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Effector and regulatory functions of various leukocytes in allergic diseases have been well
reported. Although the role of conventional natural killer (NK) cells has been established,
information on its regulatory phenotype and function are very limited. Therefore, the
objective of this study was to investigate the phenotype and inhibitory functions of
transforming growth factor (TGF)-b-producing regulatory NK (NKreg) subset in mice
with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-b-
producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD
patients than in healthy subjects. The number of TGF-b+ NK subsets was decreased in
the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD
induced by MC903 than those of normal mice. We further observed that TGF-b+ NK
subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that
numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of
CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was
increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken
together, our findings demonstrate that the TGF-b-producing CD1dhiPD-L1hiCD27+ NK
subset has a previously unrecognized role in suppressing TH2 immunity and ILC2
activation in AD mice, suggesting that the function of TGF-b-producing NK subset is
closely associated with the severity of AD in humans.

Keywords: regulatory natural killer cells (NKreg), transforming growth factor (TGF)-b, atopic dermatitis (AD), group
2 innate lymphoid cells (ILC2s), T helper 2 (TH2) cells
INTRODUCTION

Atopic dermatitis (AD) is known as a chronic inflammatory skin disease. It is referred to as atopic
eczema with typical symptoms such as itchy, red, swollen, and cracked skin lesions. Although AD is
widespread and on the rise in developed countries, the exact pathological mechanism of AD is not
fully understood yet (1–3). Currently, it is a typical type 2 helper T (TH2) cell-mediated
hypersensitive immune disorder in which various immune cells are known to participate in the
org January 2022 | Volume 12 | Article 7528881
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development of skin inflammation (4). In AD, TH2 cells secrete
IL-4, IL-5, and IL-13 known to promote allergic responses (5, 6).
These TH2 cytokines can stimulate IgE production from B cells,
activate mast cells, and lead to infiltration of eosinophils or other
immune cells into inflamed tissues (7). Recent studies have also
reported that type 2 innate lymphoid cells (ILC2) have the
function of TH2 cells in peripheral tissues. ILC2 is also well
known to initiate and participate in TH2 cell-mediated responses
by secreting TH2 signature cytokines such as IL-5 and IL-13 in
peripheral tissues (8, 9).

Natural killer (NK) cells are well known as a type of anti-
microbial lymphocytes in innate immunity (10, 11). NK cells can
release proteolytic enzymes and interferon (IFN)-g to remove
virus-infected cells, intracellular bacteria, and tumor cells (12,
13). NK cells can be classified into several subsets, depending on
the profile of cytokine secretion and their function (14).
Typically, NK1 cells (also called conventional NK cells) secrete
IFN-g and NK2 cells secrete TH2 cytokines (15–18). Subsets of
IL-17 secretion (NK17) or IL-22 secretion (NK22) NK cells have
also been reported (19–21). Compared to the past classification
of the NK subset, various innate lymphoid cell types have been
recently introduced, and in particular innate lymphoid cells
(ILCs) have been proposed as representative helper innate
immune cells (22). In addition, various T cell-lineage subsets
have recently been defined in innate T cells such as NKT or gd T
cells that partially share receptors with conventional NK cells
(23, 24). Therefore, it is necessary to more clearly distinguish the
classification of NK. Accumulating evidences have demonstrated
that some types of NK cells have a suppressive function like
regulatory T (Treg) cells by secreting IL-10 or TGF-b in
transplantation, pregnancy, and some infections (25–30).
Although the role of NK cells in allergic diseases including AD
is poorly understood, recent studies have reported that the
number of circulating NK cells in blood samples of AD
patients are generally decreased, but increased in inflammatory
skins (31–34). However, it remains unclear which NK subset
secretes suppressive cytokines.

In this study, we demonstrated that the population of TGF-b+

NK cells was decreased in human PBMC and lymphoid tissues
from mice with AD than in healthy control. We further found
that TGF-b+ NK cells were largely included in CD1dhiPD-
L1hiCD27+ NK cell subset. Of interest, AD severity was
relieved after an adoptive transfer of CD1dhiPD-L1hiCD27+

NK cell subset in mice by inhibiting TH2 immunity.
METHODS

Human TGF-b+ NK Cell Analysis
Patients were treated at the Department of Allergy, Allergy and
Clinical Immunology Center, Cheju Halla General Hospital
(Jeju, Korea) between October 2017 and May 2018. Subjects
underwent blood tests and skin prick tests as described below
and fulfilled the criteria of Hanifin and Rajka (1). The subjects
were selected at random regardless of age or sex, and was
classified based on the SCORAD index, the amount of IgE, and
the number of eosinophils in the blood (Table 1). This study was
Frontiers in Immunology | www.frontiersin.org 2
approved by the Institutional Review Board of Jeju Halla General
Hospital (approval number: CHH-2016-L13-01).

Induction of MC903-Mediated Atopic
Dermatitis Model
C57BL/6 (8 to 10 weeks old) female mice were purchased from
Orient Bio (Gyeonggi-do, Korea). For MC903 treatment, mice
were painted with 2 nmol of MC903 (calcipotriol, Tocris
Bioscience, Minneapolis, MN) in 20 mL of ethanol on both ear
for 12 consecutive days. At 24 hours after treatment, mice were
euthanized and their lymphoid tissues were isolated for flow
cytometric analysis. All mice were housed in a pathogen-free
facility at Konkuk University (Seoul, Korea). All animal
experiments were approved by the Institutional Animal Care
and Use Committee (IACUC) of Konkuk University.

CD1dhiPD-L1hiCD27+ NKreg Subset
Adoptive Transfer
Live splenic CD1dhiPD-L1hiCD27+NK1.1+ NK subset or CD1dlo/
−PD-L1lo/−CD27−NK1.1+ NK subset were isolated with a
FACSAria system (BD Bioscience, San Jose, CA, USA). The
purity of these cells was more than 95%. For in vivo adoptive
transfer, each NK subset (2 x 105 cells/0.2 ml of PBS) was
transferred intravenously into recipient mice at 24 hours
before challenge with MC903 to induce atopic dermatitis. For
the depletion of TGF-b , the mice were also injected
intraperitoneally with 300 mg of anti-TGF-b mAb (1D11.16.8,
Bio X Cell, West Lebanon, NH) or an isotype-matched control
IgG1 every 3 days (on day 0, 3, 6, and 9) (35, 36).

Flow Cytometric Analysis
Single-cell suspensions were isolated from the spleen, cLN, and ear.
Especially, ear tissue-derived single-cell suspensions were
dissociated using a gentleMACS dissociator (Miltenyi Biotec,
Bergisch Gladbach, Germany). For the detection of intracellular
cytokines or Foxp3 in cells isolated from each tissue, isolated cells
were stimulatedwithphorbol 12-myristate 13-acetate (PMA,50ng/
ml, Sigma Aldrich, St. Louis, MO, USA), ionomycin (500 ng/ml,
Sigma Aldrich), and Brefeldin A (3 mg/ml, eBioscience, San Diego,
CA, USA) for 4 hours. Prior to cell surface markers staining, Fcg
receptors were blocked with anti-CD16/CD32 mAbs (2.4G2, BD
Biosciences). Conjugated and dead cells were excluded by analysis
basedon forwardand side light scatterparameters and stainingwith
a Zombie NIR™ Fixable Viability kit (Biolegend, San Diego, CA,
USA). Antibodies against surface proteins including CD1d (1B1),
CD2 (RM2-5), CD4(RM4-5), CD11b (M1/70), CD11c (N418),
CD18 (M18/2), CD49b (DX5), CD62L (MEL-14), CD127
TABLE 1 | Values are presented as mean ± SD.

Characteristics Healthy control AD patients p value

Number n=5 n=8
SCORAD index 0 25.73±3.126
IgE (IU/ml) 61.02±21.4 695.6±254 p=0.0785
Eosinophils/ml 66.64±6.997 564.4±146.5 p=0.0230
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(A7R34), CD161b/c (PK136), CD244 (2B4), ICOS (C398.4A),
NKG2D (CX5), NKp46 (29A1.4), MHCII (M5/114.15.2), and
LAP (TW7-16B4) were obtained from eBioscience. Antibodies
for CD3 (17A2), PD-L1 (10F.9G2), CD49a (HMa1), and CD127
(A7R34) were obtained fromBioLegend (SanDiego, CA,USA). An
anti-CD27 (LG.3A10) antibody was purchased from BD
Biosciences. Antibodies for intracellular staining of IL-4 (11B11),
IL-10 (JES5-16E3), IL-13 (eBio13A), T-bet (eBio4B10), and Foxp3
(FJK-16s) and a fixation/permeabilization kit were bought from
eBiosciences. Anti-Eomes (W17001A) and Anti-CD3 (17A2)
antibodies were purchased from BioLegend. For flow cytometric
analysis of human TGF-b+ NK cells, human subject-derived
peripheral blood mononuclear cells (PBMCs) were isolated by
density gradient separation using Ficoll-Paque (GE Healthcare).
Anti-CD3 (HIT3a, eBioscience), CD56 (CMSSB, eBioscience), and
TGF-b1 (9016, R&D Systems, Minneapolis, MN) antibodies were
used.Cellswere stimulatedwithPIB for 4hours before analysiswith
aFACSCanto IIflowcytometer (BDBioscience) andFlowJoversion
10 software (Tree Star, Ashland, OR, USA).

Quantitative Real Time-PCR
TotalRNAswere extracted frommouse splenicNKsubsets or earNK
cells using anRNA isolation kit easy-BLUE (iNtRONBiotechnology,
Gyeonggi, Korea). cDNA synthesis and real-time PCR were
performed on a LightCycler®480 II using the LightCycler® 480
SYBR green I master mix (Roche Diagnostics, Mannheim,
Germany) according to the manufacturer’s instructions. PCR
amplification of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as a housekeeping gene was performed for each sample
fornormalizationbetween samples.The intensityof the expressionof
each gene was quantitated using a LightCycler®480 Software 1.5.0
(Roche Diagnostics). The following primers were used: Tgfb1
(Forward: 5′-CACCATCCATGACATGAACC-3′, Reverse: 5′-
TCATGTTGGACAACTGCTCC-3′); Gapdh (Forward: 5′-AAT
GCATCCTGCACCACCAA-3′ , Reverse: 5′-GGAGGCA
TGTAGGCCATGAGGTC-3′).

Statistical Analysis
Data are expressed as mean ± standard error of the mean (SEM)
from three or more independent in vitro or in vivo experiments.
All statistical analyses were performed with Student’s t-test or
one-way analysis of variance (ANOVA) with Tukey’s post hoc
test. Statistical significance (*p < 0.05 and **p < 0.01) was
determined with a GraphPad Prism 7.0 software (GraphPad
Inc., San Diego, CA, USA).
RESULTS

Alteration of Population of TGF-b-Producing
NK Cells in Mice With Atopic Dermatitis
Accumulating evidences have indicated that NK cells are closely
associated with AD progression in humans (37). We further
investigated whether TGF-b+ NK cells might be involved in AD
progression in humans through peripheral blood monocytes
(PBMCs) from healthy controls and AD patients (Table 1). As
reported, the population of total NK cells in PBMCs was
Frontiers in Immunology | www.frontiersin.org 3
decreased in AD patients than in healthy controls (Figures 1A, B).
We also found that the population of TGF-b+ NK cells was
reduced in PBMCs from AD patients (Figure 1C). To further
characterize the potential role and mechanism of TGF-b+ NK
cells to control AD symptom, we first checked population changes
of TGF-b+ NK cells in normal mice (Figure 1D). We found that
the frequency of splenic TGF-b1/latency associated peptide
(LAP)+ (as TGF-b1) NK cells was higher in NK cells than in T
cells or non-NK/T cells (Figure 1D). Interestingly, the frequency
of LAP+ NK cells was decreased in spleen and cLN while the
population of LAP+ NK cells was increased in ear tissues of mice
with AD compared to that in normal mice (Figures 1E, F). We
further observed that the expression of TGF-b mRNA from
splenic or ear NK cells was changed in mice with AD compared
to that in normal mice (Figure 1G). On the other hand, the
population of LAP+CD3+ T cells did not show a significant
change in spleen, cLN, and ear according to the development of
AD (Supplementary Figure 1). Additionally, we also evaluated
the expression of another anti-inflammatory cytokine, IL-10, but
this also did not show any significant difference under normal or
AD mice in vivo (Supplementary Figure 2A). Taken together,
these results confirm that the tissue-specific population of
LAP+ NK cells has a very closely associated with the disease
development of AD mice.

Identification of Surface Phenotype for
TGF-b+ NK Cells
To find unique phenotypical surface makers of TGF-b+ NK cells,
expression levels of potential NK cell surface makers in LAP+ and
LAP− splenic NK cells were compared. As shown in Figure 2,
expression levels of CD1d, CD2, CD18, CD27, CD49b, PD-L1,
NKG2D, andMHCIIwere increased inLAP+NKcells than inLAP−

NK cells (Figure 2). It has been reported that the CD27+ NK cell
subset is a unique subset for theproductionof effector cytokines and
thatCD11b+NKcell subset has a strong cytotoxicity (38, 39). In our
results, LAP+ NK cells showed high CD27 expression and low
CD11b expression compared to LAP− NK cells. Therefore, LAP+

NK cells might be capable of producing cytokines rather than
causing cytotoxicity in NK subsets. In addition, we found that
expression levels of CD1d and PD-L1 in LAP+NKcells were higher
than those in LAP− NK cells (Figure 2C).

TGF-b+ NK Cells Are Largely Included in
CD1dhiPD-L1hiCD27+ NK Cell Subset
The above results prompted us to investigate whether the
development of TGF-b+ NK cells might be associated with
expression levels of CD1d, CD27, and PD-L1 on NK cells.
CD27 was highly expressed on LAP+ NK cells than on LAP−

NK cells (Figures 3A, B). The population of CD1dhigh and PD-
L1high NK cell subset was observed in 28.7 ± 1.5% of LAP+CD27+

NK cells (Figure 3C). Additionally, we analyzed the population
of LAP+ NK cells in other NK cell subsets such as CD1dhiPD-
L1hiCD27+NK, CD1dloPD-L1loCD27+NK, CD1dhiPD-
L1hiCD27-NK, and CD1dloPD-L1loCD27- NK subsets. Among
them, the CD1dhiPD-L1hiCD27+NK subset had the highest
frequency (32.6 ± 2.0%) of LAP+ NK cells in healthy control
mice (Figures 3D, E). These results suggest that the expression of
January 2022 | Volume 12 | Article 752888
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CD27, CD1d, and PD-L1 is closely associated with TGF-b
production in NK cells.

Populations of TGF-b+ NK Cells Are
Correlated With the CD1dhiPD-L1hiCD27+

NK Subset in Peripheral Tissues
In the above phenotypical analysis, we found that CD1dhiPD-
L1hiCD27+ NK subset had the highest expression than other NK
subsets (Figure 3). Next, we checked how unique CD1dhiPD-
L1hiCD27+ NK subsets were for TGF-b production compared to
other NK subsets. In the experiment using CD1dhiPD-L1hiCD27+

and CD1dloPD-L1loCD27− NK subsets (Figure 4A), we further
found that the expressionofTGF-bwasmuchhigher inCD1dhiPD-
L1hiCD27+ NK subsets than in CD1dloPD-L1loCD27− NK
subsets (Figure 4B).
Frontiers in Immunology | www.frontiersin.org 4
Next, we tested whether the expression of TGF-b in NK cells
was associated with population change of CD1dhiPD-L1hiCD27+

NK subset in ADmouse model. Consistent with the above results
(Figures 1E, F), we further discovered that the frequency and
number of CD1dhiPD-L1hiCD27+ NK subsets were also
decreased in the spleen and cLN but increased in ears of mice
with AD (Figures 4C–F). As in the proportion of total TGF-b+

NK cells in Figure 1F, the proportion of CD1dhiPD-L1hiCD27+

NK subsets was also decreased in lymphoid tissues and increased
in the target skin lesions. TGF-b production in CD1dhiPD-
L1hiCD27+ NK subsets was also synergistically changed. These
results indicate that population changes of TGF-b+ NK cells are
closely associated with those of CD1dhiPD-L1hiCD27+ NK
subsets in mice with AD. Like a Supplementary Figure 2A, we
also compared the expression of IL-10, another anti-
A

B

D

E F G

C

FIGURE 1 | Population changes of TGF-b+ NK cells in an atopic dermatitis model. (A) Representative plot images showing TGF-b+CD56+CD3– PBMCs from healthy
controls (n = 5) or atopic dermatitis patients (n = 8). (B) Histograms showing frequencies of total NK cells and (C) TGF-b+ NK cells for panel (A). (D) Representative
flow cytometry images showing TGF-b+ leukocytes (NK cells, T cells, and Non-T/NK cells) in mouse spleen tissues. (E) Representative plot images showing LAP
(latent TGF-b)+ NK cells in spleen, cLN, ear tissues from AD mouse model. (F) Histograms showing frequencies of TGF-b+ NK cells for panel E (n = 6). (G) Histograms
showing gene expression of TGF-b isolated from splenic (n = 5) or ear (n = 6) NK cells. All values represent the mean ± SEM. *p < 0.05; **p < 0.01.
January 2022 | Volume 12 | Article 752888
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inflammatory cytokine, in the suggested CD1dhiPD-L1hiCD27+

NK subsets, but showed no AD-dependent changes in each
lymphoid tissue (Supplementary Figure 2B). Altogether, these
results suggest that the CD1dhiPD-L1hiCD27+ NK subset
contains a large portion of TGF-b-producing NK subset.

CD1dhiPD-L1hiCD27+ NK Subsets
Suppress Symptoms of AD via
Suppression of ILC2s in Mice
There are three types of innate lymphoid cells (ILCs) such as type
1, type 2, and type 3 ILCs (40, 41). Among them, type 2 ILC is
well recognized to be able to induce allergic inflammation by
Frontiers in Immunology | www.frontiersin.org 5
secreting IL-4, IL-5, and IL-13 as by TH2 cells in various allergic
responses (42–44). In particular, ILC2 has been accepted as a
major effector cell type for the secretion of IL-5 and IL-13 in
MC903-induced AD mice (8, 9). Hence, we checked whether
CD1dhiPD-L1hiCD27+ NK subset could suppress the population
of ILC2 in the AD mouse model. To test this, we adoptively
transferred CD1dhiPD-L1hiCD27+ NK subsets or CD1dloPD-
L1loCD27− NK subsets as the control into MC903-induced AD
mice. Adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets but
not CD1dloPD-L1loCD27− NK subsets largely suppressed
symptoms of AD in mice (Figure 5A). The thickness for
representing ear swelling was reduced largely by the transfer of
A B

C

FIGURE 2 | Characterization of TGF-b+ NK cells in mouse. (A) Heat map showing fold change of surface protein molecules expression between TGF-b+ and
TGF-b− splenic NK cells by flow cytometric analysis. The ratio values of LAP+/LAP– NK protein mean fluorescence intensity (MFI) expression for each group were
expressed from 0 to 3 folds (n = 5). (B) Representative histogram images for flow cytometric analysis of cell surface molecules of TGF-b+ and TGF-b− NK cells.
(C) Histograms showing the MFI of each surface molecules on NK cells. Results are expressed as representative images and the mean ± SEM from five independent
experiments. *p < 0.05; **p < 0.01; n.s., not significant.
January 2022 | Volume 12 | Article 752888
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CD1dhiPD-L1hiCD27+ NK subsets, but not by CD1dloPD-
L1loCD27− NK subsets (Figure 5B). These results suggest that
TGF-b-producing CD1dhiPD-L1hiCD27+ NK subsets play a
pivotal role in the inhibition of MC903-induced AD
symptoms. Besides, adoptive transfer of CD1dhiPD-L1hiCD27+

NK subsets but not CD1dloPD-L1loCD27− NK subsets
significantly inhibited numbers of IL-13+ ILC2s in spleen, cLN,
and ear tissues of AD mice (Figures 5C-E). In more detail, these
results showed that although the distribution of ILC2 in each
tissue was suppressed by administration of CD1dhiPD-
L1hiCD27+ NK subsets (Figure 5C), IL-13 expression in ILC2
was not restricted (Figure 5D). These results suggested that the
adoptive transfer effect of the CD1dhiPD-L1hiCD27+ NK subset
Frontiers in Immunology | www.frontiersin.org 6
resulted from the suppression of the increase in the number of
IL-13+ ILC2 in peripheral tissues of mice with AD (Figure 5E).
CD1dhiPD-L1hiCD27+ NK Subsets
Suppress the Development of Atopic
Dermatitis Through Inhibition of TH2 and
Maintenance of Treg in T Cell Immunity
To determine how CD1dhiPD-L1hiCD27+ NK subsets affected the
developmentofAD,weobserved changes in the populationof IL-4+

TH2 and Foxp3+ Tregs cell in CD1dhiPD-L1hiCD27+ NK subsets
transferred AD mice. We found that the number of TH2 cells was
significantly reduced in CD1dhiPD-L1hiCD27+ NK subsets
A

B

D

E

C

FIGURE 3 | CD1dhiPD-L1hiCD27+ subset is TGF-b-Producing regulatory NK cells. (A) Gate strategies for LAP+ NK cells. (B) Representative flow cytometry images,
(C) Histograms for the frequency of CD1dhiPD-L1hi subsets in LAP+CD27+ NK cells (n = 6). (D) Representative flow cytometry images and (E) histograms for the
frequency of LAP+ subsets in CD1dhiPD-L1hiCD27+ NK cells (n = 6). Data are expressed as mean ± SEM. **p < 0.01.
January 2022 | Volume 12 | Article 752888
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transferred AD mice compared to that in CD1dloPD-L1loCD27−

NK subsets transferred AD mice (Figures 6A, B). It is generally
accepted that TGF-b can induce Treg cells activity in murine and
human (45). Thus, we further tested whether the effect of adoptive
transferred CD1dhiPD-L1hiCD27+ NK subsets influenced the
change of Treg cell population. Results showed that adoptive
transfer of CD1dhiPD-L1hiCD27+ NK subsets did not cause any
change in the number of Treg cells in spleen or cLN (Figure 6B).
However, reduced number of Treg cells was observed in ear tissues
after adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets
(Figures 6C, D) probably caused by a decrease in total CD4+ TH
Frontiers in Immunology | www.frontiersin.org 7
cells in skin lesions. It seems to be a phenomenon that the
infiltration of immune cells into the target tissue is reduced as
much as the reduction of AD aggravation. We also found that the
population and number of spleen-derived CD4+ TH cells were not
different (Figure 6E). However, the ratio of Treg cells per effector
TH2 cellswasmuchhigher after the adoptive transfer ofCD1dhiPD-
L1hiCD27+ NK subsets compared to that of CD1dloPD-L1loCD27−

NK subsets (Figure 6F). Furthermore, we applied a TGF-b
neutralizing antibody to AD mice to check whether the inhibitory
effect of the CD1dhiPD-L1hiCD27+ NK subsets was indeed TGF-b-
dependent in vivo. When the TGF-b neutralizing antibody was
A B

D

E F

C

FIGURE 4 | Correlation between TGF-b-Producing NK cells and CD1dhiPD-L1hiCD27+ NKreg subsets in an AD mouse model. (A) Splenic CD1dhiPD-L1hiCD27+ or
CD1dloPD-L1loCD27– NK subsets were isolated from mice by sorting with a FACSAria flow cytometer. Representative flow cytometry images and purities of sorted
cells. (B) Histograms showing gene expression of TGF-b from the splenic CD1dhiPD-L1hiCD27+ or CD1dloPD-L1loCD27– NK subsets (n = 5). (C) Representative flow
cytometry images and (D) histograms for the frequency of CD1dhiPD-L1hi subsets in LAP+CD27+ NK cells in spleen, cLN, and ear from AD mouse (n ≥ 6 per each
group). (E) Representative flow cytometry images and (F) histograms for the frequency of LAP+ in CD1dhiPD-L1hiCD27+ NK cells in spleen, cLN, and ear from AD
mouse (n ≥ 6 per each group). All values represent the mean ± SEM. *p < 0.05; **p < 0.01.
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treated, the inhibitory effect of the adoptively transferred NK
subsets was restored in the ear swelling of the MC903-induced
ADmousemodel (Figure6G).Altogether, these results suggest that
CD1dhiPD-L1hiCD27+ NK subsets can suppress TH2 cells
development in MC903-induced AD mouse model and affect the
balance of inflammatory or regulatoryT cells. And itwas confirmed
that it was TGF-b-dependent to limit the exacerbation of AD
mouse model.
DISCUSSION

NK cells are well recognized as innate immune cells that
participate in various immune responses to viral infections or
cancers by exhibiting anti-viral or anti-tumor effects (46–48).
Although NK cells are lymphocytes, like other types of innate
Frontiers in Immunology | www.frontiersin.org 8
lymphoid cells (ILCs), they are generally involved in both innate
immunity and adaptive immunity. NK cells are fundamental
immune cells that play important roles in the initiation of
immune responses and body homeostasis (49). They usually
secrete signature cytokine such as IFN-g. They are involved in the
formation of TH1 immunity in the body. They are known to play
a crucial role in eliminating infected or tumor cells through
secretion of intrinsic digestive enzymes (50, 51). Previous studies
have shown that the frequency of NK cells in the body is
generally decreased in various cancer diseases. This trend is
considered to be due to the immune escape mechanism of cancer
cells from host immune surveillance (52, 53). Recent studies have
reported that NK cells are decreased in PBMCs from AD patients
(34). This trend predicts that maintaining the balance of the
number of NK cells and the immune circumstance will be
important for the pathogenesis of allergy diseases such as AD.
A B

D

E

C

FIGURE 5 | Adoptive transferred NKreg subsets inhibits IL-13+ ILC2s activity and atopic dermatitis responses. (A) Ear thicknesses and (B) Representative ear images in
MC903-induced AD mice with or without the transfer of CD1dhiPD-L1hiCD27+ or CD1dloPD-L1loCD27– NK subset. (C) Representative flow cytometry images for the
frequency of Lin–CD45+CD127+ICOS+ (ILC2s), (D) IL-13+ ILC2s, and (E) histograms for the number of IL-13+ ILC2s in spleen, cLN, and ear from AD mice with or without
transfer of CD1dhiPD-L1hiCD27+ or CD1dloPD-L1loCD27– NK subset (n = 6). Data are expressed as mean ± SEM. *p < 0.05; **p < 0.01; n.s., not significant.
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Our results also showed that the frequency of NK cells
(CD56+CD3−) in the blood of AD patients was reduced
(Figures 1A, B). Previous studies have found that NK cells are
decreased in the blood of atopic dermatitis patients but increased
in AD lesions, suggesting that NK cells can migrate to control
peripheral TH2 responses (34). However, the definite cause and
mechanism of the alteration of NK cells in AD remain unclear.
Therefore, we focused on another perspective to understand NK
cells in atopic dermatitis. In addition to the well-known classical
function, NK cells are known to have a subset of regulatory
functions like other immune cells (14, 54).
Frontiers in Immunology | www.frontiersin.org 9
In the past, researchers have paid attention to the etiological
aspect caused by changes in the distribution and activity of a
subset of specific immune cells due to breakdown of the balance
of immune state in the body. In the 2000s, it was found that some
sub-phenotypes of immune cells, including regulatory T cells
(Tregs), were regulatory subsets that could restore the body’s
immune status to normal through immunomodulation or
induction of immune tolerance (55). Previous studies have
shown that T cells are Tregs, B cells are regulatory B cells
(Bregs), monocyte/neutrophils are myeloid-derived suppressor
cells (MDSCs), macrophages are M2 or alternative macrophages,
A

B D

E F G

C

FIGURE 6 | Adoptive transferred TGF- b-producing NK subsets suppresses TH2 response and helps balance between effector and regulatory T cells. (A) Representative
flow cytometry images and (B) histograms for the number of TH2 cells in spleen, cLN, and ear from AD mice after adoptive transfer CD1dhiPD-L1hiCD27+ or
CD1dloPD-L1loCD27– NK subset (n = 6). (C) Representative flow cytometry images and (D) histograms for the number of TH2 cells in spleen, cLN, and ear
from AD mice (n = 6). (E) Histograms for the frequency and number of total TH cells in spleen from AD mice with or without transfer of CD1dhiPD-L1hiCD27+

or CD1dloPD-L1loCD27– NK subset. (F) Histograms showing the ratio of Foxp3+ Treg cells per IL-4+ TH2 cells from spleen tissues as indicated (n = 4). Data
are expressed as mean ± SEM. *p < 0.05; **p < 0.01; n.s., not significant. (G) The ear thickness of CD1dhiPD-L1hiCD27+ NK subset transferred MC903-
induced AD mice with or without anti-TGF-b mAb treatment are shown (n = 7). The results are expressed as the mean ± SEM from two independent
experiments. **P < 0.01 versus MC903+PBS i.v.+IgG (black**) or MC903+CD1dhiPD-L1hiCD27+ NK i.v.+aTGF-b mAb (red**).
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dendritic cells (DCs) are tolerogenic DCs, and ILCs are
regulatory ILCs. Thus, a regulatory phenotype has been
reported for each immune cell (56–61). These regulatory
immune cells can differentiate to have their own characteristic
functions by secreting anti-inflammatory cytokines such as IL-10
and TGF-b to control pro-inflammatory cells (62).

It is also known that NK cells have a regulatory type (called
NKreg or NK3) (14). In addition to dividing effector functions
into NK1 or NK2 cells according to inflammatory types, it has
been proposed that secreting IL-10 or TGF-b can control
excessive inflammatory responses (27, 28). It has been reported
that NK cells can secrete anti-inflammatory cytokines such as IL-
10 and TGF-b through secretion profiling, although there are
only a small population of NK cells in the whole body. Especially,
IL-10-producing NK cells are known to control the activation of
T cells while Prf1−/− mice-derived IL-10+ NK cells regulate CD8+

T cells and contribute to immunological maintenance in mouse
cytomegalovirus (MCMV) infection (25, 26). In human studies, a
regulatory NK subset that can secrete IL-10 and TGF-b has been
reported (26, 27). It has been confirmed that IL-10 and TGF-b-
producing NK cells exist in peripheral blood mononuclear cells
and decidua in pregnant women. In particular, TGF-b-
producing NK cells are significantly increased in decidua. It
has been suggested that these regulatory NK cells contribute to
pregnancy tolerance (26, 27). The present study showed that
TGF-b-producing NK cells were present in human PBMCs. It
also revealed that not only NK cells, but also TGF-b+ NK cells
were decreased in allergic patients (Figure 1C). We employed
MC903, a representative atopic dermatitis mouse model, to find
changes in TGF-b+ NK cells in atopic dermatitis mice. Although
there was a difference in the total number of lymphocytes,
interestingly, TGF-b expression was higher in NK cells than in
other lymphocytes of mouse spleen. Thus, we could predict that
NK cells are an important source of TGF-b (Figure 1D). After
MC903 treatment, TGF-b+ NK cells were significantly reduced in
mouse spleen and cervical LN (cLN), a draining lymph node
(LN), whereas these cells were increased in ear tissues, a
peripheral target site of the disease (Figures 1E–G). As
mentioned above, these patterns are similar to the migration
pathway of classical IFN-g+ NK cells in atopic dermatitis (34).

Previous studies have predicted that NK cells also have a
regulatory type that can secrete anti-inflammatory cytokines
such as IL-10 and TGF-b and that they are expected to be
involved in immune tolerance or regulation (14). However,
elucidation of the characteristic phenotype of NKreg is still
insufficient. Through this study, we analyzed the expression of
major receptors in mouse TGF-b+ NK cells (Figure 2) and found
high TGF-b expression (32.6 ± 2.0%) in CD1dhiPD-L1hiCD27+

NK subsets (Figure 3). However, it is necessary to evaluate
whether our proposed TGF-beta-producing NK subsets overlap
with T cells, NKT cells, gdT cells or helper ILC1s. Therefore, as a
result of the confirmation, it can be seen that the TGF-beta-
producing NK subsets is CD3−CD49a−CD49b+Eomes+T-bet+

conventional NK cells (Supplementary Figure 3).
We proposed that these highly TGF-b-expressing NK cells

were splenic CD1dhiPD-L1hiCD27+ subsets. Several human NK
Frontiers in Immunology | www.frontiersin.org 10
cell studies have suggested an antigen-presenting role of NK
cells. CD1d is a non-polymorphic, MHC class I-like molecule
(63, 64). It is well known that CD1d usually presents antigens
such as glycolipids, including a-galactosylceramide (a-GC), to
CD1d-restricted NKT cells (65). CD1d is mostly expressed in
innate immune cells such as DC, macrophages, B cells, and ILCs.
In our study, it was confirmed that CD1d expression of TGF-b+

NK cells was high than TGF-b− NK cells (66, 67). PD-L1 is well
known to be expressed in NK cells as a representative
immunosuppression marker (68). The murine CD27
expressing NK cell is exhibits potent cytokine production and
high migratory capacity (39). Their correlation with the
distribution pattern of TGF-b-producing NK subsets in AD
was also determined. As a result, with AD development,
CD1dhiPD-L1hiCD27+ NK subsets were decreased in lymphoid
organs such as spleen and cLN, but markedly increased in the ear
(Figure 4). Based on these results, we can explain that the
CD1dhiPD-L1hiCD27+NK1.1+CD3− phenotype in mice is due
to TGF-b-producing regulatory NK subsets. In addition, the
distribution of CD1dhiPD-L1hiCD27+ NK subsets was decreased
in spleen and draining LN from AD mouse model, suggesting
that this distribution might be increased in skin lesions where
type 2 inflammation appears.

This study not only suggested a phenotype of TGF-b+ NK
cel l s , but a lso confirmed that the proposed TGF-
b+CD1dhiPD-L1hiCD27+ NK subsets could regulate type 2
i n fl a mm a t i o n l i k e A D . T o d e m o n s t r a t e t h e
immunomodulatory effect of TGF-b-producing CD1dhiPD-
L1hiCD27+ NK subset in vivo, we separated CD1dhiPD-
L1hiCD27+ NK subsets and CD1dloPD-L1loCD27− NK
subsets and adaptively transferred before MC903 induction
of AD using a mouse model. Compared to vehicle mice
(MC903+PBS i.v.) and CD1dloPD-L1loCD27− NK subsets
transferred mice, significant inhibitory effects were observed
in CD1dhiPD-L1hiCD27+ NK subsets (Figures 5A, B).

Type 2 innate lymphoid cells (ILC2s) have recently been
proposed as important effector cells in allergic responses. They
are involved in peripheral allergic conditions through secretion
of IL-4, IL-5, and IL-13 (42–44). We tested how CD1dhiPD-
L1hiCD27+ NK subsets could affect the activity of ILC2 in the AD
mouse model and found a decrease of systemic ILC2
(Figures 5C–E).

AD is well known as a typical chronic allergic disease. The
classical immune system is initiated as allergen, resulting in a
hypersensitivity reaction mediated by innate immune cells
followed by a TH2-cell mediated chronic inflammatory
response (4). It is difficult to adequately overcome atopic
dermatitis by controlling only the initial hypersensitivity
reaction by innate immune cells. Thus, we tested how TGF-b-
producing CD1dhiPD-L1hiCD27+ NK subsets could affect the
activity of TH2 effector cells in AD through in vivo adaptive
transfer. Results confirmed that the addition of TGF-b-
producing NK subsets induced a decrease in TH2 cells without
controlling the number of total T cells in lymphoid organs,
thereby blocking the activity of T cells polarizing with
TH2 (Figure 6).
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It is well known that TGF-b can induce T cells into Foxp3+

regulatory T cells (iTregs) among several immunomodulatory
functions (36, 69). In addition, Treg cells are the most
representative immunomodulatory cells known to regulate
various allergic disorders such as atopic dermatitis through
several studies (70, 71). Therefore, we considered whether the
control of TH2-mediated inflammatory responses such as ILC2s
and TH2 cells by CD1dhiPD-L1hiCD27+ NK subsets could be
correlated with Foxp3+ Treg cells. In our results, CD1dhiPD-
L1hiCD27+ NK subsets did not directly control the number of
Foxp3+ Treg cells in lymphoid tissues compared to its inhibitory
effect on TH2-mediated inflammatory cells. On the other hand,
the number of Foxp3+ Treg cells was decreased in in the ear from
the CD1dhiPD-L1hiCD27+ NK-treated group (Figures 6C, D). It
was found that Foxp3+ Treg cells were maintained by inhibiting
TH2 cells activity without changing the distribution or the
number of CD4+ T cells in the spleen. Therefore,
administration of CD1dhiPD-L1hiCD27+ NK subsets in an AD-
induced state can increase the ratio of Foxp3+ Treg cells
compared to PBS control (Figures 6E, F). The decrease of
Foxp3+ Treg cells in CD1dhiPD-L1hiCD27+ NK subsets
administered ear appeared to result in reduced infiltration of
CD4+ cells in ears. It can be seen that the disease improvement
effect of CD1dhiPD-L1hiCD27+ NK subsets administration lies in
the inhibition of infiltration of peripheral CD4+ T cells rather
than the induction of an increase of peripheral Treg cells.
According to this, CD1dhiPD-L1hiCD27+ NK subsets mainly
controls T cell-mediated inflammatory responses in lymphoid
tissues. Thus, treatment with CD1dhiPD-L1hiCD27+ NK subsets
decreased TH2 but increased the ratio of Treg cells in the spleen
and draining lymph node.

In conclusion, we found that CD1dhiPD-L1hiCD27+ was a
unique TGF-b-producing NK subset and that treating such
regulatory subset in a mouse AD disease model inhibited TH2-
mediated effector cells and helped improve disease exacerbation.
Although more diverse mechanism studies and mutual
evaluation in human studies are needed, results of this study
suggest that NK cell-derived regulatory subset can be used in
various ways as a novel immune disease treatment strategy.
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