potential covariates that affect the 
disease prevalence as well as the diagnostic test accuracy can be har
nessed and incorporated into the model. In addition, correct statistical 
methods can be used to evaluate the importance of the proposed cova
riates in influencing disease prevalence and the diagnostic test accuracy. 
All these ideas put together should yield a plausible model that best 
explains the diagnostic accuracy of the tests and the prevalence of the 
disease. 

7. Conclusion 

In the presence of measured covariates known to affect the diag
nostic accuracy and disease prevalence, experts should avoid the model 
that allows the disease prevalence to vary but restricts the diagnostic test 
sensitivity and specificity to remain constant across the different sub
populations. This model yield severely biased estimates of PTB preva
lence and diagnostic test accuracy. The model that allows the disease 
prevalence to remain constant but allows the diagnostic test sensitivity 
and specificity to vary across the different subpopulations yields correct 
estimates of overall disease prevalence (averaged across the different 
subpopulations) and the subpopulation specific estimates of sensitivity 
and specificity. The model that allows disease prevalence and diagnostic 
test sensitivity and specificity to vary across the different subpopulations 
defined by the covariates known to induce test dependence should be 
applied. When the interest is also to understand the drivers of disease 
prevalence then this model should be applied. In the absence of 
measured covariates or when the conditions do not allow adjusting for 
covariates due to small sample size (or few PTB cases), the model that 
allows the disease prevalence and the diagnostic test sensitivity and 
specificity to remain constant across the different subpopulations can be 
applied since it would yield less biased estimates. 

In light of these findings, we recommend diagnostic studies to be as 
inclusive as possible in collecting important covariates known to influ
ence diagnostic test performance e.g HIV status, history of TB treatment, 
miners etc. Because of the obvious concerns regarding imperfect refer
ence standard, correctly specified latent class model should be used to 
evaluate new diagnostic tests as well as determine disease prevalence. 
Interpretation of results based on small sample sizes should be done 
carefully since they may lack precision. We saw a potential influence of 
the prior distribution on the posterior estimates of sensitivity attributed 
to small sample size. Therefore, correct choice of the prior for modelling 
uncertainty in diagnostic test sensitivity and prevalence is imperative, 
particularly for few diagnostic tests or small sample sizes. Different ex
perts have applied different latent class models, some adjusting for 

measured covariates and others failing to do so. Therefore, following 
robust model evaluation, our work provides an invaluable guidance on 
the correct approach for analysis of imperfect diagnostic tests in the 
presence of a measured covariate that affects the prevalence of the 
disease and/or diagnostic accuracy of the tests. Thus our findings 
complement the findings of the already published work [37]. Future 
research should look into predictive models that can promptly give 
correct diagnosis for an individual based on clinical history, diagnostic 
test results and measured covariates. 
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upon request. 
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