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ABSTRACT
Secretory granules (SGs) are organelles responsible for regulated exocytosis of biologically active 
molecules in professional secretory cells. Maturation of SGs is a crucial process in which cargoes of 
SGs are processed and activated, allowing them to exert their function upon secretion. 
Nonetheless, the intracellular trafficking pathways required for SG maturation are not well 
defined. We recently performed an RNA interference (RNAi) screen in Drosophila larval salivary 
glands to identify trafficking components needed for SG maturation. From the screen, we 
identified several Rab GTPases (Rabs) that affect SG maturation. Expression of constitutively active 
(CA) and dominant-negative (DN) forms narrowed down the Rabs important for this process to 
Rab5, Rab9 and Rab11. However, none of these Rabs localizes to the limiting membrane of SGs. In 
contrast, examination of endogenously YFP-tagged Rabs (YRabs) in larval salivary glands revealed 
that YRab1 and YRab6 localize to the limiting membrane of immature SGs (iSGs) and SGs. These 
findings provide new insights into how Rab GTPases contribute to the process of SG maturation.
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Introduction

Regulated secretion is a fundamentally important pro-
cess in animal physiology. SGs are organelles responsi-
ble for storage, processing, and release of biologically 
active molecules that regulate homeostasis. Biogenesis 
of SGs starts at the endoplasmic reticulum (ER), where 
SG cargo proteins are synthesized. These cargo proteins 
are then trafficked through the Golgi and concentrated 
at the trans-Golgi network (TGN). iSGs bud from the 
TGN through cargo aggregation and the help of coat 
and adapter proteins. Maturation of iSGs takes place 
through homotypic fusion and remodeling, which 
ensure proper packaging and processing of cargoes as 
well as removal of unneeded material. Thus, proper 
maturation of iSGs is required for the activity of 
cargo proteins following exocytosis. However, the intra-
cellular trafficking machinery required for SG matura-
tion is not well understood.

The larval salivary glands of Drosophila melanogaster 
are a highly accessible genetic model system for study-
ing SG biogenesis [1–4]. Salivary glands begin produc-
tion of adhesive mucin-like glue proteins 24 h after 
entering the third instar larval (L3) stage. The glue 
proteins are packaged into SGs known as glue granules. 

These SGs mature over the next 18 h and are released 
in response to a pulse of the steroid hormone ecdysone 
to adhere the larvae onto a solid surface for pupariation 
and metamorphosis [1,2]. Mature SGs are 2- to 4-fold 
larger in cross-sectional surface area than iSGs, allow-
ing a visual screen for genes required for proper SG 
maturation using the fluorescently tagged cargo protein 
Sgs3.

Materials and methods

Fly genetics

Flies were raised on standard cornmeal molasses agar at 
25°C [5]. The following stocks were acquired from 
Bloomington Drosophila Stock Center (BDSC; stock 
numbers are listed): UAS-Rab5 RNAi (#34832, P 
{TRiP.JF03335}attP2); UAS-Rab6 RNAi (#27490, P 
{TRiP.JF02640}attP2); UAS-Rab11 RNAi #1 (#27730, 
P{TRiP.JF02812}attP2); UAS-Rab11 RNAi #2 (#42709, 
P{UAS-Rab11.dsRNA.WIZ}F3-B), UAS-RabX6 RNAi 
(#26281, P{TRiP.JF02050}attP2); UAS-YFP-Rab5CA 

(#9774, P{UASp-YFP.Rab5.Q88L}); UAS-YFP-Rab5DN 

(#9771, P{UASp-YFP.Rab5.S43N}); UAS-YFP-Rab6CA 

(#9776, P{UASp-YFP.Rab6.Q71L}); UAS-YFP-Rab6DN 
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(#23249, P{UASp-YFP.Rab6.T26N}); UAS-YFP-Rab9CA 

(#9785, P{UASp-YFP.Rab9.Q71L}); UAS-YFP-Rab9DN 

(#23643, P{UASp-YFP.Rab9.S26N}); UAS-YFP- 
Rab11CA (#9791, P{UASp-YFP.Rab11.Q70L}); UAS- 
YFP-Rab11DN (#9792, P{UASp-YFP.Rab11.S25N}); 
UAS-YFP-Rab32CA (#9816, P{UASp-YFP.Rab32. 
Q79L}); UAS-YFP-Rab32DN (#23281, P{UASp-YFP. 
Rab32.T33N}); UAS-YFP-RabX6CA (#23646, P{UASp- 
YFP.RabX6.M69L}); UAS-YFP-RabX6DN (#9856, P 
{UASp-YFP.Rab6.S22N}); AB1-GAL4 (#1824, P{GawB} 
AB1-GAL4). Endogenously tagged YRab lines from 
BDSC included YRab1 (#62539 {TI{TI}Rab1EYFP}); 
YRab6 (#62544, {TI{TI}Rab6EYFP}); and additional 
stocks from the BDSC YRab collection (https://bdsc. 
indiana.edu/stocks/gfp/rab_eyfp.html). Sgs3-DsRed 
under control of the Sgs3 promoter (P{w+, Sgs3- 
DsRed}) was a gift from A. Andres (Costantino et al., 
[6]; University of Nevada, Las Vegas, NV, USA). All 
UAS lines were expressed in salivary gland cells under 
control of the AB1-GAL4 driver.

Live microscopy

Salivary glands were dissected from late L3 larvae in 
50 µL Drosophila Ringer’s solution (10 mM Tris, 
182 mM KCl, 46 mM NaCl, 3 mM CaCl2 · 2H2O, 
PH 7.2) using fine forceps. Dissected salivary glands 
were mounted in 8 µL Drosophila Ringer’s solution 
using self-adhesive reinforcement labels (Avery 
#32203, USA) as spacers and sealed with nail polish. 
Samples were imaged using a Quorum spinning disc 
confocal coupled with an Olympus IX81 microscope 
(Quorum Technologies Inc., Canada). Images were 
acquired using a 60X oil objective (NA 1.4) and 
Volocity 6.3 (PerkinElmer, USA) software. Serial 
optical sections were acquired at an interval of 
0.3 µm for a total of 20–30 µm. Images were adjusted 
for brightness and contrast using Adobe Photoshop 
Creative Cloud (Adobe, USA).

Results

We previously performed a candidate RNAi screen 
to identify trafficking genes that regulate SG 
maturation [7]. Transgenic RNAi lines expressing 
short hairpin RNAs targeting each of the 
Drosophila Rabs were included in the screen, and 
we identified several Rab GTPases that are required 
for normal SG maturation. RNAi lines targeting 
Rab5, Rab6, Rab11 or RabX6 resulted in SGs 
of reduced size when compared to controls 
(Figure 1a). To confirm that these Rabs play roles 
in SG maturation and to examine their localization, 

we overexpressed YFP-tagged CA and DN forms of 
these Rabs in larval salivary glands (Figure 1b,C). In 
addition to Rab5, Rab6, Rab11 and RabX6, we also 
overexpressed CA and DN forms of Rab9 and 
Rab32. Rab9 was chosen because our previous 
results had suggested that retrograde trafficking 
from late endosomes (LEs) might be important for 
SG maturation [3]. Rab32 was evaluated because we 
suspected that SGs in the larval salivary glands 
might share trafficking machinery with lysosome- 
related organelles [8]. Overexpression of Rab5CA, 
Rab5DN, and Rab11CA all resulted in smaller SGs, 
indicating impaired SG maturation. Rab5CA loca-
lized to puncta resembling endosomes, whereas 
Rab5DN weakly localized around SGs and concen-
trated strongly in crescents around SGs. Although 
overexpression of Rab11CA reduced SG size, 
Rab11CA fluorescence was too weak to reveal its 
localization. Overexpression of Rab9CA and 
Rab11DN also disrupted SG maturation, as SGs 
were reduced in size. In RabCA overexpressing 
cells, there were small (cyan arrowhead, large 
inset) and large (magenta arrowhead, large inset) 
round compartments that had weak Sgs3-DsRed 
signal and were often labeled by Rab9CA. Rab11DN 

overexpressing cells also exhibited small and large 
compartments containing weak or no Sgs3-DsRed, 
but Rab11DN was absent from the large compart-
ments, suggesting these might be aberrant LEs. 
Although overexpression of Rab32DN had little effect 
on SG maturation, Rab32DN decorated SGs in 
a manner similar to Rab5DN.

To evaluate the localization of Rab GTPases with-
out overexpression, we examined 23 out of 27 lines 
expressing endogenously YFP-tagged Rabs (YRabs) 
[9]. The other four lines (YRab14, YRab26, YRab27, 
YRabX4) were omitted because salivary gland 
expression of these YRabs was undetectable by 
immunoblotting and fluorescence microscopy [9]. 
Most of the YRabs did not localize to SGs or had 
low expression levels (Figure 2a). The fluorescence 
intensity of many YRabs was lower than previously 
reported [9] because we had to cross the YRab lines 
with flies expressing Sgs3-DsRed, and the resulting 
offspring contained only one copy of the YRab allele. 
Out of the 23 YRabs tested, YRab1 and YRab6 loca-
lized to SGs. YRab1 localized to the limiting mem-
brane of iSGs and SGs during early and late stages 
of SG development, respectively (Figure 2b). YRab6 
also localized to the limiting membrane of iSGs and 
SGs (Figure 2c). In addition, YRab6 appeared to 
localize more strongly to SG membranes than 
YRab1.
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Discussion

Rabs regulate intracellular trafficking between orga-
nelles and are important for maintaining organelle 
identity [10]. Several Rabs are necessary for normal 
SG function in cultured cell lines derived from profes-
sional secretory cells. Rab3 and Rab27 have roles in 
tethering and docking of SGs at the PM for exocytosis 
[11–17]. Other Rab GTPases involved in this process 
include Rab11 and Rab37, but their roles are not as well 
defined [18–23]. In this study, we identified Rabs that 
associate with SGs and those that regulate SG matura-
tion in the Drosophila larval salivary gland. Based on 
our results, it appears that Rab5, Rab6, Rab9 and Rab11 
play important roles in SG maturation.

From our RNAi experiments, cells expressing Rab5, 
Rab6, and Rab11 RNAi not only exhibited small SGs 
but also appeared to have smaller cell size when com-
pared to controls. Rab5, Rab6, and Rab11 are important 
for intracellular trafficking and a decrease in their 

expression level could affect signaling of receptors 
involved in cell growth [24,25]. Moreover, these Rabs 
can also regulate autophagy and thus affect cell growth 
and size when knocked down [26–30].

Rab5 is required for normal SG maturation and size 
in mast cells [31]. In addition, depleting Rab5 with 
RNAi inhibits SNAP23-mediated homotypic fusion of 
SGs during compound secretion [32]. Our previous 
study suggested that Rab5-dependent early endosome 
(EE) sorting is needed for SG maturation [7]. Here, we 
demonstrate that overexpressing Rab5CA or Rab5DN 

impaired SG maturation and that Rab5CA localized to 
puncta resembling EEs, whereas Rab5DN localized to 
the periphery of SGs. This further confirms Rab5- 
mediated sorting is important for normal SG matura-
tion and suggests that Rab5 may cycle between EE and 
SG when it is GTP-bound or GDP-bound. Although 
YFP-Rab32DN localized to the periphery of SGs in a 
manner similar to YFP-Rab5DN, endogenous Rab32 has 
low transcript expression [33,34], and YRab32 protein 

Figure 1. Rab GTPases needed for SG maturation.
(A-B) Spinning-disc confocal images of live L3 salivary gland cells. (A) Cells expressing the glue granule marker Sgs3-DsRed (gray) in different 
RNAi backgrounds. (B) Cells expressing Sgs3-DsRed (red) with YFP fusions to CA or DN forms of different Rabs (green). Region marked by 
yellow dashed box (magnified two-fold in large inset) shows examples of small and large YFP-Rab9CA-postive compartments containing low 
levels of Sgs3-DsRed (labeled by cyan and magenta arrowheads, respectively). Regions marked by white dashed boxes are magnified 1.67- 
fold in insets. (C) Table summarizing phenotypes observed for larval salivary gland cells expressing CA or DN forms of different YFP-Rabs. 
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expression is not detectable in larval salivary glands [9]. 
Thus, Rab32 is unlikely to participate in SG biogenesis 
in this tissue.

Although Rab6 RNAi led to a defect in SG 
maturation, expression of Rab6CA and Rab6DN had 
no effect. According to both our data on YRab6 and 
the original characterization of YRab lines by Dunst 
et al., Drosophila larval salivary glands have a very 
strong expression of Rab6 [9]. It is likely that 
expression of Rab6CA and Rab6DN was not high 
enough to outcompete endogenous Rab6 and gen-
erate a phenotype.

Expression of Rab9DN, Rab11CA or Rab11DN inhib-
ited SG maturation. Although these Rabs do not have 

clear association with SGs, impairing Rab9-mediated LE 
to Golgi retrograde trafficking [35] or Rab11-mediated 
recycling endosome to Golgi retrograde trafficking 
[36,37] is likely detrimental for this process. Together 
with the data on Rab5, this suggests that multiple 
retrograde pathways are needed for normal SG matura-
tion. Our previous characterization of PI4KII null 
mutants, which show defects in SG maturation, further 
supports this observation, as both EE and LE sorting 
defects were observed [3,7]. Moreover, our genetic 
screen identified multiple retrograde trafficking factors, 
including subunits of Golgi-associated retrograde pro-
tein complex, Past1/EHD1, Arl1, Snx3, Vps13, Lqfr/ 
Epsin-2, and Syx16 [7].

Figure 2. Rab1 and Rab6 decorate limited membranes of SGs.
(A) Table summarizing fluorescence intensity and distribution of different YRabs in relation to Sgs3-DsRed. (B-C) Spinning-disc confocal 
images of live L3 salivary gland cells expressing Sgs3-DsRed (red) together with endogenously tagged YRabs. (B) Early (left) or late (right) 
stage salivary gland cells expressing YRab1 (green). (C) Early (left) or late (right) stage salivary gland cells expressing YRab6. Marked regions 
are magnified 1.67-fold in insets. 
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Examination of endogenously tagged YRabs in the 
salivary gland revealed that YRab1 and YRab6 are 
associated with SGs. Both Rab1 and Rab6 localize to 
the Golgi. Rab1 is needed for ER to Golgi trafficking, 
whereas Rab6 is important for trafficking between 
Golgi cisternae, Golgi and TGN, and endosomes and 
TGN [38–40]. Our observation that Rab1 localizes to 
SGs is novel, as Rab1 has previously been shown to 
localize to the Golgi and to ER exit sites in Drosophila 
[41,42]. On the other hand, our observations are 
consistent with studies showing the association of 
Rab6 with secretory granules in other systems. For 
example, Rab6 associates with zymogen granules from 
pancreas, atrial granules from atrial myocytes, and 
SGs from Toxoplasma gondii [43–45]. Rab1 RNAi 
did not disrupt SG maturation, but this could be the 
result of inefficient knockdown. On the other hand, 
Rab6 is clearly involved in SG maturation. Because 
Rab6 has multiple roles in intracellular trafficking, 
additional experiments are needed to clarify how 
Rab6 contributes to this process.

In conclusion, our results provide evidence that 
multiple Rab-dependent retrograde trafficking path-
ways from endosomal compartments are required for 
normal SG maturation, as knockdowns of Rab5, Rab9 
and Rab11 disrupted this process. Furthermore, Golgi- 
localized Rab1 and Rab6 associate with the limiting 
membrane of SGs, and Rab6 might also contribute to 
trafficking between endosomes and TGN. In the future, 
it will be of interest to uncover the mechanism by 
which these Rabs regulate SG maturation in larval 
salivary glands and other systems.
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