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Objective: To develop and validate a new strategy based on radiomics features extracted
from intra- and peritumoral regions on CT images for the prediction of atypical responses
to the immune checkpoint inhibitor (ICI) in cancer patients.

Methods: In total, 135 patients derived from five hospitals with pathologically confirmed
malignancies receiving ICI were included in this retrospective study. Atypical responses
including pseudoprogression (PsP) and hyperprogression disease (HPD) were identified
as their definitions. A subgroup of standard progression disease (sPD) in 2018 was also
involved in this study. Based on pretreatment CT imaging, a total of 107 features were
extracted from intra- and peri-tumoral regions, respectively. The least absolute shrinkage
and selection operator (Lasso) algorithm was used for feature selection, and multivariate
logistic analysis was used to develop radiomics signature (RS). Finally, a total of nine RSs,
derived from intra-tumoral, peri-tumoral, and combination of both regions, were built
respectively to distinguish PsP vs. HPD, PsP vs. sPD, and HPD vs. sPD. The performance
of the RSs was evaluated with discrimination, calibration, and clinical usefulness.

Results: No significant difference was found when compared in terms of clinical
characteristics of PsP, HPD, and sPD. RS based on combined regions outperformed
those from either intra-tumoral or peri-tumoral alone, yielding an AUC (accuracy) of 0.834
(0.827) for PsP vs. HPD, 0.923 (0.868) for PsP vs. sPD, and 0.959 (0.894) for HPD vs. sPD
in the training datasets, and 0.835 (0.794) for PsP vs. HPD, 0.919 (0.867) for PsP vs. sPD,
and 0.933 (0.842) for HPD vs. sPD in the testing datasets. The combined RS showed
good fitness (Hosmer–Lemeshow test p > 0.05) and provided more net benefit than the
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treat-none or treat-all scheme by decision curve analysis in both training and testing
datasets.

Conclusion: Pretreatment radiomics are helpful to predict atypical responses to ICI
across tumor types. The combined RS outperformed those from either intra- or peri-
tumoral alone which may provide a more comprehensive characterization of atypical
responses to ICI.
Keywords: radiomics, CT, peritumoral, immune checkpoint inhibitor, atypical responses
INTRODUCTION

Thenovel development of the immune checkpoint inhibitor (ICI) is
now approved in a variety of solid tumors, including melanoma,
non-small cell lung cancer (NSCLC), and urothelial and
microsatellite instability-high (MSI) cancer, represented by
programmed cell death-1 (PD-1) and programmed cell death
ligand-1 (PD-L1), which became a crucial therapeutic option to
improve prognosis (1). Unlike chemotherapy and tyrosine kinase
inhibitor (TKI), ICI plays an antitumor role by blocking the
immune checkpoint and enhancing the activity of autologous T
cells (2). These effects occur through the restart of intrinsic immune
actions, and the efficacy of these effects is strictly associated with the
appearance of hypoxia, necrosis, and inflammation at the tumor
sites (3). Meanwhile, these biological processes can affect the
immune system and adjust antitumor responses, giving rise to
atypical responses, including pseudoprogression (PsP) and
hyperprogression disease (HPD) (4–7).

During tumor assessment, PsP occurs as a shrinkage in tumor
burden after increasing in size or the presence of new lesions (8, 9),
whereas HPD is presented as an acceleration of tumor growth after
the initiation of immunotherapy, as compared to the period before
treatment initiation used as a reference (10–12). Most similarly, all
PsP, HPD, and standard progression disease (sPD) patients share
common imaging with tumor enlargement at initial radiography
assessment. Dissimilarly, compared with sPD and HPD, PsP
patients have good clinical outcomes with significant longer
progression-free survivals and overall survivals (13, 14). Thus,
distinguishing PsP from sPD or even HPD will extremely help
evaluate the efficacy of ICI and avoid either premature withdrawal
of the treatmentorprolonging ineffective treatment.Unfortunately,
the identification of a reliable predictive biomarker of atypical
responses to immunotherapy across various solid tumors remains
an unmet need in clinic practice so far.

Routine standard-of-care CT scans are a noninvasive clinical
examination tool for tumor diagnosis, staging, and monitoring
treatment response. CT imaging-based radiomics can characterize
both intra-tumoral and peri-tumoral heterogeneity from digital
images to build mathematical formulas that reflect the underlying
pathophysiology (15). Nowadays, radiomics has been successfully
applied to the prediction of tumor histology, risk of lymph node
metastasis, genetic mutation subtypes, and decoding of PD-L1
expression in cancer patients (16–19). However, investigations
using radiomics on prediction of atypical responses to cancer
immunotherapy are rather rare. Recently, Wang et al. used CT
2

radiomics to identify five PsP cases from 50 melanoma patients
treated with anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4)
inhibitor (20). Nonetheless, it needs a larger sample to confirm
the ability of radiomics to predict PsP before immunotherapy.

In this study, we aim to evaluate the predictive value of radiomics,
including intra- and peri-tumoral features that distinguish among
PsP, HPD, and sPD patients, which may assist clinicians in the
precision management of personalized immunotherapy.
MATERIAL AND METHODS

Patients
This retrospective multicenter study was approved by each
participating institutional review board, and the prerequisite
for obtaining informed consent was waived. Data were
collected from February 2017 to April 2020 in patients with
pathologically proven malignant solid tumors who had been
treated with ICI, alone or in combination with chemotherapy.

Four hundred and sixty-three consecutive patients from five
Chinese Hospitals were identified. The inclusion criteria were as
follows: (1) CT scan prior to the initiation of ICI in less than 2
weeks; (2) at least two cycles of ICI; and (3) all solid tumors were
pathologically confirmed. The exclusion criteria were as follows:
(1) with history of any other concurrent malignancies; (2) no
measurable lesion or with obvious artifacts on CT images; and
(3) without a previous and/or follow-up CT scan.

Definitions of Pseudoprogression
and Hyperprogression
Immune Response Evaluation Criteria in Solid Tumors
(iRECIST) were used to evaluate the response of tumors (21).
In our datasets of patients, PsP (Figure 1A) was defined as
immune unconfirmed progressive disease (iUPD) during
evaluation and further response classified as immune complete
response (iCR), immune partial response (iPR), or immune
stable disease (iSD) (22). HPD (Figure 1B) criteria, which are
as follows in accordance with previous studies: 1) progression at
first post-ICI, 2) increase in tumor size over 50%, and 3) over
two-fold increase in progression rate (23, 24). We also defined
other immune confirmed progressive diseases (iCPDs) except for
HPD as sPD by iRECIST criteria. All measurable target lesions
(≥10 mm in the longest diameter for non-nodal lesions and ≥15
mm in the short axis for nodal lesions) allow up to two lesions
October 2021 | Volume 11 | Article 729371
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per organ, and five lesions in total as in iRECIST criteria were
used for analysis.

According to the definitions, 34 patients with 42 target lesions
undergo PsP, and 43 patients with 67 target lesions experience
HPD. A subgroup of sPD (58 out of 220) in 2018 was also included
in this study. Finally, the training datasets were recruited from the
Liaoning Cancer Hospital while the testing datasets involved
patients from The Fifth People’s Hospital of Shenyang, First
Affiliated Hospital of Xiamen University, General Hospital of
Northern Theater Command, and Tianjin Cancer Hospital. The
flowchart of patient selection procedure is showed in Figure 2.

CT Acquisition
The pretreatment CT scans were acquired on varied datasets of
CT scanners (Supplemental Data).

Segmentation and Feature Extraction
Before segmentation, all images were resampled to a common
voxel spacing of 1 mm × 1 mm × 1 mm by using the linear
interpolation algorithm to construct new data points within the
range of discrete datasets of known data points to standardize
spacing across all images (25).
Frontiers in Oncology | www.frontiersin.org 3
Then, the region of interest (ROI) was delineated manually
along the tumor contour slice by slice on pretreatment CT
images by reader 1 (HS with 9 years of experience) who were
blinded to diagnosis and clinical information, using an open-
source software (ITK-SNAP, version 3.6.0, http://www.itksnap.
org/). The morphologic operation of dilation was then
performed to capture the information outside the lesion up to
a radial distance of 5 mm; normal tissue or surrounding organs
were subsequently excluded from the contours.

Subsequently, a total of 107 radiomics features, which
regarded the image biomarker standardization initiative (IBSI)
as reference (26), were extracted using A.K. software (Artificial
Intelligence Kit, version 2.0.0, GE Healthcare, China) from each
region, including the intra- and peri-tumoral ROI.

In order to investigate the reproducibility of the radiomics
features obtained by different readers, different times, and
different tumor regions (intratumoral and peritumoral), intra-
and interclass correlation coefficients (ICCs) were used to assess
the reproducibility of the radiomics features extracted from 30
randomly chosen patients. To assess the inter-reader
reproducibility, the ROI delineation was performed by two
oncologic radiologists (reader 1 and reader 2, HS with 9 years
A

B

FIGURE 1 | (A) A patient with adenocarcinoma by puncture biopsy pathology who was receiving nivolumab therapy. Irregular lesion in the left upper lobe with a
diameter of 3.2 cm on the baseline CT scans. By 6 weeks of anti-PD-1 therapy, the lesion increased in diameter of 5.4 cm on the first CT evaluation. At 8 weeks of
therapy, it had decreased in size by 2.2 cm. (B) Another 64-year-old male was treated with pembrolizumab on January 29, 2018, for liver metastasis from colorectal
cancer. It had SD prior to the initiation of immunotherapy but developed rapid tumor growth with appearance of new lesions on the first follow-up and experienced
more than two-fold increase from pretreatment tumor growth versus treatment.
October 2021 | Volume 11 | Article 729371
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and WLH with 7 years of experience), respectively. To evaluate
the intra-reader reproducibility, reader 1 repeated the ROI
delineation at a 1-month interval.
Radiomics Signature Building
To reduce overfitting or selection bias, we adopted a series of
methods for dimensionality reduction and feature selection
before modeling. In the first step, features of ICCs >0.75 for both
inter-reader and intra-reader that were considered a relatively high
inter-reader and intra-readervariability in the segmentedROI,were
included in subsequent analysis. Subsequently, Spearman
correlation analysis was conducted to remove the redundant
features which were highly correlated(|r|>0.90) with other
features. Then, the least absolute shrinkage and selection operator
(LASSO) regression algorithm with penalty parameter tuning was
applied with 10-fold cross validation to select the most useful
predictive features with a non-zero coefficient.

Then, a total of nine radiomics signatures (RSs), including
intra-tumoral RS, peri-tumoral RS, and combined (intra-plus-
peri-tumoral) RS for distinguishing PsP vs. HPD, PsP vs. sPD,
and HPD vs. sPD, were built respectively viamultivariate logistic
analysis using the selected optimal feature sets in the training
datasets and then tested in the testing datasets. The workflow of
the radiomics analysis is shown in Figure 3.
Frontiers in Oncology | www.frontiersin.org 4
Performance Evaluation
The performance of the RSs was evaluated with discrimination,
calibration, and clinical application in both training and
testing datasets.

Discrimination Degree
Receiver operating characteristic (ROC) curves were plotted, and
the area under the ROC curve (AUC) with a 95% confidence
interval (CI) was used to assess the diagnostic performance in
discriminating PsP vs. HPD, PsP vs. sPD, and HPD vs. sPD in
both training and testing datasets. The optimal cutoff of the RSs
calculated from the training datasets based on the maximum
Youden’s index was then applied in the testing datasets. The
accuracy (ACC), sensitivity (SEN), specificity (SPE), positive
predictive value (PPV), and negative predictive value (NPV)
were calculated in both training and testing datasets.

Calibration Degree
Calibration curves were plotted in both training and testing
datasets to explore the agreement between the observed outcome
frequencies and predicted probabilities of the RSs. The Hosmer–
Lemeshow test was used to determine the goodness of fit of the
models, and p values of more than 0.05 were considered
well-calibrated.
FIGURE 2 | Flowchart of the patient selection procedure.
October 2021 | Volume 11 | Article 729371
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Clinical Application
Decision curve analysis (DCA) was conducted to assess the
clinical usefulness by quantifying the net benefits at different
threshold probabilities in both training and testing datasets.

Statistical Analysis
All statistical analyses were performed using R language (version
3.5.1, https://www.r-project.org).Categorical variables between two
or more groups were compared with the c² test, and continuous
variables between groupswere comparedwith either Student’s t test
or Mann–Whitney U test (for two groups, as appropriate) with
Bonferroni correction (p < 0.017 indicated significance) or by
ANOVA (for three groups). Categorical variables were presented
as counts (percentage), and continuous variables were presented as
mean (SD) or median (25%, 75%), as appropriate.

ICC was calculated using the “lme4” package. LASSO
regression was performed using the “glmnet” package.
Multivariate logistic regression was performed using the “rms”
package. ROC curves were plotted using the “pROC” package.
The calibration curve and Hosmer–Lemeshow test were
conducted using the “ModelGood” package. Decision curve
analysis was performed using the “dca. R” package.

RESULTS

Patient Dataset
A total of 135 patients including PsP (N = 34), HPD (N = 43),
and sPD (N = 58) were analyzed in this study. The most common
tumor types included the respiratory system neoplasms (n = 73)
and digestive system neoplasms (n = 31). In our population, the
incidence rate of HPD (10.44%) is slightly higher than PsP
(8.25%) in the whole datasets. More than half of the patients
Frontiers in Oncology | www.frontiersin.org 5
(n = 72) received ICI monotherapy, and 46.67% (n = 63) received
combination chemo-immunotherapy.

There was no statistically significant difference in baseline age,
gender, pre-chemotherapy or radiotherapy, monotherapy or plus
chemotherapy, brain metastasis, bone metastasis, lung metastasis,
or hepatic metastasis (all p > 0.05) among the three groups. The
characteristics of 135 patients are summarized in Table 1.

Development and Validation of
Radiomics Signatures
RS for Discriminating PsP From HPD
After inter- and intra-reader reproducibility analysis, a total of
210/214 (104/107 from intra-tumoral and 106/107 from peri-
tumoral) features showed stability with both intra- and inter-
reader ICCs greater than 0.75; the details are shown in Table 2
and Supplementary Figure 1.

The most predictive and strongest features were remained
after the process of feature selection (Table S1). Then, RSs were
calculated for each patient via a linear combination of the
selected features weighted by respective coefficients (the
calculation formulas are shown in Supplementary Formula).

The distribution of the combined RSs in the training and
testing datasets is shown in Figure S2. The RSs derived from
intra-tumoral, peri-tumoral, and combined models were all
significantly higher in patients with HPD than those with PsP
in both training and testing datasets (all p < 0.017 after
Bonferroni correction). According to the maximum Youden’s
index, 0.109, 0.386, and −0.298 were respectively set as the
optimal cutoff values in the intra-, peri-tumoral, and combined
models (Tables 3-1). Table 4, Figure S3 and Figure 4 show the
discriminative performance of the models. The combined RS
extracted from the intra- and peri-tumoral models yielded the
FIGURE 3 | The radiomics workflow including tumor segmentation, feature extraction, radiomics signatures construction, and performance evaluation.
October 2021 | Volume 11 | Article 729371
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highest AUC of 0.834 and an ACC of 0.827 in the training
datasets, which were higher than those of the intra-tumoral
model (yielded an AUC value of 0.804 and an ACC value of
0.733) alone. However, the RS extracted from the peri-tumoral
model yielded the highest AUC of 0.848, along with a lower ACC
of 0.773 than those of combined RS. Considering AUC and ACC
together, a corresponding result was also found in testing
datasets. The combined RS yielded the highest AUC value of
0.835 and an ACC value of 0.794, which were higher than those
of intra- (yielded an AUC of 0.769 and ACC of 0.735) and peri-
tumoral (yielded an AUC of 0.824 and ACC of 0.765) models
alone. Interestingly, the RS extracted from the peri-tumoral
model yielded a higher AUC than that of the intra-tumoral
model in both training and testing datasets. The calibration curve
indicated the good fitness of the conventional model with a p
Frontiers in Oncology | www.frontiersin.org 6
value of the Hosmer–Lemeshow test bigger than 0.05, which is
shown in Figure S4 and Figure 5. The clinical usefulness is
shown as a decision curve in Figure S5 and Figure 6.

RS for Discriminating PsP From sPD
Similar results were observed in PsP vs. sPD. As shown in
Table 4, Figure S3 and Figure 4, the combined RS yielded the
highest AUC of 0.923 and an ACC of 0.868, which were higher
than those of the intra- (yielded an AUC of 0.902 and an ACC of
0.838) and peri-tumoral (yielded an AUC of 0.912 and an ACC
of 0.868) models alone. The peri-tumoral RS yielded a higher
AUC value than that of the intra-tumoral model in both training
and testing datasets. The RSs derived from the combined region
were all significantly higher in patients with sPD than those
with PsP in both training and testing datasets (Figure S2).
TABLE 2 | The process of features selection.

Radiomics signatures Remained feature number

Extracted ICC>0.75 Spearman
(|r|<0.90)

LASSO
(non-zero)

PsP VS. HPD Intra-tumoral 107 104 45 4
Peri-tumoral 107 106 36 4
Combined 214 210 79 5

PsP VS. sPD Intra-tumoral 107 106 41 7
Peri-tumoral 107 106 42 8
Combined 214 212 69 11

HPD VS. sPD Intra-tumoral 107 104 47 7
Peri-tumoral 107 106 43 9
Combined 214 210 80 12
Oct
ober 2021 | Volume 11 | A
Psp, pseudoprogression; HPD, hyperprogression disease; sPD, standard progression disease; ICC, inter/intra-class correlation coefficient; LASSO, least absolute shrinkage and selection operator.
TABLE 1 | Baseline characteristics of 135 patients.

Characteristics PsP (N = 34) HPD (N = 43) sPD (N = 58) p value

Age, median (range) years 67 (52-81) 62 (45-77) 72 (57-87) 0.368
Gender, No. (%) 0.202
Male 29 (85.3) 32 (74.4) 39 (68.4)
Female 5 (14.7) 11 (25.6) 18 (31.6)

Pre- chemotherapy or radiotherapy, No. (%) 0.851
Yes 26 (76.5) 33 (23.3) 46 (80.7)
No 8 (23.5) 10 (76.7) 11 (19.3)

Treatment strategy, No. (%) 0.183
Monotherapy 19 (44.1) 17 (39.5) 21 (36.8)
Combination therapy 15 (44.1) 26 (60.5) 36 (63.2)

Number of lines of prior systemic cancer therapy, No. (%) 0.337
1 7 (20.6) 9 (20.9) 9 (15.8)
≥2 27 (79.4) 34 (79.1) 48 (84.2)

Lung metastasis, No. (%) 0.817
With 18 (52.9) 25 (58.1) 34 (59.6)
Without 16 (47.1) 18 (41.9) 23 (40.4)

Brain metastasis, No. (%) 0.124
With 2 (5.9) 7 (16.3) 3 (5.3)
Without 32 (94.1) 36 (83.7) 54 (94.7)

Bone metastasis, No. (%) 0.120
With 8 (23.5) 16 (37.2) 11 (19.3)
Without 26 (76.5) 27 (62.8) 46 (80.7)

Liver metastasis, No. (%) 0.240
With 5 (14.7) 18 (41.9) 18 (41.9)
Without 29 (85.3) 29 (85.3) 25 (58.1)
rticle
Psp, pseudoprogression; HPD, hyperprogression disease; sPD, standard progression disease.
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The optimal cutoff values in the intra-, peri-tumoral, and combined
model are displayed in Table 3-2. The calibration curve and
decision curve are shown in Figures S4, S5 and Figures 5, 6.

RS for Discriminating HPD From sPD
The RSs derived from the combined region were all significantly
higher in patients with sPD than those with HPD in both training
and testing datasets (Figure S2). According to the maximum
Youden’s index, 0.741, -0.154, and 1.325 were respectively set as
the optimal cutoff values in the intra-, peri-tumoral, and combined
models (Table 3-3). The combined RS yielded the highest AUC of
0.959 and an ACC of 0.894, which were higher than those of intra-
(yielded an AUC of 0.911 and ACC of 0.824) and peri-tumoral
Frontiers in Oncology | www.frontiersin.org 7
(yielded an AUC of 0.894 and ACC of 0.835) models alone. The
intra-tumoral RS yielded a higher AUC value than that of peri-
tumoral RS in training datasets but lower in testing datasets
(Table 4, Figure S3 and Figure 4).
DISCUSSION

In this multicenter study, we investigated the ability of
pretreatment CT-based RSs extracted from intra- and peri-
tumoral regions to predict atypical responses to ICI in multiple
solid tumors. Our findings showed that the peri-tumoral regions
have additional predictive values relative to the intra-tumoral
TABLE 4 | The discriminative performance of the models in the training and testing datasets.

Radiomics signatures Training datasets Testing datasets

AUC (95% CI) ACC SEN SPE PPV NPV AUC (95% CI) ACC SEN SPE PPV NPV

PsP VS. HPD Intra-tumoral 0.804 (0.717, 0.881) 0.733 0.739 0.724 0.810 0.636 0.769 (0.602, 0.913) 0.735 0.857 0.538 0.750 0.700
Peri-tumoral 0.848 (0.770, 0.918) 0.773 0.783 0.759 0.837 0.688 0.824 (0.688, 0.941) 0.765 0.714 0.846 0.882 0.647
Combined 0.834 (0.746, 0.914) 0.827 0.935 0.655 0.811 0.864 0.835 (0.704, 0.942) 0.794 0.905 0.615 0.792 0.800

PsP VS. sPD Intra-tumoral 0.902 (0.837, 0.957) 0.838 0.872 0.793 0.850 0.821 0.891 (0.788, 0.973) 0.833 0.882 0.769 0.875 0.786
Peri-tumoral 0.912 (0.846, 0.966) 0.868 0.769 1.000 1.000 0.763 0.900 (0.794, 0.981) 0.833 0.824 0.846 0.833 0.833
Combined 0.923 (0.865, 0.972) 0.868 0.821 0.931 0.941 0.794 0.919 (0.813, 0.991) 0.867 0.824 0.923 0.933 0.800

HPD VS. sPD Intra-tumoral 0.911 (0.857, 0.954) 0.824 0.717 0.949 0.943 0.740 0.891 (0.797, 0.966) 0.763 0.714 0.824 0.833 0.750
Peri-tumoral 0.894 (0.833, 0.945) 0.835 0.870 0.795 0.833 0.838 0.899 (0.809, 0.969) 0.763 0.810 0.706 0.773 0.700
Combined 0.959 (0.925, 0.986) 0.894 0.804 1.000 1.000 0.812 0.933 (0.863, 0.985) 0.842 0.857 0.824 0.857 0.824
Oc
tober 202
1 | Volu
me 11 |
 Article 7
Psp, pseudo-progression; HPD, hyper-progression disease; sPD, standard progression disease; ROC, receiver operating characteristic; AUC, area under ROC curve; ACC, accuracy;
SPE, specificity; SEN, sensitivity; PPV, positive predictive value; NPV, negative predictive value.
TABLE 3-1 | The distribution of the radiomics scores for PsP vs HPD in the training and testing datasets.

RS Cutoff Training dataset (N=75) Testing dataset (N=34) P value

PsP HPD P value PsP HPD P value

Intra-tumoral 0.109 -0.56 (-0.78, 0.44) 1.19 (0.13, 2.67) <0.001* 0.00 (-0.66, 1.08) 1.20 (0.92, 2.04) 0.009* 0.309
Peri-tumoral 0.386 -0.61 (-1.56, 0.43) 1.24 (0.41, 2.52) <0.001* -1.66 (-3.80, 0.13) 0.82 (0.07, 2.48) 0.002* 0.278
Combined -0.298 -0.53 (-0.94, 0.41) 1.34 (0.18, 2.43) <0.001* -0.38±0.96 0.88±0.94 0.001* 0.243
TABLE 3-2 | The distribution of the radiomics scores for PsP vs HPD in the training and testing datasets.

RS Cutoff Training dataset (N=68) Testing dataset (N=30) P value

PsP sPD P value PsP sPD P value

Intra-tumoral -0.376 -1.17 (-1.89, -0.46) 2.49 (0.16, 6.15) <0.001* -0.69 (-2.27, -0.36) 5.68 (0.26, 7.55) <0.001* 0.723

Peri-tumoral 0.418 -1.36 (-1.91, 0.02) 3.43 (0.68, 7.28) <0.001* -0.49 (-1.45, 0.16) 5.65 (2.87, 8.47) <0.001* 0.203

Combined 0.541 -1.43 (-2.37, -0.78) 2.56 (0.95, 11.66) <0.001* -1.76 (-3.03, -0.59) 3.95 (1.61, 11.87) <0.001* 0.877
2937
TABLE 3-3 | The distribution of the radiomics scores for HPD vs sPD in the training and testing datasets.

RS Cutoff Training dataset (N=85) Testing dataset (N=38) P value

HPD sPD P value HPD sPD P value

Intra-tumoral 0.741 -2.10±2.64 2.20±2.38 <0.001* -1.25 (-5.95, 0.06) 1.86 (0.63, 3.87) <0.001* 0.965
Peri-tumoral -0.154 -1.01 (-15.76, -0.25) 1.37 (0.53, 3.38) <0.001* -6.44 (-29.39, 0.00) 1.92 (0.41, 3.28) <0.001* 0.878
Combined 1.325 -2.84 (-21.49, -0.80) 3.52 (1.75, 5.01) <0.001* -18.12 (-26.04, 0.53) 8.14 (3.03, 9.66) <0.001* 0.345

RS, radiomics signature; PsP, pseudoprogression; HPD, hyperprogression disease; sPD, standard progression disease; * indicated significant differences; Results for normal and non-
normal distributions are means ± standard deviation and quartiles
1
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regions in different immunotherapy responses, especially for
PsP datasets.

As shown above, AUC values ranged from 0.834 to 0.959,
whereas ACCs ranged from 0.827 to 0.894 in the combined RSs
of the intra- and peri-tumoral regions outperformed than either
of them alone. Besides, peri-tumoral RS showed a higher AUC
(0.848 vs. 0.835) than combined RS in PsP vs. HPD, but lower
ACC (0.773 vs. 0.827). In general, it is clear that the combination
of intra- and peri-tumoral regions yielded the overall best
classification performance. Noticeably, the most predictive RSs
were found to be within an immediate distance of 5 mm from the
lesion in predicting PsP when compared with either HPD or
sPD, suggesting that features from the peri-tumoral region may
have unique power in identifying PsP.
Frontiers in Oncology | www.frontiersin.org 8
Radiomics is an approach involving a computerized extraction
of certain quantitative imaging features, which has shown promise
in predicting as well as monitoring treatment response (27). For
predicting PsP, our results are in line with the study by Sun et al.,
who used radiomics from the peri-tumoral region to detect CD8
cells andpredict immunotherapy response inmultipledatasets (28).
Similar results are available in research by Tunali et al.; the authors
validated peri-tumoral features highly associated with the tumor-
infiltrating lymphocyte (TIL)densityonbiopsy samples,whichmay
provide abetterunderstanding of theunderlyingbiology (29).More
specifically, the immediate surrounding tumor immune
microenvironment (TIME) may offer unique information prior to
administration of ICI that potentially decodes TILs. However, Shen
and his colleagues constructed RS for predicting lymph node
FIGURE 5 | The calibration curves of the proposed radiomics models in the testing datasets. The 45° gray line indicates an ideal prediction. The black, blue, and
red lines represent the intratumoral, peritumoral, and combined model predicted results, respectively. The X axis represents the predicted probability, and the Y axis
represents true probability. The p value was derived from the Hosmer–Lemeshow test.
FIGURE 4 | Evaluation of the predictive performance of the radiomics signatures in the testing datasets. In each ROC, the black curve is the ROC of the
intratumoral model, the blue curve is the ROC of the peritumoral model, and the red curve is the ROC of the combine model.
October 2021 | Volume 11 | Article 729371
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metastasis of patients with esophageal cancer before surgery from
intra- andperi-tumoral areas and found that the formerhadabetter
performance in their research (30). In theory, due to the
multiregional and microenvironmental heterogeneity in
malignant tumors, it is reasonable to speculate that features from
the whole tumor and peri-tumoral regions could have a
comprehensive understanding of pathophysiology and the best
performance in predicting response than those from only single
regions (31). Although the biology of PsP and HPD is nevertheless
to be understood, many of the present theories hypothesize that
various immunoregulatory cells within the TIME could also be
liable for this phenomenon (32). Interestingly, there is increasing
evidence that TILs could be translated into certain quantitative
features from the peri-tumoral region on CT-based radiomics,
while further study is still needed (33).

PsP was first described on immunotherapy of the CTLA-4
inhibitor in melanoma, with a patient who experienced an
enlargement of a cutaneous lesion after initial treatment, followed
by a long-term stability (5). Afterward, PsP was used to describe as
clinically improved or stable after a primary disease progression.
The incidence of PsP cases observed in our study (8.25%) is
consistent with the rate of this phenomenon observed in previous
literatures as ranging from1.1% to9.1%acrossmultiple solid tumor
types (34).However, it shouldbenoted that the incidenceofPsPwas
underestimated in most clinical practices. For instance, PsP can
imitate true progression radiographically and may be misclassified
as a non-responder then excluded from immunotherapy by an
inexperienced physician according to primitive WHO or RECIST
criteria. Although iRECIST was proved superior to RECIST1.1 in
identifying PsP, it requires an additional 4–8-week reassessment in
cases of suspected progression causing an extra cost and a time leg
on a potentially ineffective therapy (21). Our results indicate that
radiomics can predict PsP who received ICI and may supplement
conventional response evaluation criteria.

Actually, PsP is not a real tumor progression. The mechanism
behind PsP could be that tumors could have ongoing growth until
the activation of effective antitumor immune responses develops
(35). Another explanation could be the infiltration of T cells into
tumors, leading to a transient increase in tumor burden rather than
Frontiers in Oncology | www.frontiersin.org 9
true proliferation of tumor cells (36). The second hypothesis was
later confirmed on tumor biopsies from patients with melanoma
experiencing transient progressiononaCTLA-4 inhibitor, showing
an acute inflammatory reaction with lymphocyte infiltration.

Totally 9 of the 16 radiomics features were extracted from peri-
tumoral regions in PsP vs. HPDandPsP vs. sPDgroups thatmay be
capturing data related to the TIME. Of note, the glszm_
ZoneEntropy feature has been selected from both intra- and peri-
tumoral regions inPsP vs.HPD,whichwasoften appeared in tumor
grading or staging and differentiation diagnosis (37, 38).
Gldm_SmallDependenceEmphasis was used for predicting the
genetic mutation status in NSCLC patients (39). Moreover, first-
order and shape featuresquantify the rangeofgrayvalues in theROI
which reflect the degree of heterogeneity of the tumor (40, 41). In a
few clinical trials, PsP has been reported to be more common in
younger patients, which may be due to the better reactivity of the
immune system and may occur at any time after the start of
treatment. However, there was no significant difference in our
study, probably due to the limited sample size (42).

Another pattern of atypical responses called HPD was first
reported in a case study of NSCLC on nivolumab treatment, with
the observation that the patient seems to have an accelerated tumor
growth rate after the initiation of ICI (43). The incidence of HPD
from 4% to 29% of patients in various cancer types on ICI has been
reported in several studies, which is higher than that of PsP (44).
Unlike PsP followed subsequently by tumor regression, HPD
represents true tumor growth and deserves more attention
because patients experiencing HPD have a significantly shorter
OS than sPD (3.6 vs. 6.2 months), suggesting that HPD has a
deleterious effect and that it should be treated as a therapeutic
emergency (45). Several mechanisms of HPD such as T cell
exhaustion and expansion, aberrant inflammation and oncogenic
pathway activation, and modulation of pro-tumorigenic immune
subdatasets have been proposed (44). However, some previous
reports suggested that being female, advanced age (>65 years),
monotherapy, and epidermal growth factor receptor (EGFR)
alterations were associated with HPD. However, the reports from
different studies sometimes oppose each other (44, 46). We could
not find any relationship between clinical variables andHPD in our
FIGURE 6 | Decision curve analysis for the radiomics signatures in the testing datasets. The result of the decision curve analysis indicated that the prediction of PsP
and HPD using the combined RS can give more net benefit than by treating none or all patients in both training and testing datasets.
October 2021 | Volume 11 | Article 729371
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study, probably related to the definition of HPD and the
heterogeneity of the population enrolled. In contrast to predict
PsP, the intra-tumoral RS have a similar performance with peri-
tumoral RS, suggesting that the difference in heterogeneity plays a
leading role between HPD and sPD, which could be explained by
glszm_SizeZoneNonUniformityNormalized and coarseness
features (both have higher values indicating more heterogeneity
in the imaging). Recently, Tunali et al. reviewed pretreatment
contrast-enhanced CT scans and radiomics features of 228
NSCLC patients, and they used parameters derived from both the
tumor and tumor border regions to distinguish five HPD patients
from non-HPD with an AUC of 0.865 (47). However, it was not
capable to be applied because of shortages in cases and
model construction.

Nowadays, some approaches are exploratorily used to identify
atypical responses to immunotherapy. The first method is liquid
biopsies, such as circulating tumor DNA (ctDNA), which was
reported to decrease greatly in nine PsP patients with melanoma
receiving ICI (47). However, different tumor types or inhibitors are
required to further validate the relationship between ctDNA and PsP
under immunotherapy. The second method is response evaluation
criteria for immunotherapy, such as iRECIST (21). These criteria
allow iUPD patients to continue treatment and reevaluate their
responses with a time lag (after 4–8 weeks) or unneeded immune-
related adverse effects (irAE). The third method is tumor genomic
biomarkers, such as MDM2/MDM4 amplifications and EGFR
alterations (48). Kato et al. performed next-generation sequencing
offour patientswithHPD revealedMDM2/MDM4amplifications in
2 patients and EGFR amplification in one patient. In contrast, Kim
etal. foundnoMDM2/MDM42amplifications in the18patientswith
HPD(49).Unlike the abovenoninvasivemethods, biopsies of tumors
from some patients suspected of PsP have been found to contain
dense inflammatory infiltrates or necrosis, instead of increased
malignant load. Despite this, biopsies are often limited by a
relatively small tissue sample and spatial heterogeneity and carry a
procedure risk.

PsP and HPD are both atypical responses to immunotherapy,
and oncologists should be conscientious to not confuse them
with sPD, so as to avoid changing treatment too early for PsP, or
too late in case of (hyper-)progressive disease. To this end, we
aimed to use CT imaging, since it is routinely, noninvasive, and
informative of the entire tumor burden and can be performed
serially. To our knowledge, this is the first study to explore the
ability of RS for prediction of atypical responses to ICI. Our
findings potentially hold significant clinical applications, because
they could provide a clinical framework for the pretreatment
identification of atypical responses.

There are several limitations in our study. First is the
retrospective nature and relatively small number of atypical
responses, which limited the ability to perform stratified analyses,
such as unitary tumor. However, we aim to test the true
generalization performance of the classifier across multitumor
interspecifics. Second, we only explored the radiomics features
from pretreatment CT imaging; perhaps different or more
information would be obtained with CT evaluations after ICI,
although as claimed by the principle of “first, do no harm.” Third,
Frontiers in Oncology | www.frontiersin.org 10
lack of LDH, PD-L1 expression, and tumor mutation burden
(TMB) in most patients in these retrospective datasets limit the
assessment of prediction values. Fourth, the peri-tumoral features
were only extractedwithin an immediate distance of 5mmfromthe
lesion. It is unclear whether other distances perform a superior
prediction ability.Overall, validation of these radiomics biomarkers
still needs to be done on larger multisite datasets.

CONCLUSION

In conclusion, atypical responses to ICI are not uncommon
phenomena observed with the incidence of 8.25% in PsP and
10.44% in HPD. The present preliminary study suggested that
pretreatment CT-based radiomics provided a potential tool to
differentiate among PsP, HPD, and sPD, thereby providing
possibility for the prediction of atypical responses to ICI. In addition,
RS derived from the peri-tumoral outperformed intra-tumoral region
in identifying PsP, and the combined RS outperformed those from
either intra- or peri-tumoral alone which may provide a more
comprehensive characterization of atypical responses to ICI.
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