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ABSTRACT There has been no prior application of matched metagenomics and
metatranscriptomics in Clostridioides difficile infection (CDI) evaluating the role of
fungi in CDI or identifying community functions that contribute to the development
of this disease. We collected diarrheal stools from 49 inpatients (18 of whom tested
positive for CDI) under stringent inclusion criteria. We utilized a tiered sequencing
approach to identify enriched bacterial and fungal taxa, using 16S and internal tran-
scribed spacer (ITS) rRNA gene amplicon sequencing, with matched metagenomics
and metatranscriptomics performed on a subset of the population. Distinct bacterial
and fungal compositions distinguished CDI-positive and -negative patients, with the
greatest differentiation between the cohorts observed based on bacterial metatran-
scriptomics. Bipartite network analyses demonstrated that Aspergillus and Penicillium
taxa shared a strong positive relationship in CDI patients and together formed nega-
tive cooccurring relationships with several bacterial taxa, including the Oscillospira,
Comamonadaceae, Microbacteriaceae, and Cytophagaceae. Metatranscriptomics re-
vealed enriched pathways in CDI patients associated with biofilm production primar-
ily driven by Escherichia coli and Pseudomonas, quorum-sensing proteins, and two-
component systems related to functions such as osmotic regulation, linoleic acid
metabolism, and flagellar assembly. Differential expression of functional pathways
unveiled a mechanism by which the causal dysbiosis of CDI may self-perpetuate, po-
tentially contributing to treatment failures. We propose that CDI has a distinct
fungus-associated bacteriome, and this first description of metatranscriptomics in
human subjects with CDI demonstrates that inflammation, osmotic changes, and
biofilm production are key elements of CDI pathophysiology.

IMPORTANCE Our data suggest a potential role for fungi in the most common nos-
ocomial bacterial infection in the United States, introducing the concept of a trans-
kingdom interaction between bacteria and fungi in this disease. We also provide the
first direct measure of microbial community function in Clostridioides difficile infec-
tion using patient-derived tissue samples, revealing antibiotic-independent mecha-
nisms by which C. difficile infection may resist a return to a healthy gut microbiome.

KEYWORDS Clostridioides difficile, metagenomics, metatranscriptomics, microbiome,
mycobiome

Clostridioides difficile infection (CDI), the most common etiology of nosocomial
infectious diarrhea, is caused by an intestinal dysbiosis that is virtually always

attributable to antibiotics. There is a growing body of data showing that distinct
bacterial and fungal community structures distinguish the dysbiotic state of CDI from
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antibiotic-associated diarrhea due to other causes (1–4). Our group has previously
observed (5) that CDI is associated with the enrichment of microbial taxa with both
mucinolytic activity as well as with the capacity to produce xenobiotic compounds with
possible antibiotic-like effects, all of which may perpetuate the dysbiotic state and,
thus, CDI itself. Based on work focused on cooccurrence network modeling, our group
has also observed (5) a possible transkingdom interaction in CDI between fungal and
bacterial consortia, while CDI-negative control patients with diarrhea demonstrated
virtually no fungal enrichment. Additionally, predictive metagenomics tools revealed
the enrichment of pathways in CDI associated with lipopolysaccharide and arachidonic
acid synthesis as potential proinflammatory mediators, as well as revealing enrichment
of pathways associated with glycan and xenobiotic biosynthesis, further explaining why
C. difficile is selectively advantaged to exploit new environmental niches created
through compositional and functional perturbations introduced in dysbiotic states.

Previous studies on CDI have generally been restricted to the amplification of
small-subunit RNA (16S rRNA gene) to identify the bacterial communities enriched in
CDI. Utilization of internal transcribed spacer (ITS) rRNA sequencing as a target for
fungal community profiling is usually omitted from these studies, leading to a paucity
of data regarding the role of the mycobiome in CDI (6). In addition, to date there has
been limited application of metagenomics (MG) and no application of metatranscrip-
tomics (MT) to the study of CDI in humans, in part due to their high cost. MG allows for
the sequencing of genes beyond 16S rRNA, enabling a description of the underlying
genetic potential of a given microbial community, while MT analysis reveals function-
ally active bacteria within an ecosystem. When combined, these techniques identify the
organisms, and their activities, most important to a disease state (7).

In this study, we provide the first published merged omics data comparing inpa-
tients with diarrhea, with and without CDI, by using whole-metagenome shotgun
sequencing and metatranscriptomics. We discuss several novel functional pathways by
which the CDI disease state may persist, independent of issues of antibiotic resistance.
Additionally, we examine a role for fungal organisms in CDI.

RESULTS
Description of study population. The mean age of CDI patients was

65.3 � 17 years, while non-CDI subjects had a mean age of 60 � 18 years (P � 0.32 by
t test). There was no difference in gender or the mean number of chronic comorbidities
harbored by patients in either cohort (P � 0.05), with the most common chronic
medical conditions being systemic hypertension, non-insulin-dependent diabetes mel-
litus, and coronary artery disease. There was also no difference in the incidence of
antibiotic use prior to stool samples being collected, either in terms of presence or
absence of antibiotics or in terms of number of antibiotics (P � 0.05). Metadata can be
found in Fig. S1 in the supplemental material. Bacterial and fungal community profiling
is described in the supplemental material (Text S2).

Insignificant differences in fungal and bacterial species richness and evenness
observed between CDI� and CDI� cohorts. Considering the 16S data set, bacterial
community species richness and evenness was not found to be significantly different
between CDI� and CDI� cohorts (observed richness, P � 0.076; Heip’s evenness,
P � 0.841) despite an observed lower average species richness within CDI� samples
(CDI� observed species mean, 93.408 � 23.12; CDI� observed species mean, 121.76 �

58.26). A significant decrease in alpha diversity within CDI� samples was observed
using the PD whole-tree metric (P � 0.015). Fungal community species richness and
evenness were not significantly different between CDI� and CDI� cohorts (observed
richness, P � 0.26; Heip’s evenness, P � 0.112). A summary of alpha diversity compar-
ison statistics can be found in Table 1.

Significantly different bacterial and fungal community structures exist within
CDI� and CDI� individuals. Principal coordinate analysis (PCoA) plots revealed sig-
nificant differences in bacterial and fungal community composition between CDI� and
CDI� cohorts. This is demonstrated by distinct clustering between the disease states
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(Fig. 1A and B) and was significant considering both 16S and ITS data sets (16S analysis
of similarity [ANOSIM], P � 0.022; ITS ANOSIM, P � 0.038). Multivariate association with
linear model (MaAsLin) analysis of bacterial abundance data is summarized in Table 2
and revealed a total of seven significantly enriched bacterial biomarkers and no
significantly enriched fungal biomarker within the CDI� cohort (Tables 2 and 3). Within
the CDI� cohort, nine bacterial and two fungal significantly enriched biomarker taxa
were identified. Bacterial taxa, including Faecalibacterium and Collinsella, were enriched
within the CDI� cohort. Bacterial taxa within the Clostridiaceae, Peptostreptoccocaceae,
and Enterococcus were identified as significantly enriched biomarkers within the CDI�

cohort. We identified the fungal genera Byssochlamys and Helotiales as significantly
enriched within the CDI� cohort.

Network analysis reveals negative interactions between fungi and commensal,
butyrate-producing bacteria within the gut of CDI� individuals. Bipartite networks
for CDI� individuals displayed negative cooccurring relationships between fungi and
commensal gut bacteria (Fig. 2). Candida and Byssochlamys were present at relatively
high abundances within CDI� individuals and formed strong negative relationships
with several bacterial taxa, including Coprococcus, Blautia, and Comamonadaceae, as
well as an unassigned fungus. The same unassigned fungus also had a strong positive

TABLE 1 16S and ITS alpha diversity measures within CDI�/CDI� individuals

Alpha diversity measure CDI� mean CDI� mean t statistic P value

16S rRNA
Observed 93.41 (�23.12) 121.77 (�58.26) �1.90 0.076
PD whole tree 9.08 (�2.24) 11.99 (�4.88) �2.34 0.015
Heip’s evenness 0.079 (�0.035) 0.0769 (�0.042) 0.21 0.84

ITS
Observed 57.76 (�23.37) 65.85 (�17.82) 1.14 0.26
Heip’s evenness 0.092 (�0.10) 0.047 (�0.057) �1.67 0.112

FIG 1 Principal coordinate analysis (PCoA) plots reveal significantly differential bacterial (A) and fungal (B) community compositions between CDI� and CDI�

cohorts. PCoA plots present significant clustering of CDI� and CDI� samples based on UniFrac distances in bacterial (A) and weighted Jaccard distances for
fungal (B) community composition (bacterial ANOSIM, P � 0.022; fungal ANOSIM, P � 0.038).
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relationship with the Ruminococcaceae. No negative cooccurring relationships were
observed between fungal and bacterial taxa when considering the CDI� data set
(Fig. S2). A single positive interaction between an unassigned fungus and Bacteroides
was observed within the CDI� cohort and marks the only transkingdom relationship
within the network. Also, there is a positive interaction between two Candida species
that do not have any relationship with any of the commensal gut bacteria.

Metatranscriptomic data reveal greater differentiation between CDI� and CDI�

individuals than did metagenomic comparisons. To visualize overall differences in
metagenome and metatranscriptome functional gene profiles between disease states,
partial least-squares discriminant analysis (PLS-DA) was conducted. Counts per million
(CPM)-normalized reads per kilobase KEGG orthology (KO) counts from respective
metagenome and metatranscriptome data sets were used to create a PLS-DA model
comparing CDI status, which resulted in clustering between disease states for both data
sets (Fig. 3A and B). Greater differentiation between CDI� and CDI� cohorts was
observed within the metatranscriptome PLS-DA model than in the model generated
based on metagenome data. The metatranscriptomic PLS-DA model yielded a superior
area under the receiver operating characteristic curve (AUROC) measure (AUROC of 1.0)
than the metagenomic data set (AUROC of 0.93), indicating an increased ability for the
model to differentiate between CDI� and CDI� states when considering metatranscrip-
tome expression data compared to metagenomic gene abundance information.

Biomarker analysis reveals increased expression of biofilm formation and
quorum-sensing gene pathways within CDI� individuals. Linear discriminant anal-
ysis effect size (LEfSe) analysis of metagenomic abundance data and metatranscrip-
tomic expression data revealed bacterial and functional gene pathway biomarkers
within CDI� and CDI� individuals. Considering the metagenomic data set, ten signifi-
cantly enriched (linear discriminant analysis [LDA] � 2.0; P � 0.05) biomarker taxa were
identified within the CDI� cohort, including Clostridioides difficile, Escherichia coli, an
unclassified Peptostreptococcaceae member, and the Enterobacteriaceae (Fig. S3). Ak-
kermansia munciniphila, Faecalibacterium prausnitzii, Coprococcus, Alistipes shahii, Col-
linsella, and the Verrucomicrobiaceae were significantly enriched within the CDI� co-

TABLE 2 16S rRNA MaAsLin enrichment results with relative abundance quartiles

Taxon

Enrichment (%) fora:

Coefficient
Enrichment
group P value

FDR-corrected
P valueCDI� Q1 CDI� Q3 CDI� Q1 CDI� Q3

Flavobacterium 0.0250 0.0455 0.0000 0.0105 0.01 CDI� 0.000 0.000
Comamonadaceae spp. 0.0168 0.0301 0.0009 0.0112 0.01 CDI� 0.000 0.000
Stramenopiles spp. 0.0095 0.0152 0.0003 0.0044 0.01 CDI� 0.000 0.000
Collinsella 0.0000 0.1491 0.0000 0.0000 0.00 CDI� 0.000 0.002
Coriobacteriaceae spp. 0.0000 0.0430 0.0000 0.0007 0.00 CDI� 0.017 0.206
Barnesiellaceae spp. 0.0000 0.0113 0.0000 0.0000 0.00 CDI� 0.046 0.422
Faecalibacterium 0.0000 0.1751 0.0000 0.0000 0.03 CDI� 0.048 0.422
Proteus 0.0000 0.0000 0.0127 0.0445 �0.01 CDI� 0.000 0.000
Synechococcus 0.0000 0.0000 0.0016 0.0322 �0.01 CDI� 0.000 0.000
Turicibacter 0.0000 0.0000 0.0111 0.0288 �0.01 CDI� 0.000 0.000
Peptostreptococcaceae spp. 0.0000 0.0179 0.0846 2.5594 �0.07 CDI� 0.000 0.000
Bacteroidales sp. strain S24-7 0.0000 0.0000 0.0073 0.1120 �0.02 CDI� 0.000 0.000
Clostridiaceae spp. 0.0000 0.0668 0.0350 0.3970 �0.02 CDI� 0.002 0.030
Clostridium 0.0000 0.0125 0.0012 0.0182 0.00 CDI� 0.012 0.175
Dorea 0.0007 0.1724 0.0024 2.1379 �0.03 CDI� 0.029 0.336
Enterococcus 0.0003 0.3498 0.0137 0.4099 �0.01 CDI� 0.034 0.357
aQ1, quartile 1; Q3, quartile 3.

TABLE 3 ITS MaAsLin enrichment results with relative abundance quartiles

Taxon

Enrichment (%) for:

Coefficient
Enrichment
group P value

FDR-corrected
P valueCDI� Q1 CDI� Q3 CDI� Q1 CDI� Q3

Byssochlamys 0.000 0.000 0.000 0.252 �0.10 CDI� 0.04 0.402294227
Helotiales spp. 0.000 0.000 0.000 0.009 �0.02 CDI� 0.05 0.402294227
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hort. Comparable results between the 16S comparison and increased taxonomic
resolution were observed in the metagenomic LEfSe analysis between CDI� and CDI�

individuals. For example, within the 16S data set, we classified the enrichment of
Clostridioides difficile with confidence at the Peptostreptococacceae taxonomic rank,
whereas within the metagenomic data set we are able to obtain species-level classifi-
cation of Clostridioides difficile enrichment. The Faecalibacterium result was confirmed
by shotgun metagenomics as Faecalibacterium prausnitzii and is enriched within the
CDI� cohort for both 16S and metagenomic data sets. The metatranscriptome data set
yielded 10 and six active biomarker taxa within the CDI� and CDI� cohorts, respectively
(Fig. S4). Escherichia coli, Clostridium clostridioforme, and the Enterobacteriaceae were
among the enriched active bacteria within the CDI� cohort (LDA � 2.0; P � 0.05).
Within the CDI� cohort, the only active taxa identified as significantly enriched be-
longed to the Verrucomicrobia phylum.

To define functional pathways driving shifts in metagenome profiles and metatran-
scriptome expression data between CDI� and CDI� cohorts, MaAsLin analysis was
conducted on summarized KEGG expression data to identify associations between
enriched bacterial and functional gene pathways and collected patient metadata. While
considering the metagenome data set, 31 significantly enriched summarized functional
KEGG pathways were identified within CDI� and CDI� cohorts (Table 4 and Fig. S5).
Phosphotransferase systems (2.16-fold increase in CDI� individuals), two-component
systems (1.43-fold increase in CDI� individuals), flagellar assembly (2.52-fold increase in
CDI� individuals), ABC transporters, and bacterial chemotaxis were the top five level 3
gene pathway biomarkers of CDI� status within the metagenome data set. N-glycan
biosynthesis, carbon fixation pathways in prokaryotes, aminoacyl tRNA biosynthesis
(1.28-fold increase in CDI� individuals), citrate cycle-tricarboxylic acid (TCA) cycle, and
protein processing in endoplasmic reticulum were observed as the top five biomarker
pathways of CDI� individuals.

Within the metatranscriptome data set, we identified 29 enriched KEGG pathways
(Table 5). ABC transporters (1.44-fold increase in CDI� individuals), two-component
system (1.85-fold increase in CDI� individuals), flagellar assembly (5.11-fold increase in
CDI� individuals), phosphotransferase system (1.57-fold increase in CDI� individuals),
and ascorbate and adorate metabolism (3,47-fold increase in CDI� individuals) were the

FIG 2 Bipartite cooccurrence network plot of bacterial and fungal taxa within the fecal microbiome of CDI� patients. The cooccurrence network plot generated
within the Cytoscape plugin Conet revealed strong positive and negative correlations between OTUs summarized at the genus level identified within CDI� stool
samples. Each node on the plot is representative of a single bacterial (square) or fungal (circle) taxon, and nodes are colored by phyla. Edges connecting nodes
highlighted in green represent strong positive correlations, whereas edges highlighted in red represent strong negative correlations.
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FIG 3 Partial least-squares discriminant analysis (PLS-DA) score plot of metagenomic (A) and metatranscriptomic (B) gene abundance data sets
of CDI� and CDI� individuals. Two-dimensional PLS-DA plots generated within MixOmics reveal distinct clustering of CDI� (blue) and CDI�

(orange) samples using CPM-normalized counts of metagenome functional gene data and metatranscriptome expression data, indicating distinct

(Continued on next page)
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top five expressed gene pathways identified within the CDI� cohort. Additional en-
riched pathways, including quorum sensing (1.19-fold increase in CDI� individuals),
bacterial chemotaxis (3.66-fold increase in CDI� individuals), linoleic acid metabolism
(12.19-fold increase in CDI� individuals), and biofilm formation-Pseudomonas aerugi-
nosa (3.31-fold increase in CDI� individuals), were also observed within the CDI�

expression data. Protein processing in the endoplasmic reticulum, valine, leucine, and
isoleucine biosynthesis, histidine metabolism, one-carbon pool by folate, and carbon
fixation in photosynthetic organisms (1.55-fold increase in CDI� individuals) were the
top five expressed level 3 KEGG pathways identified as enriched within the CDI� cohort.

Both metatranscriptomic and metagenomic analyses yielded similar results regard-
ing identified biomarker taxa within CDI� and CDI� individuals. Taxa within the
Enterobacteriaceae and Clostridiaceae were identified to be enriched within the CDI�

group for both data sets, whereas the CDI� group yielded enrichment of the Verruco-
microbia taxa for both the metagenome and metatranscriptome. When considering
functional KEGG pathways associated with CDI� individuals, 12 pathways are common
to both the metatranscriptomic and metagenomic analysis. More specifically, the
two-component system and the phosphotransferase system were among the top five
gene pathway biomarkers of CDI� status within the metagenome and metatranscrip-
tome data set. Only the metatranscriptome revealed association of elevated quorum-
sensing gene expression with CDI� status, as this pathway was not significantly
differential considering the metagenome data described alone.

FIG 3 Legend (Continued)
functional gene and expression profiles between disease states. Complementary area under the receiver operating characteristic (AUROC)
measures were calculated to validate the metagenome (AUROC of 0.934) and metatranscriptome (AUROC of 1.0) PLS-DA models. An improved
ability for the model to differentiate between CDI� and CDI� samples was observed for the metatranscriptome data set.

TABLE 4 Metagenomic MaAsLin interquartile ranges

Pathway

Enrichment (%) for:

Coefficient
Enrichment
group P value q valueCDI� Q1 CDI� Q3 CDI� Q1 CDI� Q3

Aminoacyl tRNA biosynthesis 1.48 1.72 1.13 1.47 �0.013 CDI� 0.005 0.247
Carbon fixation pathways in prokaryotes 1.78 2.40 1.30 2.07 �0.014 CDI� 0.006 0.420
Citrate cycle TCA cycle 1.41 1.88 1.00 1.56 �0.013 CDI� 0.009 0.420
Novobiocin biosynthesis 0.21 0.34 0.17 0.25 �0.009 CDI� 0.013 0.288
Prodigiosin biosynthesis 0.18 0.25 0.13 0.17 �0.007 CDI� 0.028 0.229
Protein processing in endoplasmic reticulum 0.06 0.12 0.01 0.06 �0.012 CDI� 0.034 0.229
Terpenoid backbone biosynthesis 0.63 0.91 0.54 0.69 �0.007 CDI� 0.041 0.465
Valine leucine and isoleucine biosynthesis 0.97 1.10 0.76 0.94 �0.007 CDI� 0.042 0.420
Various types of N-glycan biosynthesis 0.06 0.24 0.00 0.11 �0.017 CDI� 0.050 0.367
ABC transporters 2.31 3.83 3.35 6.18 0.037 CDI� 0.003 0.420
Alpha-linolenic acid metabolism 0.00 0.03 0.04 0.13 0.014 CDI� 0.004 0.229
Ascorbate and aldarate metabolism 0.10 0.28 0.22 0.35 0.015 CDI� 0.005 0.342
Bacterial chemotaxis 0.03 0.11 0.18 0.40 0.025 CDI� 0.005 0.229
Biofilm formation, Pseudomonas aeruginosa 0.06 0.17 0.17 0.40 0.019 CDI� 0.005 0.229
Biofilm formation, Vibrio cholerae 0.31 0.58 0.64 0.96 0.018 CDI� 0.007 0.316
Chlorocyclohexane and chlorobenzene degradation 0.00 0.01 0.01 0.03 0.009 CDI� 0.007 0.229
Ether lipid metabolism 0.00 0.02 0.01 0.04 0.007 CDI� 0.007 0.342
Ethylbenzene degradation 0.00 0.02 0.02 0.09 0.014 CDI� 0.013 0.229
Flagellar assembly 0.00 0.06 0.18 0.81 0.038 CDI� 0.014 0.229
Fluorobenzoate degradation 0.00 0.01 0.01 0.02 0.007 CDI� 0.015 0.420
Geraniol degradation 0.00 0.02 0.02 0.09 0.014 CDI� 0.017 0.229
Glutathione metabolism 0.30 0.46 0.50 0.62 0.011 CDI� 0.020 0.362
Glycerolipid metabolism 0.24 0.35 0.29 0.60 0.009 CDI� 0.021 0.420
Linoleic acid metabolism 0.00 0.01 0.01 0.04 0.007 CDI� 0.022 0.301
Naphthalene degradation 0.00 0.06 0.03 0.07 0.009 CDI� 0.026 0.420
Phosphotransferase system 0.11 0.77 0.76 1.95 0.047 CDI� 0.028 0.229
Propanoate metabolism 0.83 1.00 1.01 1.20 0.008 CDI� 0.036 0.367
Retinol metabolism 0.00 0.04 0.02 0.05 0.007 CDI� 0.039 0.420
Sulfur metabolism 0.47 0.82 0.80 1.23 0.018 CDI� 0.040 0.288
Toluene degradation 0.00 0.01 0.01 0.02 0.007 CDI� 0.040 0.342
Two-component system 1.15 1.95 1.95 3.12 0.040 CDI� 0.043 0.288
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To better understand the taxa contributing to enriched CDI� expression pathways,
a taxa contribution plot was generated for selected level 3 enriched KEGG pathways
(Fig. 4). The majority of genes found mapped to the bacterial chemotaxis, flagellar
assembly, and linoleic acid metabolism pathways within CDI� individuals originated
from the E. coli genome (52%, 85%, and 80%, respectively). Pseudomonas aeruginosa
was also observed to have distinct contributions to bacterial chemotaxis (22%), biofilm
formation (39%), and flagellar assembly pathways (13%). Quorum sensing, signal
transduction, sulfur relay system, and two-component systems were predominantly
mapped to unclassified bacteria (47%, 42%, 22%, 41%, respectively). Additionally,
Alistipes finegoldii and Escherichia coli yielded substantial contributions to quorum-
sensing genes within CDI� individuals (23% and 11%, respectively). When specifically
visualizing Clostridioides expression data of gene pathways within CDI� and CDI�

cohorts, an increase in expression of genes related to two-component systems (4.76-
fold increase in CDI� individuals) and bacterial secretion systems (2.27-fold increase in
CDI� individuals) were observed within CDI� individuals (Fig. S7). Further, an increase
in expression of genes related to biofilm formation (2.45-fold increase in CDI� individ-
uals) within the clostridia of CDI� individuals were observed.

To visualize differences in average gene expression between CDI� and CDI� co-
horts, Pathview plots were generated (Fig. 5A to E). CDI� patients demonstrated
enriched two-component systems, linoleic acid metabolism, quorum sensing, flagellar
assembly, and biofilm formation pathways. Of note, an increased average expression of
two-component osmotic upshift response genes was observed within CDI� individuals;
this included increased average expression of the envZ osmolarity sensor kinase
(3.84-fold increase in CDI� individuals) (Fig. 5A). Within the linoleic acid metabolism
pathway, phospholipase pldA, involved in the conversion of lecithin to linoleic acid, was

TABLE 5 Metatranscriptomic MaAsLin enrichment results with relative abundance quartiles

Pathway

Enrichment (CPM) for:

Coefficient
Enrichment
group P value

FDR-corrected
P valueCDI� Q1 CDI� Q3 CDI� Q1 CDI� Q3

Valine leucine and isoleucine biosynthesis 9,514.11 15,392.90 5,648.81 8,337.13 �0.02054 CDI� 0.008 0.146
Carbon fixation in photosynthetic organisms 10,333.69 14,029.93 6,935.82 8,324.76 �0.01236 CDI� 0.008 0.146
Protein processing in endoplasmic reticulum 141.98 2,011.25 0.00 35.63 �0.0226 CDI� 0.024 0.255
Glycine serine and threonine metabolism 17,065.75 24,255.21 13,585.16 17,256.03 �0.0103 CDI� 0.025 0.255
Histidine metabolism 8,980.54 13,015.11 6,643.91 8,720.96 �0.01492 CDI� 0.032 0.301
One-carbon pool by folate 8,894.96 14,537.30 6,096.51 8,641.10 �0.01285 CDI� 0.056 0.390
C branched dibasic acid metabolism 5,504.79 9,086.76 4,008.12 6,235.85 �0.01223 CDI� 0.059 0.392
Alpha-linolenic acid metabolism 0.00 207.16 693.91 1,265.72 0.02426 CDI� 0.000 0.029
Bacterial chemotaxis 167.31 1,297.16 2,265.06 4,147.41 0.03489 CDI� 0.000 0.029
Ascorbate and aldarate metabolism 526.98 2,203.76 3,161.59 6,267.15 0.03851 CDI� 0.000 0.029
Ethylbenzene degradation 0.00 180.42 497.38 1,033.91 0.02145 CDI� 0.001 0.029
Geraniol degradation 0.00 511.95 848.86 1,080.13 0.02247 CDI� 0.001 0.029
Flagellar assembly 0.00 1,133.64 1,080.82 7,448.64 0.04871 CDI� 0.001 0.029
Two-component system 14,066.55 21,493.11 25,306.60 40,448.82 0.06355 CDI� 0.001 0.029
ABC transporters 28,206.82 44,320.11 48,815.21 59,718.37 0.05873 CDI� 0.002 0.090
Sulfur relay system 2,878.55 6,146.67 6,467.43 7,358.35 0.02199 CDI� 0.003 0.090
Linoleic acid metabolism 0.00 2.72 20.77 344.47 0.00917 CDI� 0.003 0.090
Ether lipid metabolism 0.00 26.61 20.77 344.47 0.00915 CDI� 0.003 0.090
Chlorocyclohexane and chlorobenzene degradation 0.00 21.93 125.99 506.71 0.01062 CDI� 0.004 0.090
Biosynthesis of siderophore group nonribosomal

peptides
37.17 647.97 629.22 2,408.83 0.0236 CDI� 0.005 0.120

Fluorobenzoate degradation 0.00 5.39 59.17 392.77 0.01066 CDI� 0.009 0.165
Sulfur metabolism 4,620.15 9,094.60 7,747.39 11,277.50 0.02683 CDI� 0.010 0.165
Toluene degradation 0.00 33.18 66.83 336.92 0.0094 CDI� 0.014 0.206
Quorum sensing 14,686.72 18,688.39 18,603.71 23,100.57 0.02664 CDI� 0.023 0.255
Phosphotransferase system 4,091.52 9,124.89 11,965.61 14,977.45 0.04152 CDI� 0.029 0.279
Mitogen-activated protein kinase signaling pathway,

fly
0.00 410.01 403.97 1,096.53 0.01406 CDI� 0.033 0.306

Lysine degradation 527.14 2,350.37 1,856.78 2,798.06 0.0183 CDI� 0.042 0.345
Proteasome 0.00 5.99 0.00 228.25 0.00495 CDI� 0.054 0.390
Biofilm formation, Pseudomonas aeruginosa 1.33 1,326.79 989.98 1,979.08 0.01642 CDI� 0.055 0.390
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observed to be overexpressed within CDI� individuals (7.10-fold increase in CDI�

individuals) (Fig. 5B). An increase in average expression of genes within the qseC and
qseE (10.69- and 39.81-fold increase, respectively) quorum-sensing pathway was ob-
served within the CDI� cohort (Fig. 5C). Increased average expression of flagellar
assembly genes fliD, flgE, flgD, flgB, flgC, fliH, fliQ, fliR, flgM, fliJ, fliS, fliT, and motB was
observed within the CDI� cohort compared to levels in CDI� samples (Fig. 5D). Average
expression of genes related to biofilm formation was observed to be elevated within
the CDI� cohort, including curli fimbriae biosynthesis genes csgB (40.8-fold increase in
CDI� individuals) and csgA (52.42-fold increase in CDI� individuals) (Fig. 5E).

DISCUSSION

Our study demonstrates that CDI� patients have distinct compositional and func-
tional elements that distinguish them from CDI� subjects, with CDI characterized by a
significant enrichment of fungal taxa not observed in C. difficile-negative diarrheal
patients. The lack of any difference in preoperative antibiotic use between the cohorts
suggests that the enrichment of fungal organisms in CDI is not simply an epiphenom-
enon caused by antibiotics with fungi coincidentally filling spatial niches left unoccu-
pied by diminished bacterial populations. This finding lends further support to the
concept that the dysbiosis associated with CDI has an important contribution from
fungal organisms. Direct measurement of gut bacterial community function through
metatranscriptomic profiling revealed multiple enriched pathways in CDI involving
biofilm formation, bacterial chemotaxis, flagellar assembly, quorum-sensing proteins,
xenobiotic production, and various bacterial two-component systems. As discussed
below, these data suggest that the dysbiotic state of CDI is associated with community
functions that collectively resist a return to a healthy microbial community structure.
This information could provide another explanation for the high persistence and
recurrence rates of CDI through mechanisms independent of antibiotic resistance.
Many of these enriched functional pathways can be traced to E. coli and to Pseudomo-

FIG 4 Relative contribution summary was generated to identify taxa contributing to each respective enriched functional gene pathway within the CDI� cohort
considering the metatranscriptome data set.
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FIG 5 Pathview plots display differences in average CPM-normalized expression counts of KEGG orthologies within CDI� (left) and CDI� (right) cohorts. Average
functional expression data were mapped against pathways identified as significantly enriched within CDI� cohorts, including two-component system (A),
quorum sensing (B), linoleic acid metabolism (C), flagellar assembly (D), and biofilm formation (E) (LDA � 2.0; P � 0.05). Each box denotes a functional gene,
with the average CDI� cohort expression plotted on the left side of the box and CDI� on the right side. Average relative expression is colored from low
expression (gray) to high expression (red). (A) Average elevated expression of genes related to osmotic upshift responses were identified within the CDI� cohort,
including the envZ osmolarity sensor kinase (3.84-fold increase in CDI� cohort). (B) Increased expression of quorum-sensing qseC and qseE genes was observed
within the CDI� cohort (10.69- and 39.81-fold increase, respectively). (C) Expression of phospholipase pldA, involved in the production of linoleic acid, is also
elevated within CDI� samples (7.10-fold increase in CDI� cohort). (D) Conserved elevated expression of flagellar assembly genes was observed within CDI�

individuals. (E) Elevated expression of genes related to biofilm formation, including curli fimbriae biosynthesis genes csgB (40.8-fold increase in CDI� individuals)
and csgA (52.42-fold increase in CDI� individuals). RPKM, reads per kilobase million.
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nas, adding to the current literature that describes these common Gram-negative
pathogens having an important role in CDI. Our work provides an evaluation of a
subject complementary to prior publications regarding bile acid and carbohydrate
metabolism in CDI (8–13). We characterize the microbial community structure that
characterizes disease-specific features of the dysbiosis in CDI, and in particular, we
describe the frequent cooccurrence of several fungal organisms that contribute to that
dysbiosis. We also describe the first metatranscriptomic data derived from humans with
CDI, providing for the first time several mechanisms that potentially can explain the
frequent clinical observation of treatment failures in the medical care of CDI.

The adherence of C. difficile to colonic mucosa contributes both to growth of the
organism (14) in the large intestine and intoxication of the host (15). Compositional and
functional changes were observed in this study that would contribute to mucosal
adherence of C. difficile. The loss of commensal organisms provides a selective advan-
tage to C. difficile by creating spatial niches serving as an early contributor toward C.
difficile colonization. Additionally, our data indicate that E. coli and Pseudomonas
aeruginosa are majority contributors to pathways dedicated to biofilm formation,
suggesting a previously unappreciated sessile microbial biofilm community that may
be important in CDI. The role of biofilms in bacterial infections is well known, although
the role of biofilms in CDI is poorly studied, including a dearth of information regarding
the regulatory mechanisms for biofilm production by C. difficile. The presence of a
biofilm may contribute to treatment failures with C. difficile-directed antibiotics; for
example, subinhibitory doses of metronidazole have been demonstrated (16) to induce
the production of biofilm by C. difficile. Based on multivariate association with linear
model (MaAsLin) analysis, biofilm production in this study was simultaneously related
both to the use of antibiotics as well as to CDI� status, indicating that antibiotics in
general, and CDI in particular, represent two related but distinct environmental cues for
biofilm production (Table S1). Whether C. difficile-directed antibiotics also serve as an
environmental cue promoting biofilm formation by E. coli and Pseudomonas is un-
known but warrants further study as a potential contributor to treatment failures.

The enrichment of potentially pathogenic fungal organisms with bacteria known to
be associated with human disease states introduces a view of CDI suggesting the
potential for a complex transkingdom interaction between bacteria, fungi, and the
human host, one mediated in part by quorum sensing. CDI subjects in this study
demonstrated significant pathway enrichment for qseC, encoding a sensor histidine
kinase (17) that serves as part of a bacterial two-component system functioning as a
bacterial adrenergic receptor. qseC allows for bacterium-host hormonal signaling, with
bacteria sensing the production of host norepinephrine as well as allowing for
prokaryote-eukaryote signaling through autoinducer-3 (AI-3). In a study focused on
enterohemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium, Moreira and
colleagues (18) provided the first description of host stress hormones (norepinephrine
and epinephrine), which directly affect gut physiology through colonic adrenergic
receptors, also having a direct effect on bacterial gene expression, with qseC and qseE
being necessary for C. rodentium successfully colonizing the murine intestine. This only
recently appreciated cross talk by which fight-or-flight host hormones signal differential
expression of virulence pathways in gut bacteria adds a new dimension to understand-
ing how host stress and inflammatory responses affect the course of gut infections.

These data and recent publications (5, 19) by our group suggest that there is a
fungus-associated bacteriome involved in CDI. The consistency over several studies
with which a significant enrichment of fungal organisms is observed in human subjects
with CDI, but which is not observed in control groups with C. difficile negative diarrhea,
suggests that important transkingdom interactions between bacteria and fungi are
present in CDI. There is evidence from studies on the rhizosphere (20), on coculture
systems (21), and on human subjects with Crohn’s disease (22) indicating that fungi are
frequently associated with a particular and environment/disease-specific bacteriome,
and that the cooccurrence of these fungal and bacterial organisms is more than a
coincidental occupying of the same spatial niche. These prior studies have provided

Fungal Bacteriome and Multi-omics in CDI

July/August 2019 Volume 4 Issue 4 e00454-19 msphere.asm.org 11

https://msphere.asm.org


evidence that fungi, when viewed as hosting an associated bacterial community, help
to not only protect bacteria from the effects of antibiotics (20) but also potentially allow
obligate anaerobic bacteria to grow (21) under aerobic conditions. The mechanisms by
which this occurs have not been elucidated, and further, the potential benefits to fungi
in this relationship are not clear. In fact, one prior study suggested that p-cresol
production by C. difficile in culture inhibits hypha formation by C. albicans, which
prevents Candida from forming a biofilm, suggesting an exploitative relationship
between C. difficile and C. albicans.

When combined with what is already known about CDI, the metatranscriptomic
data from the present study provides novel insights that may be valuable for under-
standing how microbial functional pathways contribute to the development of CDI. The
use of antibiotics decreases bacterial density and diversity, creating new spatial and
metabolic niches that favor the mucosal adherence and population expansion of C.
difficile. A potential enhancement to this process is the production of biofilm by C.
difficile as well as by E. coli and Pseudomonas, which in part may be a response not just
to the antibiotics which helped to cause CDI but even those directed at C. difficile itself.
At some point thereafter, this is followed by C. difficile intoxication promoted due to
multiple factors, including C. difficile reaching a stationary growth phase (23) as well as
due to quorum-sensing proteins (24), the latter of which may involve pathways by
which host stress hormones induce expression of bacterial virulence pathways (17).
These changes increase inflammation, which further favors the CDI disease state (25)
through toxin-dependent and toxin-independent pathways. This leads to osmotic
changes in the colon due to loss of colonocyte barrier function, making mucosal
adherence more difficult for many bacteria and reducing a large proportion of the
remaining and diminished bacterial population to a planktonic state, with their re-
sources diverted toward functions such as osmotic regulation and run-and-tumble
locomotion and away from population recovery. Concurrent with all of this is the
enrichment of pathways for xenobiotic compound production, from bacterial and
possibly fungal sources, potentially reinforcing a dysbiosis favoring CDI. Although
Fig. S6 in the supplemental material describes the pathways with the strongest
enrichment, it does not provide an exhaustive description of the pathogenesis of CDI,
including the influence of the host inflammasome on this disease. As part of our team’s
ongoing evaluation of these data, these pathways are currently a focus of animal
research by our group to define their role in CDI.

This is the first tiered study of CDI using a combination of amplicon sequencing and
matched metagenomics and metatranscriptomics. A smaller sample size is a limitation
with this study, one reflecting cost constraints with metagenomics and metatranscrip-
tomics. Our stringent inclusion criteria and the absence of differences in antibiotic
exposure between those with and without CDI help to strengthen our conclusions
despite this limitation. There is evidence that fungi are enriched in CDI, suggesting that
there is a transkingdom interaction between fungi and bacteria in this disease; if this is
demonstrated in further studies, it would introduce the concept of a fungus-associated
bacteriome in CDI. A potential role for E. coli and Pseudomonas in CDI is also provided
in this study, especially in terms of biofilm production, and the roles of host stress
response as well as inflammation are further described as gut-related factors leading to
the creation of niches potentially favoring C. difficile. In concert, these data describe
mechanisms by which the causal dysbiosis for CDI may resist reversal, providing a
possible, new explanation of CDI treatment failures. Future studies by the authors will
investigate the roles of E. coli and Pseudomonas in CDI using animal models, as well as
investigating whether the addition of antifungal therapy to C. difficile-directed antibi-
otics improves treatment success.

MATERIALS AND METHODS
The Institutional Review Board of The Pennsylvania State Milton S. Hershey Medical Center approved

this study. Each patient consented using an IRB-approved consent form prior to the collection of their
stool sample.
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Patients. A total of 49 inpatients admitted to the first author’s institution at the time of sample
accrual for the treatment of various medical ailments were enrolled in this study between March 2017
and June 2017. Patients who were at least 18 years of age were eligible, with no upper age limit. As with
prior studies from our group (14), patients receiving chemotherapy within 60 days of enrollment, those
with inflammatory bowel disease, those with a history of a positive C. difficile test within 60 days of
potential enrollment, those empirically started on C. difficile-directed antibiotics prior to stool testing, and
those within 30 days of a mechanical bowel preparation were ineligible for inclusion.

Also similar to previous studies from our group (19), only diarrheal stools were collected for analysis
in this study. As part of their routine clinical care, each patient with a clinical suspicion for CDI had a stool
sample sent by their treating physician to PSHMC Clinical Microbiology for C. difficile testing using a
commercially available nucleic acid amplification test designed to detect a highly conserved sequence
within the tcdA gene. C. difficile positive and negative stool samples were preserved, after clinical testing,
in a – 80°C freezer until patients consented for inclusion in this study.

Table 6 provides a description of the number of stools subjected to amplicon sequencing (16S and
ITS rRNA gene amplicon sequencing), as well as shotgun metagenomics and metatranscriptomics
sequencing (described in the supplemental material). Briefly, fecal DNA extracts were subject to 16S rRNA
gene and ITS2 Illumina tag PCR, pooled in equimolar ratios, gel purified, and sequenced on the Illumina
MiSeq (16S rRNA libraries) and NextSeq (ITS libraries) platforms. Bacterial (16S rRNA gene) and fungal (ITS)
sequences were quality filtered, clustered into operational taxonomic units (OTUs), and normalized using
both the USEARCH and QIIME pipelines. Alpha and beta diversity calculations, as well as multivariate
statistics, were performed as described in the supplemental material (Text S1). Fecal DNA was subjected
to metagenomics library preparation using the Illumina Nextera XT kit. RNA extracted from fecal samples
was converted to double-stranded cDNA, and libraries were prepared using the NuGEN Ovation kit.
Samples that yielded detectable concentrations of high-integrity RNA and DNA were selected to
maximize the number of matched metagenome/metatranscriptome samples for this study. Metagenom-
ics and metatranscriptomics libraries were quantified, pooled, purified, and sequenced on the Illumina
Hiseq4000 platform.

16S rRNA gene data processing. Forward and reverse reads were merged using USEARCH7 (26)
with a minimum overlap set to 200 bp. Using USEARCH7, paired sequences were quality filtered at a
maximum expected error of 0.5% and were subsequently truncated at a length of 249 bp. Filtered reads
maintained an average Phred Q score of 40.5 postfiltering. OTUs were picked de novo using the UPARSE
algorithm (26) at 97% similarity. Taxonomy was assigned using UCLUST within QIIME 1.9.1 (27) using the
Greengenes 16S rRNA gene database (13-5 release, 97%) (28). Results were compiled into a biological
observation matrix (biom) format OTU table with a total count of 3,768,584 after singleton removal. All
49 samples produced the minimum number of quality-filtered sequences (�5,000 sequences per sample)
for downstream analysis. A range of 12,010 to 178,904 sequences per sample was observed. Alpha
diversity rarefaction curves were created within the QIIME 1.9.1 package (27) using an unrarified OTU
table. Multiple rarefactions were performed on the 16S rRNA OTU table from all samples using a
minimum depth of 100 sequences to a maximum depth of 12,010 sequences, with a step size of 794 for
20 iterations. Rarefactions then were collated and compared between disease states considering
observed species, Chao1, PD whole-tree, and Heip’s evenness diversity metrics. Alpha diversity compar-
isons were conducted using a two-sample t test and nonparametric Monte Carlo permutations (n � 999)
within QIIME-1.9.1. 16S rRNA OTU tables were normalized using metagenomeSeq’s cumulative sum
scaling (CSS) algorithm (29) for beta diversity and biomarker analysis. Beta diversity analyses were
performed using a weighted UniFrac distance matrix and visualized within a three-dimensional principal
coordinate analysis (PCoA) plot in EMPeror (29, 30). Analysis of similarity (ANOSIM) tests for significance
were calculated within QIIME 1.9.1 to determine significance of clustering between disease cohorts.

Bipartite cooccurrence networks of bacterial and fungal taxonomy within C. difficile-positive (CDI�)
and -negative (CDI�) samples were constructed as described in Lamendella et al. (19) with the following
changes in protocol. For a taxon node to be included in the network, it needed to occur in at least 50%
of the samples and have a Spearman’s rho threshold of at least 0.90. Spearman’s correlations were paired
with two dissimilarity measures, Bray-Curtis and Kullback-Leibler, to calculate the distances between
nodes. An edge selection of 75 was utilized for all generated networks. All three statistical measures
ensured minimal significant correlations due to outliers or error in data composition. To adjust for
multiple testing corrections, the Benjamini-Hochberg correction was used to adjust P values in the last
network processing step. Bacterial and fungal taxa were labeled down to the lowest identified taxonomic
ranking. Taxonomic nodes were sized by relative abundance and colored by phylum.

ITS data processing. Single-end ITS sequences were quality filtered at an expected error of less than
0.5% using USEARCH v7 (26). After quality filtering, reads were analyzed using the QIIME 1.9.1 software
package (16). Of the 49 processed ITS libraries, 38 samples yielded at least 5,000 sequences for

TABLE 6 Sample distribution of processed CDI�/CDI� fecal samples

Sequencing technique No. C. difficile positive No. C. difficile negative Total no.

16S rRNA 18 31 49
ITS 15 23 38
Metagenomics (MG) 12 14 26
Metatranscriptomics (MT) 7 14 21
Matched MG/MT 7 13 20
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downstream processing. A total of 17,789,158 sequences were obtained after quality filtering and
chimera analysis. Open-reference OTUs were picked and chimeras were removed using the UPARSE
algorithm within USEARCH at 97% identity, and taxonomy assignment was performed against the UNITE
database using BLAST within QIIME-1.9.1. OTUs with taxonomy assigned were organized into a BIOM-
formatted OTU table, which was then summarized within QIIME 1.9.1. Alpha diversity analyses were
conducted within the QIIME 1.9.1 sequence analysis package using an unrarified OTU table. Multiple
rarefactions were conducted on sequences across all samples to a maximum rarefaction depth of 11,990
sequences, with 20 iterations at each step with a step size of 790. Alpha diversity was then collated and
compared between disease states considering observed species richness, Chao1, and Heip’s evenness
metrics. PCoA plots and ANOSIM tests for significance were generated from a weighted Jaccard distance
matrix made within QIIME 1.9.1 from a CSS-normalized OTU table (29).

Metagenomic and metatranscriptomic taxonomic/functional gene profiling and comparative
analysis. Taxonomic classification and bacterial species relative abundances were calculated with
MetaPhlAn2 using default settings (31). Unassigned taxa were discarded for downstream taxonomic
comparisons, and species consisting of less than 0.01% of identified marker sequences across all samples
were discarded to reduce data noise. Taxonomic output from all metagenomes and metatranscriptomes
were merged into two respective .tsv tables for downstream analysis of each data set. Functional gene
annotation and quantification of filtered sequence data were conducted using HUMAnN2 (http://
huttenhower.sph.harvard.edu/humann2; v.0.9.9) against the Uniref90 functional gene database (32).
Default HUMAnN2 settings were utilized for functional gene annotation. Generated reads per kilobase
(RPK) counts of Uniref90 annotations were regrouped as KEGG orthologies (KO) and underwent CPM
normalization to account for differences in sequencing depth between samples.

CPM-normalized KO counts were grouped into KEGG pathways within HUMAnN2 using a custom
python script for LDA effect size (LEfSe) plotting. For each respective metagenome and metatranscrip-
tome data set, relative abundances of taxonomic profiles and functional pathways were multiplied by 1
million and formatted as described in Segata et al. (33). Comparisons were made with “disease” as the
main categorical variable (“class”). Alpha levels of 0.05 were used for both the Kruskal-Wallis and pairwise
Wilcoxon tests. LDA scores greater than 2.0 are displayed for taxonomy and functional (KEGG) pathways.
Resulting taxonomic and functional gene pathway biomarkers between CDI� and CDI� individuals were
then plotted in cladogram structures for the metagenome and metatranscriptome data sets, respectively.
CPM-normalized KEGG orthology pathway tables were stratified by bacterial taxa within HUMAnN2 and
were subsequently summarized by bacterial taxa using a suite of custom python scripts and were
imported into an R environment. The R packages ggplot2 (34) and plotly (35) were then utilized to
produce visualizations displaying the eight most abundant bacterial contributors, based on the total CPM
normalized gene count, to each pathway.

Partial least-squares discriminant analysis (PLS-DA) and complementary receiver operating charac-
teristic (ROC) curve plotting was performed considering CPM-normalized KO metagenome and meta-
transcriptome data using the mixOmics R package (36). The PLS-DA model was trained using a 10-fold
cross validation, and this model underwent 150 iterations. Metatranscriptome CPM-normalized KO
counts were averaged within CDI� and CDI� cohorts, respectively, for Pathview (version 3.6) plotting
(37). Average CPM-normalized expression counts within CDI�/CDI� cohorts were log �1 transformed
and were plotted against the flagellar assembly (KEGG map02040), biofilm formation-E. coli (KEGG
map02026), two-component system (KEGG map02020), quorum-sensing (KEGG map02024), and linoleic
acid metabolism (KEGG map00591) functional pathway maps within the Pathview R package.

Multivariate association with linear models (MaAsLin) was conducted to find associations between
clinical metadata of interest, including CDI status as well as antibiotic treatment status and identified
metatranscriptome functional pathways. Functional pathway expression data underwent relative abun-
dance normalization prior to MaAsLin analysis as required by the protocol (38). Enrichment results were
displayed at a false discovery rate (FDR)-corrected P value (q value) of �0.40.

Additional sample preparation and bioinformatics methodologies are detailed in the supplemental
material.

Data availability. For all sequencing results, an archive is publicly available at NCBI BioProject ID
PRJNA478949 under the SRA accession number SRP151803.
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