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Abstract. One of the most commonly discussed topics in the 
field of drug discovery is the continuous search for anticancer 
therapies, in which small‑molecule development plays an 
important role. Although a number of techniques have been 
established over the past decades, one of the main methods 
for drug discovery and development is still represented by 
rational, ligand‑based drug design. However, the success rate 
of this method could be higher if not affected by cognitive 
bias, which renders many potential druggable scaffolds and 
structures overlooked. The present study aimed to counter 
this bias by presenting an objective overview of the most 
important heterocyclic structures in the development of 
anti‑proliferative drugs. As such, the present study analyzed 
data for 91,438 compounds extracted from the Developmental 
Therapeutics Program (DTP) database provided by the 
National Cancer Institute. Growth inhibition data from 
these compounds tested on a panel of 60 cancer cell lines 
representing various tissue types (NCI‑60 panel) was 
statistically interpreted using 6 generated scores assessing 
activity, selectivity, growth inhibition efficacy and potency 
of different structural scaffolds, Bemis‑Murcko skeletons, 

chemical features and structures common among the analyzed 
compounds. Of the most commonly used rings, the most 
prominent anti‑proliferative effects were produced by quinoline, 
tetrahydropyran, benzimidazole and pyrazole, while overall, 
the optimal results were produced by complex ring structures 
that originate from natural compounds. These results highlight 
the impact of certain ring structures on the anti‑proliferative 
effects in drug design. In addition, considering that medicinal 
chemists usually focus their research on simpler scaffolds the 
majority of the time with no significant pay‑off, the present 
study indicates several unused complex scaffolds that could 
be exploited when designing anticancer therapies for optimal 
results in the fight against cancer.

Introduction

The design and development of novel therapeutic small 
molecules is a major research field and a main focus of this 
research is the identification of more effective anticancer solu-
tions (1). A number of powerful and diverse array of methods 
have been developed to improve the success of drug design 
based on the three‑dimensional structure of the pharmaco-
logical target (2‑5); however, numerous researchers are still 
successfully using the ligand‑based strategies. These methods 
are based on the simple principle that similar structures will 
produce the same biological effect and have the advantage of a 
lower risk of failure (6,7). A closer analysis of the drug design 
process has revealed that medicinal chemistry specialists rely 
on their intuition when deciding the direction of the research, 
and often, they are affected by cognitive biases (8,9). One of 
the most important is the so‑called confirmation bias. This 
represents the tendency of researchers to consider the data that 
support their hypotheses to a greater extent and not to actively 
search for evidence that would contradict their hypothesis (9).

The confirmation bias can be easily observed by reading 
most of the medicinal chemistry articles in which researchers 
are supporting their focus on a particular type of structure by 
presenting various similar compounds sharing the targeted 
biological effect. For example, Sharma et al considered the 
thiazole ring as an essential core scaffold for anticancer drugs 
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by presenting clinically proved drugs, such as dasatinib, 
dabrafenib, or ixabepilone (10). Indole is another hetero-
cycle that is regarded as useful in the target‑based design of 
anticancer agents based on similar reasoning (11). Natural 
scaffolds, such as the flavonoid core structure, are extensively 
used in the design of novel cancer drugs (12,13). Ismail et al 
argued that pyrazolo[3,4‑d]pyrimidine derivatives have a good 
chance to target protein kinases and to be developed as anti-
cancer agents (14). Our own research group has focused on a 
particular chemophore, the pyrazole ring, as a scaffold for the 
design of anticancer agents (15‑18).

The objective of the present study was to identify an 
unbiased quantitative method which may be used to measure 
the usefulness of the most important heterocyclic structures 
in the development of anti‑proliferative drugs. The scope of 
the present study was to help chemists focus on the chemical 
structure with better potential, as well as to understand their 
bias towards a particular scaffold.

Cancer cell lines serve as a major model for antineoplastic 
drug discovery and development. The National Cancer 
Institute (NCI) established a systematic screening program 
by assembling a panel of 60 cancer cell lines (NCI‑60 panel) 
from multiple tumor types (brain, blood and bone marrow, 
breast, colon, kidney, lung, ovary, prostate and skin) (19,20). 
Over the past decades, a large number of compounds have 
been tested on the NCI‑60 panel and several cytotoxic agents 
have emerged as first‑line treatment options for a number of 
tumor types (21).

A compound is first tested at a single concentration and 
then, if found active, it is tested at five different concentrations 
with 48‑h drug exposure and 50% growth inhibition (GI50), total 
growth inhibition (TGI), and 50% lethal concentration (LC50) 
are computed (22). Data analysis tools, such as COMPARE use 
these outputs on all 60 cancer cell lines to create a fingerprint 
profile that allows classification and can predict the mecha-
nisms of action (23,24). The fingerprint of cellular response in 
the NCI‑60 assay can be used to determine similar prototype 
compounds, the usefulness of this data mining approach being 
demonstrated in various studies (25,26).

Materials and methods

Creation and preparation of datasets. Two sets of data were 
collected freely from the DTP website (https://dtp.cancer.
gov/databases_tools/default.htm) representing one‑dose 
screening values and five‑dose screening data. The number 
reported in the one‑dose data set is each cell line growth 
percentage (GI%) following 48 h of exposure to 10-5 M solution 
of drug, relative to the no‑drug control, for a specific cell line. 
A GI% value <100 and >0 indicates a growth inhibition and 
a value <0 represents a lethal effect of the tested compound. 
The 5‑dose screening data set contains the negative log10 of 
the 50% growth inhibitory concentration expressed as molar 
concentration (pGI50) for each tested compound.

Bemis‑Murcko scaffold analysis. Bemis‑Murcko skeletons 
represent the molecular frameworks resulting after the removal 
of the side‑chain atoms and atom labels. All bond types are 
transformed into single ones (10). The analysis was performed 
using DataWarrior 5.2.0 (http://www.openmolecules.org/data-

warrior/) to generate the Bemis‑Murcko scaffolds representing 
the cyclic frameworks incorporating only the rings and the 
chains connecting them. Bemis‑Murcko scaffolds underline 
the importance of molecular topology and have been proven to 
be useful in several drug design studies (11‑15).

Plain ring analysis. DataWarrior 5.2.0 software was used to 
identify all ring systems in each compound without substitu-
ents. The double bonded heteroatoms connected directly to the 
ring system were taken into consideration. Both procedures 
for Bemis‑Murcko scaffold and plain ring using sunitinib the 
Cancer Chemotherapy National Service Center number [(NSC 
Number) 750690] as an example are illustrated in Fig. 1.

Scoring methods. The one‑dose data set matrix was analyzed 
in order to assess the performance of each chemical feature 
on generating potent anti‑proliferative candidates. The average 
(A1D) of all GI% values registered for a specific scaffold was 
calculated as an indicator of the anti‑proliferative potency of 
that chemical feature as follows:

For each scaffold, a performance score (P1D) was defined 
as the number of GI% values under the 50% value threshold 
reported to the total number of GI% values recorded for that 
scaffold. The corresponding mathematical formula is as 
follows:

The scoring formula is similar to the measure of inci-
dence in epidemiology (27) considering an observed event an 
anti‑proliferative effect >50%.

A third score was implemented to assess the selectivity of 
the anti‑proliferative effect based on the number of outliers. 
Considering that each compound is tested on a panel of 
60 cancer cell lines, a vector of data results. The lower outliers 
were identified as any GI% data below the Tukey's lower 
boundary, a threshold (TLi) based on the interquartile range 
(IQR) and the first quartile (Q1) using the following formula:

IQR = Q3 ‑ Q1

TLi = Q1 ‑ 1.5 x IQR

where ‘I’ represents the compound number, Q1 and Q3 
represent first and third quartiles in the data vector of each 
compound, while IQR represents the difference between Q3 
and Q1. The presence of a low outlier indicates that the corre-
sponding cell is specifically sensitive to the tested compound.

The selectivity score (O1D) was calculated as the number of 
GI% values below the TLi value reported to the total number 
of GI% values recorded for each scaffold. The corresponding 
mathematical formula is as follows:

The same formulas were adjusted to calculate similar 
scores using the pGI data. In the case of the performance score 
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(PpGI), the counted values where those >5 and in the case of 
the selectivity score, the counted values were those above the 
Ti fence.

where TUi represents the upper boundary for outlier iden-
tification and it is calculated using the following formula:

TUi = Q3 + 1.5 x IQR

In order to reduce false high‑positive values caused by a 
low number of tested cells, all the scores were analyzed only if 
the total number of data points registered for a specific struc-
ture was >500.

Results

Creation of data sets. A total of 284,176 structures were 
downloaded from the DTP website and were manually curated 
by eliminating 119 erroneous cases. From this set, a total of 
192,619 structures were eliminated as no GI% or pGI50 value 
were associated with the corresponding NSC code. The set of 
compounds with GI% values resulted after the analysis of the 
one‑dose set and represents 45,020 unique substances. The 
compounds with no associated structure were eliminated, 
yielding a final set of 44,960 compounds (set GI1D). The pGI50 
set contains 52,769 compounds. The compounds with pGI50 
values expressed as µg/ml were eliminated, resulting in a final 
set of 51,968 compounds (set PGI). The third set (AL) consists 
of the union of the 2 sets.

AL = GI1D ∪ PGI

The AL set consists of 91,438 unique compounds charac-
terized by an NSC code, a chemical structure, and at least one 
biological endpoint (GI%, pGI, or both).

Bemis‑Murcko scaffolds. The structures of the compounds 
from all 3 data sets were transformed into their Bemis‑Murcko 

skeleton using the procedure described in the methods 
section. The transformation of all the 91,438 structures in the 
AL set resulted in 11,763 distinct Bemis‑Murcko scaffolds. 
For a number of 4,106 compounds representing 4.49% of the 
set, the results were blank as they did not contain any ring 
structures.

Despite the high diversity of scaffolds, only 86 of these 
appear with a frequency above the 0.1% threshold. The distri-
bution of the scaffolds in all 91,438 structures follows the 
power law (R2 = 0.961) with the frequency of occurrence for 
the i‑ranked scaffold obeying the following formula:

F(i) = 7.066 x i‑0.972

The same type of distribution was observed in a study on the 
distribution of Bemis‑Murcko scaffolds in the organic subset 
Chemical Abstracts Service Registry (CAS Registry) (28). 
There are two main reasons for such a distribution: Popularity 
or performance; however, the distribution alone is not suffi-
cient to understand which of these factors causes it (29). In 
order to provide an answer to this question, the performance 
and selectivity scores were implemented.

The top‑ranking 10 scaffolds are presented in Table I along 
with their frequency and corresponding scores A1D, ApGI, P1D, 
PpGI, O1D and OpGI.

The results clearly demonstrate that the most popular 
Bemis‑Murcko scaffolds provide little guarantee that the 
compounds containing them will determine sufficient 
anti‑proliferative effects. The BM10 scaffold presents the 
optimal scores amongst the top 10 used ones. The scores 
registered for the non‑cyclic compounds are better than those 
of some BM scaffolds, indicating that the presence of a cyclic 
structure is not essential.

For all the compounds in the PGI set, the Bemis‑Murcko 
analysis returned 9,540 scaffolds. For each scaffold, the afore-
mentioned scores were calculated. The values were analyzed 
only if the total number of data points used was >500. A 
total of 662 scaffolds met this criterion. Analyzing the ApGI 
values, only 142 scaffolds (21.45%) had values >5, and only 
28 scaffolds (4.23%) presented ApGI values >6. Of these 
28 scaffolds, apart from one two‑ringed skeleton, all had 
between 3 to 7 rings, and at least 14 carbon atoms. Similarly, 
based on the PpGI values, only 121 of the scaffolds produced 
at least a 50% growth inhibition in at least 50% of the tested 

Figure 1. Example of the scaffold generation methods using sunitinib.
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cells (PpGI >50). Taking both scores into account, the optimal 
Bemis‑Murcko skeletons are presented in Fig. 2.

The results indicated that the most successful 
Bemis‑Murcko scaffolds had a very large complexity, which 
explains their limited use in drug design. It seems that the 
simple chemical structures are preferred, even if their poten-
tial to generate good leads is weak.

Plain ring global analysis. The analysis of all of the 
91,438 structures in the AL set resulted in 10,074 distinct ring 

scaffolds. A total of 30,577 compounds (33.44%) had 1 ring, 
31,705 (34.67%) contained 2 plain rings in their structure and 
18.47% contained 3 rings. Considering the frequency of appear-
ance, the first ranked ring was benzene, which had a very high 
recurrence being present in 45.50% of the whole AL set, while 
the second‑ranked ring (pyridine) had a frequency of 3.18%.

Only 73 ring scaffolds registered a frequency >0.1%. 
Based on the number of ring closures in each scaffold, the 
1‑ring scaffolds appear in 70.33% of compounds, followed by 
the 2‑ring scaffolds (16.82%) and the 3‑ring ones (5.94%).

Table I. Most commonly used Bemis‑Murcko scaffolds and their anti‑proliferative performance scores.

A1D, average of GI% values; P1D, number of GI% values the <50% value threshold; O1D, number of GI% lower boundary outliers; ApGI, average 
of pGI values; PpGI, number of pGI values the >5 value threshold; OpGI, number of pGI upper boundary outliers.
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The analysis of the anti‑proliferative potential of each 
plain ring was performed firstly at a global level, taking into 
account all occurrences of a certain ring in the analyzed 
data set. This method ignores the synergistic or antagonistic 
effect produced by the presence in the same molecule of other 
rings. The top most frequently used scaffolds (A01‑A20) are 
presented in Table II along with their frequency (in descending 
order) and corresponding global scores A1D, ApGI, P1D, PpGI, 
O1D, and OpGI.

The analysis of the A1D and ApGI scores indicated that of 
these top favorite rings, the optimal anti‑proliferative effects 
were produced by quinoline (A08), tetrahydropyran (A05), 
benzimidazole (A11) and pyrazole (A14). The same 4 rings 
exhibited the optimal P1D and PpGI scores, even if the ranking 
order differed slightly. The outlier type scores, O1D and OpGI, 
exhibited similar values for all 20 rings. The importance of 
these rings can be also observed by comparing their scores 
with the corresponding Bemis‑Murcko structures, such as 
BM05 in the case of pyrazole, BM02 for quinoline, BM04 for 
benzimidazole and BM01 for tetrahydropyran, highlighting 
the weight of the heteroatoms nature over the general topology.

The present study subsequently focused on the PGI set, as 
the compounds in this set have a higher potency. The analysis 
returned 8,725 distinct rings. The scores were analyzed if the 
total number of data points used was >500, yielding 685 rings.

The structural analysis focused on the 40 rings (B01‑B40) 
that had both ApGI values >6 and PpGI >60. The majority of 
these rings have complex structures and originate from natural 
compounds with well‑established anticancer properties. Some 
representative ring structures are presented in Fig. 3 together 
with their ApGI, PpGI, and OpGI scores and with examples of 
well‑known drugs that feature them.

Plain ring independent analysis. The analysis of the global 
effect of each ring structure ignored that the anti‑proliferative 
effect can be influenced by the presence in the molecular struc-
ture of other rings. In order to better evaluate the contribution 

of each ring structure, the analysis was performed only on the 
30,577 compounds of the AL set that contain only one ring in 
their structure. The majority of the A01‑A20 rings presented 
lower performance scores in the independent analysis when 
compared with the global approach. The most significant 
difference was observed in the case of the quinoxaline struc-
ture (A18), which has a PpGI value of 39.94 and an ApGI value 
of 4.89 in compounds that have only one ring vs. a PpGI value 
of 15.90 and an ApGI value of 4.48 in all the compounds. These 
results indicate that the association of the quinoxaline ring 
with other rings lowers the anticancer potential.

Analyzing the optimal PpGI and ApGI scores for the inde-
pendent effect of each ring for which the 500 data point rule 
was respected, yielded as the optimal results, the structures 
presented in Fig. 3. It can be observed that these 7 rings 
presented in Fig. 4 belong to the B01‑B40 set, but not all 
B01‑B40 rings exhibited significant score values in the inde-
pendent analysis.

The most interesting rings appear to be B11, B13 and B20. 
The ring B13 is the skeleton of colchicine, a tricyclic alkaloid 
extracted from the plant Colchicum autumnale that strongly 
inhibits cellular mitosis by binding tubulin (30), while B11 is 
a bioisosteric derivative of B13 found in the tubulin‑binding 
allocolchicine (31). Based on the OpGI score, the 4,8‑dihydro-
benzodithiophene‑4,8‑dione structure (B20) may be used to 
develop novel potent, yet selective, anti‑proliferative drugs.

Discussion

The scope of present study was to perform an objective anal-
ysis of the impact of ring structures on the anti‑proliferative 
effects in drug design. The results indicate that medicinal 
chemistry specialists focus their research on simple scaffolds, 
even if most of these have no significant pay‑off guarantees. 
The reason is probably that the optimal chemical structures 
are complex and difficult to synthesize, and are therefore 
associated with high research costs. The use of a simple scaf-

Figure 2. The Bemis‑Murcko skeletons with the optimal performance are presented with the ApGI, PpGI and OpGI scores (illustrated in the figure in order of 
presentation from left to right). S01‑S09 represent each scaffold number. ApGI, average of pGI values; PpGI, number of pGI values the >5 value threshold; OpGI, 
number of pGI upper boundary outliers.
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fold is based on the low‑risk approach and is very similar to 
the repurposing strategy (32). However, the present study has 
some limitations, considering the use of only one chemical 
repository. Anticancer research is far more complex and the 
NCI data represent just one sample.

Drug repurposing or drug repositioning is the iden-
tification of novel therapeutic uses for known drugs as an 
alternative to the long and expensive drug development 
programs beginning from scratch (33‑35). It is considered 
that the same thinking paradigm is used for heterocyclic 

Table II. Most commonly used scaffolds and their corresponding global scores.
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rings. The repurposing of chemical scaffolds is based on 
the privileged structure concept. These types of structures 
are chemically accessible, have flexible and potent binding 
affinities towards a large type of biological targets, and 
possess good drug‑like properties (36).

If the privileged structure concept is focused on the assess-
ment of the potential for a particular ring structure to interact 
with a number of targets, the present study was centered on the 
objective evaluation of the anti‑proliferative potential of cyclic 
structures as scaffolds for anticancer drug design, regardless 

Table II. Continued.

A1D, average of GI% values; P1D, number of GI% values the <50% value threshold; O1D, number of GI% lower boundary outliers; ApGI, average 
of pGI values; PpGI, number of pGI values the >5 value threshold; OpGI, number of pGI upper boundary outliers.
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of their mechanisms of action. The scoring method in the 
present study provides an important new tool that could be 
successfully combined with the privileged structure analysis 
methods to identify better scaffolds. For example, the quino-
line ring (A08) emerged in the present study as an effective 
ring and has been demonstrated as a privileged scaffold in 
cancer drug development (37,38). The pyrazole ring (A14) 
is another privileged structure, particularly when targeting 
protein kinases (39,40), which can generate interesting leads 
providing that it is joined by other heterocyclic structures.

The present study used a dual strategy, a topological method 
using Bemis‑Murcko scaffolds to assess the importance of 
rings interconnection networks (39), and a plain ring analysis 
to reveal the importance of specific heteroatoms and their rela-
tive position. In some cases, the results of both methods were 

similar. One important example is in the case of taxene deriva-
tives. Paclitaxel is represented by the Bemis‑Murcko scaffold 
S07 and by the plain ring B06, both with ApGI scores >7. 
Docetaxel, a congener of paclitaxel, shares the ring B06, but 
is represented by the more potent Bemis‑Murcko scaffold S04. 
Another important observation is the practice of structural 
simplification, a method of molecular truncation used to avoid 
large and low drug‑like scaffolds (41).

In conclusion, the scoring method developed and 
implemented herein can easily be used in any other similar 
research based on the NSC data. The method could focus 
on a particular cyclic structure and it can be used to find 
other ring structures with a similar inhibition profile. Even 
if the method used in the present study ignored the effects 
of substituents on the cyclic structures, the results clearly 

Figure 3. The ring structures with the optimal performance presented with the ApGI, PpGI and OpGI (illustrated in the figure in order of presentation from left to 
right) scores and examples of well‑known drugs containing them. B01‑B09 represent the number of each ring. ApGI, average of pGI values; PpGI, number of pGI 
values the >5 value threshold; OpGI, number of pGI upper boundary outliers.

Figure 4. The optimal 7 rings based on their ApGI, PpGI and OpGI scores (illustrated in the figure in order of presentation from left to right) calculated as 
independent effects. B01‑B19 represent the number of each ring. ApGI, average of pGI values; PpGI, number of pGI values the >5 value threshold; OpGI, number 
of pGI upper boundary outliers.
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indicate that the nature of the ring structure can have a 
significant impact on the anticancer potential. Likewise, this 
method can be used in future research to quantify the impact 
of the ring structure compared to that of the substituents 
nature or position.
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