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Nephrectomy Does not Exacerbate 
Cancellous Bone loss in Thalassemic 
Mice
Sutada Lotinun   1,2 ✉, Korakot Atjanasuppat2, Jutatip Limsuvech2, Asada Leelahavanichkul3, 
Saovaros Svasti   4 & Nateetip Krishnamra5

Patients with β-thalassemia have an increased risk of developing chronic kidney disease which is 
associated with osteoporosis and periodontitis. The purpose of this study was to evaluate mandibular 
and femoral bone change in heterozygous β-globin knockout (BKO) mice following 5/6 nephrectomy 
(Nx). Female and male BKO mouse blood smears demonstrated microcytic hypochromic anemia. 
Serum urea nitrogen, creatinine, calcium, and phosphorus levels were not changed in BKO mice. Nx 
increased the serum levels of urea nitrogen in both wild type (WT) and BKO mice and the level was much 
higher in BKO males. Serum level of creatinine was increased in Nx WT but not BKO mice. However, 
serum calcium and phosphorus levels were not altered. Nx induced comparable renal fibrosis in BKO 
mice and WT controls. Bone loss was observed in mandibular cancellous bone but not cortical bone of 
both male and female BKO mice. Nx decreased cancellous bone volume and cortical thickness in WT. 
Interestingly, BKO mice were resistant to Nx-induced cancellous bone loss. However, cortical thickness 
and cortical bone mineral density were reduced in Nx male BKO mice. Nx increased mRNA levels of 
type I collagen, Osx and Trap in WT but not BKO mice. Similarly, Nx reduced cancellous bone volume in 
femurs and increased osteoblast number and osteoclast number in WT not BKO mice. Serum FGF23 and 
erythropoietin levels were markedly increased in BKO mice. Nx decreased serum erythropoietin but not 
FGF23 levels. Since WT treated with erythropoietin exhibited a significant reduction in cancellous bone 
volume, it was possible that lower level of erythropoietin in Nx BKO mice prevented the Nx-induced 
cancellous bone loss.

β-thalassemia is an inherited disorder of hemoglobin synthesis in which point mutations of the β-globin gene 
cause defective β-chain production leading to an imbalance in α- and β-globin chain synthesis. β-thalassemia is 
characterized by ineffective erythropoiesis, hemolysis, splenomegaly, iron overload, anemia, growth retardation, 
frontal bossing with the early signs of abnormal thalassemic facies and skeletal deformity1. Three main forms of 
β-thalassemia, thalassemia major, thalassemia intermedia, and thalassemia minor, are classified according to 
severity of the disease1. Patients with β-thalassemia major present in the first year of life with profound anemia 
and subsequently require regular blood transfusions and iron chelation therapy for survival and end-organ dam-
age prevention. However, some patients with β-thalassemia intermedia (hemoglobin level 7–10 g/dl) present later 
in life with a milder form of anemia and remain largely transfusion-independent. β-thalassemia minor patients 
or carriers are generally asymptomatic. In β-thalassemia patients, chronic anemia, iron overload from long-term 
blood transfusions, and specific iron chelation therapy are associated with renal impairment.

In the past, renal disease was not a major issue in thalassemia patients because they did not live long enough 
to develop conditions linked to renal dysfunction. Premature early death was apparently caused by severe cardiac 
iron loading from chronic transfusion therapy2,3. Recently, the use of effective chelating agents that can reduce 
the iron burden and its consequences helps to extend patients’ survival. Therefore, renal disease becomes a more 
common occurrence. Approximately 50% of transfusion-independent thalassemia intermedia patients developed 
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glomerular hyperfiltration early in the course of the disease, and 14% of these patients developed proteinuria4. 
Long-term follow-up of these patients showed that 4.7% of thalassemia intermedia patients eventually developed 
end stage renal disease.

End stage renal disease or renal failure is the most advanced stage of chronic kidney disease (CKD) and is 
life-threatening. Patients require either kidney transplant or dialysis for survival. A disturbance in bone metabo-
lism, known as CKD-mineral and bone disorder (CKD-MBD), is a common complication in CKD patients and 
is found to almost all patients who are on dialysis. CKD-MBD causes altered bone remodeling and bone loss 
throughout the skeleton and is associated with increased morbidity and mortality5. These patients have a high risk 
of bone fracture due to their low bone mineral density6.

A strong association between low bone mass or osteoporosis and fractures has been reported in thalassemia 
patients7. However, it is not clear whether the skeletal changes observed are solely associated with thalassemia 
or are caused by other complications. The cellular hypoxia in these patients results in increased erythropoietin 
production, leading to marrow expansion and skeletal deformity8. Erythropoietin administration increased can-
cellous bone loss caused by reduced bone formation and increased bone resorption.

Besides osteoporosis, β-thalassemia major patients have a high risk of developing chronic periodontitis initi-
ated by changes within bacterial biofilm. Periodontitis is an oral infectious disease that affects tissues supporting 
the tooth and destroys periodontal bone leading to mandibular bone loss. Changes in microbe composition or 
systemic inflammation also lead to an imbalance between host and oral microbiota. Chronic periodontitis caused 
by inflammatory reactions to microorganisms in the dental plaque results in the destruction of mandibular alveo-
lar bone. Moreover, periodontal diseases is associated with osteoclast-mediated bone resorption and subsequently 
tooth loss. It has been reported that thalassemia patients with gingival inflammation have a higher RANKL/OPG 
ratio in serum and saliva than individuals with a healthy periodontium9. Increased levels of IL-6 and IL-8 in 
gingival crevicular fluid were also observed. Several studies have reported increases in prevalence and severity of 
periodontal diseases, including gingivitis, and periodontitis in patients with CKD10,11.

The aim of the present study was to evaluate the mechanism by which renal insufficiency affected mandib-
ular and femoral bone in thalassemic mice. We used heterozygous β-globin knockout (βth3/+, BKO) mice as a 
model of thalassemia. Mice were 5/6 nephrectomized (Nx) to induce CKD. Our data demonstrated that nephrec-
tomy (Nx) increased bone turnover resulting in decreased cancellous bone volume and cortical thickness in WT. 
Despite being osteopenic, BKO mice did not exhibit Nx-induced cancellous bone loss and this was possibly due 
to reduced serum erythropoietin level.

Results
BKO mice exhibit microcytic and hypochromic anemia.  Five-month-old female and male sham BKO 
mice experienced similar weight gain as their sham WT controls (Fig. 1A). Nx did not affect body weight in 
either WT or BKO mice. The hematological data of the mice are summarized in Supplementary Table S1–2. The 
hematologic indices of sham BKO mice showed characteristics similar to those of patients with β-thalassemia 
intermedia. Their red blood cells were microcytic and hypochromic, varied in size and shape (anisocytosis and 
poikilocytosis) and had uneven hemoglobin distribution showing target cell appearance as a bull’s eye-shaped 
in the BKO mice (data not shown). In addition, red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), and 
mean corpuscular hemoglobin (MCH) values were lower, whereas red cell distribution width-coefficient of vari-
ation (RDW-CV) and red cell distribution width-standard deviation (RDW-SD) were higher in sham BKO mice 
compared to WT controls of both genders. Moreover, mean corpuscular volume (MCV) was decreased in male 
BKO mice whereas mean corpuscular hemoglobin concentration (MCHC) was reduced in female BKO mice. Nx 
induced anemia in WT controls and BKO mice. RBC and Hb levels were decreased in female Nx WT and BKO 
compared to their corresponding controls. In males, Nx decreased RBC, Hb and Hct levels in WT controls and 
attenuated RBC number in BKO mice. Two-way ANOVA confirmed the effect of BKO and Nx on anemia in both 
genders. However, Nx did not alter MCV, MCH, RDW-CV or RDW-SD in WT controls and BKO mice. MCHC 
was decreased in female Nx BKO mice.

Nx induces renal fibrosis and increases serum urea nitrogen levels in WT and BKO mice.  Renal 
fibrosis is a predictor of an irreversible loss of renal function and progression to end stage renal disease. Sham 
BKO mice did not have renal fibrosis (Fig. 1B). We determined whether 3 months 5/6 Nx induced renal failure in 
WT and BKO mice. As shown in Fig. 1B, Nx resulted in comparable tubulointerstitial fibrosis in BKO mice and 
WT controls, confirming the success of CKD by 5/6 Nx. Thalassemia did not alter the IFTA score, indicating that 
sham BKO mice had normal kidney function. As expected, Nx increased the IFTA score. However, the score was 
similar in Nx WT and BKO mice (Fig. 1C). Thalassemia did not affect serum urea nitrogen, creatinine, calcium 
or phosphorus levels (Fig. 2). In contrast, Nx increased the serum level of urea nitrogen in both WT and BKO 
mice and the level was much higher in BKO males. Serum creatinine was increased in Nx WT controls but not 
BKO mice. However, serum calcium and phosphorus levels were not altered in either Nx WT or Nx BKO mice.

Mandibles of BKO mice exhibit resistance to Nx-induced cancellous bone loss.  Mandibular can-
cellous bone volume was decreased in both female and male sham BKO mice (Fig. 3). The decrease in bone 
volume was due to significant decrease in trabecular thickness in females. Trabecular thickness was also slightly 
reduced in sham BKO males but the change did not reach statistical significance. Consistent with change in bone 
volume, bone mineral density was decreased in both male and female sham BKO mice, indicating osteopenic 
phenotype (Fig. 3). Trabecular number (Fig. 3B) and trabecular separation (data not shown) were not altered in 
BKO mice of either gender. In control, thalassemia had no effect on cortical bone (Fig. 4). Therefore, thalassemia 
induced cancellous bone loss in mandibles of both male and female mice. Nx was found to decrease cancellous 
bone volume and cortical thickness in mandibles of WT females and males (Figs. 3–4). Trabecular thickness was 

https://doi.org/10.1038/s41598-020-64681-2


3Scientific Reports |         (2020) 10:7786  | https://doi.org/10.1038/s41598-020-64681-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

decreased in Nx WT females but not males. In contrast to females, mandibles of male mice exhibited Nx-induced 
decrease in cortical volume. Bone mineral density of cancellous and cortical bone was lowered in Nx WT controls 
of both genders when compared to sham WT. Interestingly, BKO mice were resistant to Nx-induced cancellous 
bone loss. However, cortical bone mineral density was reduced in Nx BKO mice compared to BKO mice in both 
genders. Cortical thickness was decreased in BKO males following Nx.

Nx increases osteoblast and osteoclast marker gene expression in WT but not BKO mandibles.  
The differential gene expression profiles of the mandible in Nx WT and Nx BKO males were compared to their 
corresponding controls (Fig. 5). The qPCR results showed that the expression of osteoblast marker genes, includ-
ing Osx and Ocn was slightly decreased in sham BKO mandibles using one-way ANOVA (p = 0.08, Fig. 5A). 
However, two-way ANOVA indicated that thalassemia led to significant decreases in these osteoblast marker gene 
expression (data not shown). Thalassemia resulted in an approximately 3-fold increase in the Sost mRNA level 
in sham mice. In contrast, Alp, Type I collagen, Dmp 1 and osteoclast marker gene expression did not change in 
sham BKO mice. Nx increased the osteoblast markers, type I collagen and Osx mRNA levels and osteoclast maker 
genes, Trap mRNA level in WT controls (Fig. 5A,B). Other osteoclast markers, including M-CSF and RANKL, 
demonstrated slightly increased expression in Nx WT controls. However, Nfatc1, c-Fms, and RANKL/OPG ratio 

Figure 1.  Nx induces renal fibrosis. (A) Body weight of BKO and WT controls with Nx. (B) Masson’s trichrome 
staining of the kidney from sham WT, sham BKO, Nx WT and Nx BKO. Blue color indicates fibroblast 
accumulation. (C) IFTA score in the kidneys of sham WT, sham BKO, Nx WT and Nx BKO. Results are mean ± 
SEM. ap < 0.05 versus sham WT, and bp < 0.05 versus sham BKO.
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mRNA levels were not altered by Nx. Nx-induced increase in osteoblast and osteoclast marker gene expression 
was not observed in BKO mice. These data demonstrated that Nx increased bone turnover with increases in both 
bone formation and bone resorption in WT but not BKO mice.

Nx-induced cortical, but not cancellous bone loss in femurs of BKO mice.  To determine whether 
the effects of Nx on bone turnover in thalassemic mice were site specific. We examined bone phenotype in femurs 
of male Nx WT and BKO mice. μCT analysis showed a decrease in cancellous bone volume, trabecular num-
ber, cortical thickness, and bone mineral density in both cortical and cancellous bone in sham male BKO mice 
(Fig. 6A–C). Similar to mandibles, Nx induced cancellous and cortical bone loss in WT. Development of CKD 
decreased cortical thickness, and cortical bone volume but did not affect cancellous bone in thalassemic mice. 
Histomorphometric analysis revealed a significant decrease in cancellous bone volume, trabecular thickness, 
and trabecular number with a concomitant increase in trabecular separation in sham BKO mice (Table 1). The 
decrease in cancellous bone volume was due to reduced bone formation rate and osteoblast number without any 
change in osteoclast number. Nx decreased bone volume, trabecular thickness, and trabecular number in WT 
(Table 1). While mineralizing surface was not altered, mineral apposition rate was increased in Nx WT, leading to 
increased bone formation rate. Osteoblast and osteoclast number per tissue area were both increased, indicating 
an increase in bone turnover. All parameters in Nx BKO were not affected when compared to BKO mice.

Decreased erythropoietin but not FGF23 production in Nx BKO mice.  FGF23, a bone-derived 
phosphaturic hormone secreted by osteocytes and osteoblasts, regulates mineral homeostasis. Elevated serum 
FGF23 associated with CKD helped to maintain normal serum phosphate levels. Thalassemia markedly increased 
serum FGF23 levels as observed in sham BKO mice compared to sham WT controls (Fig. 7A). Nx increased 
serum FGF23 by 3.4-fold in WT controls but this change was not statistically significant. Nx BKO mice had sim-
ilar serum FGF23 levels compared to sham BKO mice.

We examine whether Nx affected serum levels of erythropoietin, a hormone released from adult kidney in 
response to cellular hypoxia to stimulate erythropoiesis in bone marrow. BKO mice had much higher serum 
erythropoietin level than WT (Fig. 7B). Nx did not alter the serum level of erythropoietin. Interestingly, the 

Figure 2.  Nx increases serum urea nitrogen levels in both WT and BKO mice. (A) serum urea nitrogen. (B) 
serum creatinine. (C) serum calcium. (D) serum phosphorus. Results are mean ± SEM. ap < 0.05 versus sham 
WT, bp < 0.05 versus sham BKO, and cp < 0.05 versus Nx WT.
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serum level of erythropoietin was decreased in BKO mice following 5/6 Nx when compared to sham BKO mice. 
These data indicated that the observed normal cancellous bone turnover in Nx BKO mice may be due to the lower 
level of serum erythropoietin.

Erythropoietin induced cancellous bone loss in WT.  To examine whether erythropoietin could induce 
cancellous bone loss, WT were injected with either vehicle or erythropoietin. As expected, RBC (8.54 ± 0.36 
vs 12.44 ± 0.54), Hb (12.47 ± 0.55 vs 18.18 ± 0.46), and Hct (39.80 ± 1.53 vs 58.60 ± 1.78) were increased in 

Figure 3.  Nx increases mandibular cancellous bone loss in WT but not BKO mice. (A) μCT images of the 
mandibles from sham WT, sham BKO, Nx WT and Nx BKO. (B) μCT analysis of cancellous bone of the 
mandibles. Results are mean ± SEM. ap < 0.05 versus sham WT, bp < 0.05 versus sham BKO and cp < 0.05 versus 
Nx WT.
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WT treated with erythropoietin. Moreover, μCT analysis showed that erythropoietin significantly decreased 
cancellous bone volume, trabecular number and bone mineral density without having effect on cortical bone 
(Fig. 8A,B). These data confirmed that high serum levels of erythropoietin induced cancellous osteopenia.

Discussion
Patients with either β-thalassemia or CKD have a high prevalence of low bone mass, fractures, and bone pain. 
These patients are also at high risk of dental carries, oral infection and periodontal diseases that lead to man-
dibular alveolar bone loss. Determining the mechanism by which β-thalassemia and CKD induced bone loss is 
important for understanding the pathology of these diseases on bone metabolism and may lead to new targets 
for preventing craniofacial deformities and osteoporosis. The present study utilized BKO mice as a mouse model 
of thalassemia to investigate bone change in thalassemic mice that developed CKD after 5/6 Nx. We showed that 
BKO mice were anemic and had low cancellous bone volume and mineral density in both mandibles and femurs. 
Three months after 5/6 Nx, serum urea nitrogen levels were increased and renal fibrosis was observed, confirming 
the establishment of renal failure. Nx decreased cancellous bone volume and cortical thickness in WT controls. 
The reduction in cancellous bone volume was associated with high bone turnover in both mandibles and femurs. 
However, the cancellous bone of BKO mice which was already low at physiological baseline was not affected by 
Nx. In other words, increased cancellous bone turnover following renal insufficiency was not observed in thalas-
semic mice. The absence of bone response to renal insufficiency was restricted to cancellous bone since Nx still 
decreased mandibular cortical bone mineral density in male and female BKO mice and cortical thickness in male 
BKO mice. Femur cortical thickness and cortical volume were also decreased. The gene expression profiles indi-
cated that Nx-induced increase in osteoblast and osteoclast marker gene expression in mandibles did not occur 
in thalassemic mice. Histomorphometry showed similar bone formation and bone resorption in femurs of Nx 
BKO mice and BKO mice. The serum level of erythropoietin was markedly increased in BKO mice but decreased 
in Nx BKO mice. BKO mice had highly elevated serum FGF23 level but Nx did not have any effect on the serum 
level of FGF23.

Patients with thalassemia have fewer healthy red blood cells, and less Hb and Hct12. MCV and MCH were 
decreased, indicating the unusually small RBC (microcytosis)13. Hypochromic microcytic anemia, smaller 
RBC and decreased Hb, are commonly caused low MCHC in thalassemia. The elevated RDW is associated with 

Figure 4.  Nx induces mandibular cortical bone loss. μCT analysis of cortical bone of the mandibles. Results are 
mean ± SEM. ap < 0.05 versus sham WT, and bp < 0.05 versus sham BKO.
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variation in RBC size (anisocytosis) as observed in these patients. Normal RBC should be approximately the same 
size. Target cells, abnormally shaped RBC with higher cell surface relative to cell volume, are often found in thal-
assemia, hemoglobinopathy and liver disease. Our BKO mice had hematological characteristics similar to those 
of thalassemia patients. RBC, Hb, Hct, MCV, MCH and MCHC were decreased whereas RDW-CV and RDW-SD 
were increased. As expected, Nx induced anemia in both WT and BKO mice. In patients with CKD, anemia 
begins to develop from an early stage of CKD when patients have 20–50% of normal kidney function, worsen as 
CKD progresses. It was suggested that CKD associated anemia results from the inadequate renal production of 
erythropoietin, a hormone that promotes RBC formation in bone marrow14.

Patients with β-thalassemia major have a high incidence of various complications. These complications 
include growth retardation, hypothyroidism, endocrine dysfunction, liver failure, osteoporosis and abnormal 
renal function12,15. Serum urea nitrogen is normally used to assess renal function because it reflects the glomer-
ular filtration rate (GFR). The severity of kidney disease correlates inversely with the GFR. Since BKO mice in 
this study had normal serum urea nitrogen level, they were assured to have normal renal function. Nx, on the 
other hand, increased serum levels of urea nitrogen in WT which was consistent with the previous findings16,17. 
Similarly, Nx-induced increase in serum urea nitrogen was observed in BKO mice but the increase was higher 
than in Nx WT in males. Serum creatinine, a breakdown product of creatine phosphate in muscle and another 
indicator of impaired renal function was higher in Nx sham WT. However, serum creatinine levels in sham BKO 
and Nx BKO mice were similar. The inconsistency between serum levels of creatinine and urea nitrogen in Nx 
BKO mice cannot be explained and needs further investigation. Similar to other reports16, our findings showed 
that Nx did not alter serum levels of calcium or phosphorus.

β-thalassemia major contributes to skeletal deformity, osteopenia and frequent fractures. The pathogenesis of 
the low bone mass in thalassemia patients includes bone marrow expansion caused by extramedullary hemato-
poiesis, endocrine dysfunction and iron overload15. Some studies reported that the reduced osteoblastic activity 
was accompanied by a comparable or even greater increase in bone resorption15. Previous bone histomorphom-
etry study in BKO mice showed that reduction in cancellous bone volume was due to suppressed bone formation 
and increased bone resorption18. However, it has been reported that suboptimally blood-transfused thalassemia 
patients with iron overload had delayed bone maturation, focal osteomalacia and decreased bone formation with-
out evidence of increased bone resorption19,20. In the present study, sham BKO mice had low cancellous bone vol-
ume in the mandibles possibly due to increased Sost mRNA expression without change in osteoclast marker gene 
expression. Sost, a negative regulator of bone formation, is highly expressed in osteocytes but low levels of Sost are 

Figure 5.  Osteoblast and osteoclast marker gene expression are upregulated in mandibles of Nx WT but not 
BKO mice. (A) qPCR analysis of osteoblast marker genes. (B) qPCR analysis of osteoclast marker genes. Results 
are mean ± SEM. ap < 0.05 versus sham WT, bp < 0.05 versus sham BKO, and cp < 0.05 versus Nx WT.
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also detected in osteoblasts, chondrocytes and osteoclasts21,22. Patients with a SOST null mutation have high bone 
mass, a skeletal phenotype similar to Sost−/− mice23,24. The elevated Sost mRNA levels in the present study sug-
gested a decrease in bone formation in sham BKO mice. These data coincide with a clinical report of thalassemia 
patients having high circulating level of SOST which is associated with low bone mineral density25. In addition, 
BKO mice had decreased bone formation rate and osteoblast number with normal osteoclast number in femurs.

Patients with thalassemia have a high prevalence of dental caries, malocclusion, gingivitis and periodontitis 
with susceptibility to infection26,27. Children who suffer from thalassemia have increased levels of periodontitis 
and alveolar bone loss. The mandibular alveolar bone loss is a major consequence of chronic periodontitis. The 
mandibles of patients with thalassemia grow slower and their facial skeletal changes correlate with the severity of 
their anemia28. However, the effects of CKD on mandibular bone remodeling are unresolved. It was reported that 
CKD resulted in significant increases in cancellous bone volume and trabecular thickness and decreases in corti-
cal bone volume and cortical thickness in the mandibles29. Guo Y and coworkers reported a reduction in cortical 

Figure 6.  Femoral cancellous bone loss does not worsen in Nx BKO mice. (A) μCT images of femoral 
cancellous (upper) and cortical bone (lower) from sham WT, sham BKO, Nx WT and Nx BKO. (B) μCT analysis 
of cancellous bone of the femurs. (C) μCT analysis of cortical bone of the femurs. Results are mean ± SEM. 
ap < 0.05 versus sham WT, bp < 0.05 versus sham BKO and cp < 0.05 versus Nx WT.
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thickness without any change in cancellous bone16. Our results demonstrated that WT with progressive CKD had 
a mandibular phenotype consistent with clinical periodontal disease. Specifically, Nx WT showed a significantly 
lower mandibular cancellous bone volume, cortical thickness and bone mineral density in the region of the first 
molar compared to sham WT. The decrease in bone mineral density was observed in both cancellous and cortical 
bone. The mRNA expression of type I collagen, Osx and Trap were increased, indicating increased bone turnover 

Parameters

Sham Nx Two-way ANOVA

WT BKO WT BKO

BKO Nx Interaction(n = 5) (n = 6) (n = 6) (n = 7)

BV/TV (%) 15.47 ± 1.08 9.22 ± 0.90a 10.29 ± 0.68a 7.71 ± 0.64ac p < 0.05 p < 0.05 p < 0.05

Tb.Th (μm) 43.38 ± 2.03 34.95 ± 2.12a 36.32 ± 2.29a 34.70 ± 0.86a p < 0.05 NS NS

Tb.N (/mm) 3.55 ± 0.11 2.63 ± 0.21a 2.88 ± 0.22a 2.20 ± 0.14ac p < 0.05 p < 0.05 NS

Tb.Sp (μm) 239 ± 11 358 ± 33a 322 ± 27 432 ± 35ac p < 0.05 p < 0.05 NS

MS/BS (%) 23.64 ± 3.13 15.53 ± 1.61 30.45 ± 1.48b 17.58 ± 3.48c p < 0.05 NS NS

MAR (μm/day) 0.97 ± 0.02 0.93 ± 0.04 1.23 ± 0.11ab 0.78 ± 0.03ac p < 0.05 NS p < 0.05

BFR/TV (%/year) 63.28 ± 7.46 29.64 ± 4.31a 80.70 ± 3.36ab 25.04 ± 5.41ac p < 0.05 NS p < 0.05

N.Ob/T.Ar (/mm2) 44.41 ± 4.01 17.02 ± 2.99a 65.51 ± 6.64ab 20.10 ± 2.22ac p < 0.05 p < 0.05 p < 0.05

N.Oc/T.Ar (/mm2) 1.99 ± 0.43 1.67 ± 0.24 4.05 ± 0.75ab 1.16 ± 0.38c p < 0.05 NS p < 0.05

Table 1.  Histomorphometric analysis of femurs in BKO mice and WT controls with Nx. ap < 0.05 compared to 
sham WT, One-way ANOVA followed by Fisher’s PLSD. bp < 0.05 compared to sham BKO. cp < 0.05 compared 
to Nx WT.

Figure 7.  Nx decreases serum erythropoietin but not FGF23 level in BKO mice. (A) serum FGF23. (B) serum 
erythropoietin. Results are mean ± SEM. ap < 0.05 versus sham WT, bp < 0.05 versus sham BKO, and cp < 0.05 
versus Nx WT.
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in Nx WT controls. Histomorphometric analysis also showed increases in bone formation and bone resorption in 
femurs of Nx WT. In contrast, BKO mice were resistant to Nx-induced cancellous bone loss.

FGF23 is associated with erythropoiesis and bone mineralization. Serum level of FGF23 was markedly 
increased in BKO mice together with high serum erythropoietin level. These data were consistent with the report 
of transgenic erythropoietin-overexpressing mice having elevated circulating FGF2330. Nx slightly increased the 
serum levels of FGF23 in WT but not BKO mice. Although FGF23 has direct effects on bone turnover following 
CKD development, our data suggest that FGF23 may not be the key factor that regulates bone remodeling in BKO 
mice after Nx.

BKO mice had high circulating level of erythropoietin similar to thalassemia patients31. Chronic anemia in 
thalassemia markedly stimulates the production of erythropoietin up to 20–30 times normal level with conse-
quent massive medullar cell proliferation. However, upregulated erythropoiesis is ineffective because the high 
numbers of erythroid precursors fail to develop into mature red blood cells. Nevertheless, the increased marrow 

Figure 8.  Erythropoietin induces cancellous bone loss. (A) μCT images of femoral cancellous (upper) and 
cortical bone (lower) from WT controls treated with either vehicle or erythropoietin. (B) μCT analysis of 
cancellous bone of the femurs. (C) μCT analysis of cortical bone of the femurs. Results are mean ± SEM. 
*p < 0.05 versus WT.
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erythropoiesis is one of the major determinants of reduced bone mass in thalassemia patients32. Endogenous 
erythropoietin is known to be essential for bone marrow stromal cell differentiation into osteoblasts and bone 
microenvironment. However, the effects of erythropoietin on bone homeostasis are controversial. There have 
been a number of investigations on erythropoietin and bone turnover. Erythropoietin treatment increased bone 
formation leading to increased bone mass in newborn and growing mice33, whereas it induced bone loss in 
adult mice34. Our present data confirmed that high level of erythropoietin induced cancellous bone loss in WT. 
Transgenic mice overexpressing human erythropoietin also exhibited low bone mass, decreased bone formation 
and increased bone resorption35. Erythropoietin directly stimulated osteoclastogenesis via activation of Jak2 and 
PI3K. On the other hand, the effects of erythropoietin on osteoblasts were indirect since erythropoietin adminis-
tration did not inhibit osteoblast differentiation in vitro. It is possible that lower level of erythropoietin in Nx BKO 
mice when compared to intact BKO mice might be responsible for the protection against cancellous bone loss 
in these mice. Furthermore, abnormal proliferation of bone marrow cells independent of hematopoietic lineage 
such as in hemolytic anemias, chronic myeloproliferative disorders and cancers was reported to be associated 
with bone loss36. Thus, in addition to direct effect of erythropoietin on osteoblast and osteoclast, lower level of 
erythropoietin in Nx BKO mice may result in less erythropoiesis associated marrow expansion and subsequently 
less cancellous bone loss in Nx BKO mice. Besides erythropoietin, uremic toxins, including indoxyl sulfate and 
p-cresol sulfate are major causes of bone abnormalities in patients with CKD37. The resistance to cancellous osteo-
penia in BKO mice after Nx may be due to different uremic factors produced in thalassemia. However, further 
studies will be required to determine the detailed mechanisms by which uremic toxins affect bone turnover in 
thalassemic mice. For clinical translation, physicians should evaluate BMD and serum levels of erythropoietin in 
thalassemia patients with CKD before initiating treatment since the reduced erythropoietin might already protect 
against bone loss in these patients.

In conclusion, BKO mice exhibited low cancellous bone volume and mineral density. In WT, Nx increased 
bone turnover, leading to cancellous and cortical bone loss. However, Nx-induced cancellous bone loss was not 
observed in BKO mice and this was likely to be due to lower circulating level of erythropoietin after Nx.

Materials and Methods
Animals.  BKO mice38 were obtained from the Thalassemia Research Center, Institute of Molecular 
Biosciences, Mahidol University. All animal procedures were approved by the Institutional Animal Care and 
Use Committee at Faculty of Medicine, Chulalongkorn University. Mice were housed at the Faculty of Medicine, 
Chulalongkorn University and had free access to water and standard rodent chow. They were maintained in 
accordance with the Guide for the Care and Use of Laboratory Animals (eighth edition), National Research 
Council.

Homozygous BKO mice were embryonically lethal. Female and male BKO mice were crossed to generate BKO 
mice and their WT controls. The heterozygotes and WT controls were genotyped by blood smear. Seven-week-old 
females and males were divided into 4 groups; sham WT, sham BKO, Nx WT and Nx BKO. For the CKD animal 
model, 5/6 Nx was performed in two stages under isoflurane anesthesia. At week -1, a left flank incision was per-
formed to resect two-thirds of the left kidney (upper and lower poles). Bleeding was controlled by microfibrillar 
collagen hemostasis (Avitene, Davol, Cranston, RI). One week later (week 0), the entire right kidney was removed 
via a right flank incision. For the sham-operated mice, the flank incision was performed without kidney removal 
and the incision was closed. Mice were subcutaneously injected with 20 mg/kg calcein and 40 mg/kg tetracycline 
at 8 and 2 days prior to animal necropsy. Three months after surgery, mice were anesthetized with isoflurane. 
Blood samples were collected in a tube containing EDTA for complete blood count analysis at the Faculty of 
Veterinary Science, Chulalongkorn University. The remaining blood samples were centrifuged and the serum was 
kept at -80 °C for determination of urea nitrogen, creatinine, calcium, phosphorus, FGF23 and erythropoietin 
levels. The mandibles were removed and the left mandibles were fixed in 10% neutral buffered formalin for micro-
computed tomography (μCT) analysis. The right mandibles were frozen in liquid nitrogen and kept at −80 °C 
for RNA isolation and qPCR analysis. Left femurs were fixed in 70% alcohol for μCT and histomorphometric 
analysis. The left kidney was removed for histological studies.

For erythropoietin experiment, 7-week-old WT males were subcutaneously injected with 8 doses of either 
vehicle (PBS) or 180 IU erythropoietin (Roche, Basel, Switzerland) 3 times a week over 2.5 weeks35. At the end of 
the experiment, blood samples were collected for complete blood count analysis. Left femurs were removed and 
fixed in 70% alcohol for μCT analysis.

μCT analysis.  High resolution images of a buccal-lingual cross slice of the first mandibular molars and 
femurs were acquired using a desktop μCT35, (Scanco Medical, Basserdorf, Switzerland) in accordance with 
recommended guidelines39. The cancellous and cortical bone microarchitecture was determined using a 7 μm 
isotropic voxel size, 50 kVp, and 144 μA. Mandibular bone scans were subjected to Gaussian filtration and seg-
mentation using a fixed threshold of 330. Femur was evaluated at a threshold of 220 and 350 for cancellous and 
cortical bone, respectively. Bone volume fraction (BV/TV, %), trabecular number (Tb.N, /mm), trabecular thick-
ness (Tb.Th, mm), trabecular separation (Tb.Sp, mm), cortical volume (mm3), cortical thickness (mm) and bone 
mineral density (mgHA/cm2) were analyzed.

Real-time quantitative PCR (qPCR).  Total RNA was isolated from the right mandibles using a monopha-
sic solution of guanidine isothiocyanate and phenol as indicated in the manufacturer’s protocol (Trizol Reagent; 
Invitrogen, Carlsbad, CA, USA). The RNA was cleaned up using an RNeasy Mini kit (Qiagen, Germantown, 
MD, USA) and the RNA yields were determined spectrophotometrically at 260 nm. The cDNA was synthesized 
from 1 μg of total RNA with SuperScript VILO cDNA synthesis kit (Invitrogen, Carlsbad, CA, USA) for reverse 
transcription. The qPCR was performed at 60 °C for 40 cycles using CFX96TM Optics Module (Bio-Rad). The 
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expression levels were normalized to GAPDH expression. Supplementary Table S3 shows the oligonucleotide 
primers for qPCR analysis.

Bone histomorphometry.  Femurs were dehydrated in 70, 90 and 100% acetone, infiltrated and embedded 
in methyl methacrylate. Undecalcified sections were cut at a thickness of 5 μm using a motorized microtome 
(RM2255, Leica, Germany). The unstained sections were used to analyze fluorescent labeling for dynamic meas-
urements and the consecutive sections were stained with toluidine blue to quantify static measurements as previ-
ously described40. Cancellous bone was evaluated in the distal metaphysis of femurs at 400 μm below the growth 
plate using OsteoMeasure system (Osteometrics Inc., Decatur, GA), and all parameters were analyzed following 
the standardized nomenclature41. A sampling site had area of approximately 2.2 mm2.

Renal histology.  The left kidney was dehydrated and embedded in paraffin. The kidney interstitial fibro-
sis and tubular atrophy (IFTA) score was estimated at 20X magnification on 5 µm thick sections stained with 
Masson’s Trichrome. Ten fields were randomly scored using a semi-quantitative ordinal scale: 0, damage involving 
<5%; 1, damage involving 5–10%; 2, area of damage 11–25%; 3, area of damage 26–50%; and 4, >50% of the area 
being affected over the entire kidney section42.

Serum chemistry.  Serum urea nitrogen, creatinine, calcium, and phosphorus levels were assessed accord-
ing to the manufacturer’s instructions (Standbio Laboratory, Boerne, TX). Serum level of erythropoietin was 
measured by ELISA kit (R&D systems, Minneapolis, MN) as per manufacturer’s protocol. Serum FGF23 was 
measured using the mouse/rat FGF-23 (C-Term) ELISA kit (Quidel, San Diego, CA) which detected both intact 
and c-terminal fragments of FGF23.

Statistical analysis.  All data were expressed as mean ± SEM. The results were analyzed for significant dif-
ferences using one-way ANOVA followed by Fisher’s protected least significant difference test. The effects of 
genotype and Nx and interactions between genotype and Nx were determined using two-way ANOVA. Statistical 
significance was defined as p < 0.05.

Data availability
All data are available from the corresponding author upon request.
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