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Numerous studies over the span of more than a decade have shown that non-invasive

brain stimulation (NIBS) techniques, namely transcranial magnetic stimulation (TMS) and

transcranial direct current stimulation (tDCS), can facilitate language recovery for patients

who have suffered from aphasia due to stroke. While stroke is the most common etiology

of aphasia, neurodegenerative causes of language impairment—collectively termed

primary progressive aphasia (PPA)—are increasingly being recognized as important

clinical phenotypes in dementia. Very limited data now suggest that (NIBS) may have

some benefit in treating PPAs. However, before applying the same approaches to patients

with PPA as have previously been pursued in patients with post-stroke aphasia, it will

be important for investigators to consider key similarities and differences between these

aphasia etiologies that is likely to inform successful approaches to stimulation. While both

post-stroke aphasia and the PPAs have clear overlaps in their clinical phenomenology,

the mechanisms of injury and theorized neuroplastic changes associated with the two

etiologies are notably different. Importantly, theories of plasticity in post-stroke aphasia

are largely predicated on the notion that regions of the brain that had previously been

uninvolved in language processingmay take on new compensatory roles. PPAs, however,

are characterized by slow distributed degeneration of cellular units within the language

system; compensatory recruitment of brain regions to subserve language is not currently

understood to be an important aspect of the condition. This review will survey differences

in the mechanisms of language representation between the two etiologies of aphasia and

evaluate properties that may define and limit the success of different neuromodulation

approaches for these two disorders.
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INTRODUCTION

In recent years there has been a surge of interest in the application of non-invasive brain stimulation
(NIBS) techniques such a transcranial magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS) to the treatment of a variety of conditions in psychiatry, neurology, and
rehabilitation. In part, this move toward exploring the use of non-invasive neuomodulation is
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fueled by an increasing understanding of the mechanisms that
drive abnormal structural and functional organization of the
brain in psychiatric and neurologic disease, and an increasing
realization that improved characterization of these mechanisms
affords greater opportunities for focused intervention. Clinically-
oriented discoveries in systems-level neuroscience have led to
a sea change in the conceptualization of a variety of disease
processes such as depression (Boggio et al., 2008; Brunoni et al.,
2011, 2012), dementia syndromes (Freitas et al., 2011; Elder
and Taylor, 2014), traumatic brain injury (Demirtas-Tatlidede
et al., 2012), and focal deficits after stroke (Schjetnan and
Escobar, 2012; Blesneag et al., 2015), not simply as problems
with specific regions of the brain, but as problems with brain
networks, the treatment of which is directly linked to the ability
to harness and modulate the brains’ capacity for functional
reorganization.

Evidence indicates that recovery of language abilities in
patients with aphasia depends on reorganization of brain
function (Saur et al., 2006; Sarasso et al., 2010; Abel et al.,
2015). Recent advancements in our understanding of the
neurobiology of language and cognitive neuroscience has
revealed the importance of dynamic alteration of the normally
left-hemisphere dominant language network in the setting of
aphasia and aphasia recovery (Fridriksson, 2010; Hamilton et al.,
2011; Fridriksson et al., 2013). For instance, a recent a study by
Fridriksson and colleagues indicated that alterations in activation
of perilesional areas could predict treatment response in patients
with chronic aphasia (Fridriksson et al., 2013).

Aphasia is most commonly seen after stroke, however a
second pathologic process that can commonly lead to deficits
of language is neurodegenerative disease. As the population
ages neurodegenerative disorders represent a growing epidemic.
Neurodegenerative dementias like Alzheimer’s disease and
frontotemporal degeneration frequently manifest with language
disorder syndromes, which are collectively referred to as primary
progressive aphasias (Mesulam, 2001).

There are a number of important phenomenological overlaps
between aphasia due to stroke and primary progressive aphasia
(PPA). There are also a number of notable differences.
Undoubtedly, some of the key differences are mediated by
a critical distinction in the underlying pathological processes
between the two conditions: Aphasia after stroke is the
result of acute, focal obliteration of components of the
brain’s language network, whereas PPA can be conceptualized
as a gradual progressive degradation of the efficiency and
activity of this network. This difference is likely to lead
to important further distinctions in whether and how the
representation of the language in the brain changes over
time in these two disease processes. Examination of this
topic may reveal important insights into how mechanisms
of neurologic disease can be used to guide neuromodulatory
therapies. At the same time, exploring the effects of brain
stimulation on two different mechanisms of aphasia may
also further inform our understanding of language systems
in the brain, and the compensatory neuroplastic processes
employed by neural systems to mediate recovery from aphasia
(Tables 1, 2).

COMPARING CAUSES AND
CONSEQUENCES OF APHASIA

Aphasia, is one of the most common post-stroke cognitive
disorders. Stroke affects 795,000 Americans, and there are
approximately 80,000 new cases of aphasia per year (Wade
et al., 1986; National Stroke Association, 2008; Kyrozis et al.,
2009; American Heart Association, 2016). Aphasia in the setting
of stroke most often develops after left middle cerebral artery
(Warburton et al., 1999) or left internal carotid artery territory
infarcts. Depending on the location of the lesion in stroke, the
clinical presentation of aphasia can be characterized by different
profiles of language deficits.

The clinical characterization of aphasia syndromes due to
stroke has been dominated by a model that was built and refined
by critical clinical observations of Broca, Werinicke, Lichtheim,
and later Geschwind (Broca, 1861; Wernicke, 1874; Geschwind,
1972; Prins and Bastiaanse, 2006). However, recent advances
in the neurobiology of language have expanded aspects of this
classical model in a variety of ways that are beyond the scope
of this review (Poeppel, 2012). Therefore, without diminishing
the historical importance of this model, which remains highly
clinically relevant, we will largely limit our discussion of aphasia
presentations to the symptom elements that have been used
to define classic aphasia syndromes: fluency, comprehension,
repetition, and naming ability.

Impaired fluency has been associated with lesions to the
left inferior frontal gyrus, including Broca’s area, but are also
observed with lesions to the putamen or the anterior centrum
semiovale (Kreisler et al., 2000). Patients with non-fluent aphasia
due to stroke commonly exhibit effortful speech characterized
by the inability to formulate grammatically correct utterances
(agrammatism). In classical post-stroke aphasia models, deficits
in the comprehension of words and sentences traditionally
localize to injury of the posterior aspect of the superior temporal
gyrus (Wernicke’s area), as well as surrounding cortical areas
and underlying white matter structures (Alexander, 1997).
When more anterior regions of the perisylvian cortex are
spared, these patients are left with a fluent aphasia in which
the rate and flow of words is relatively preserved, despite
impairment in the communication of content. Of note, errors
of grammatical comprehension can also be seen with lesions of
the inferior frontal gyrus, reflecting the frontal lobe’s broader
role in organizing grammatical constructions (Peelle et al., 2008;
Charles et al., 2014). Relatively isolated deficits in repetition—a
finding seen in so-called conduction aphasia—have traditionally
been localized to lesions of the arcuate faciculus, but are also
seen with damage to other areas including the left superior
marginal gyrus and sometimes extend to the temporal cortex
(Kreisler et al., 2000; Bernal and Ardila, 2009; Yourganov et al.,
2015). Naming localizes poorly in the dominant hemisphere
and is associated with lesions throughout the perisylvian cortex,
underlying white matter pathways, and even deep gray areas
like the thalamus (Kreisler et al., 2000). The degree to which
individuals recover from post-stroke aphasia is variable (Laska
et al., 2001; Meinzer et al., 2010), and persistent deficits are
common (Robey, 1994; Robey and Wambaugh, 1999; Basso
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TABLE 1 | Inclusion exclusion criteria for identifying treatment studies.

Inclusion Criteria for identifying treatment studies included in this

review

Exclusion criteria for identifying treatment studies included

in this review

Patients • Studies that included adults diagnosed with primary progressive aphasia

or aphasia due to stroke

• No restrictions were applied based on the:

◦ Type of stroke (ischemic or hemorrhagic)

◦ Recovery phases (acute, sub-acute, and chronic)

◦ Specific anatomical location of lesion and/or atrophy

◦ Disease severity

• Studies that included patients who did not suffer from aphasia

(e.g., Alzheimer’s disease, Parkinson’s)

• Non-human subjects

Treatment • Studies that included rTMS or tDCS as treatment

• No restriction on the site of stimulation were applied

• No restriction as to the specific brain stimulation paradigms were applied:

◦ For tDCS, studies that applied anodal or cathodal tDCS, or both

◦ For TMS, studies that applied repetitive TMS (low or high frequency)

• No restriction on the duration or timing of SLT (offline or online)

• Studies that included rTMS or tDCS but not as a treatment

• Speech intervention studies such as melodic intonation

therapies, but without rTMS or tDCS

Trial designs • Between-subject, randomized controlled trials, cross-over trials, case

reports, within subject or pre-post trial designs

• Review articles and book chapters

and Marangolo, 2000; Nickels, 2002). Unfortunately, despite
continuing advances in our understanding of the neurobiology
and cognitive neuroscience of language and aphasia, the efficacy
of current behaviorally-based rehabilitation approaches remains
quite limited (Mimura et al., 1998; Rosen et al., 2000; Winhuisen
et al., 2005; Heiss and Thiel, 2006; Saur et al., 2006).

Primary progressive aphasia (PPA) refers to acquired language
impairments that result from neurodegenerative diseases that
affect cognition. Thus, far three variants of PPA have been
identified: non-fluent, semantic, and logopenic. Similar to the
deficits observed in aphasias due to stroke, those in PPA
are characterized by impairments in fluency, comprehension,
repetition, and naming. Each variant of PPA is characterized by
a separate pattern of atrophy and a distinct clinical presentation.
In the non-fluent variant of PPA, atrophy is typically observed in
the left posterior frontal and insular region, including the inferior
frontal gyrus, which overlaps to a large degree with the area of
injury often seen in patients with non-fluent aphasia due to stoke.
In some cases, atrophy is also distributed across the insula, and
is seen in premotor and supplementary motor areas (Josephs
et al., 2008; Gorno-Tempini et al., 2011; Wilson et al., 2011). The
typical clinical presentation for these patients, like that seen in
patients with non-fluent aphasia due to stroke, involves effortful
speech, agrammatism, and production errors (Mesulam, 2001,
2008; Gorno-Tempini et al., 2011).

Clinically, semantic variant PPA shares some features with
Wernicke’s aphasia in that it is characterized by impairments
in naming and single-word comprehension (Hodges and
Patterson, 2007; Gorno-Tempini et al., 2011; Thompson et al.,
2015). However, a notable difference between the two clinical
presentations is that while repetition is impaired in Wernicke’s
aphasia, it can be relatively spared in the semantic variant
of PPA (Hodges and Patterson, 2007; Gorno-Tempini et al.,
2011; Thompson et al., 2015). Patterns of neural injury also
differ between the two, in that the semantic variant of PPA
features atrophy predominantly affecting the anterior, ventral,

and lateral aspects temporal lobes. By contrast, the lesioned area
in Wernicke’s aphasia is traditionally seen in the posterior aspect
of the left temporal lobe, although some recent evidence suggests
that the anterior temporal lobe may also play an important role
in language comprehension (Binder, 2015). While temporal lobe
atrophy is often seen bilaterally in semantic variant PPA, it is
typically most pronounced on the left (Hodges and Patterson,
2007).

Lastly, the logopenic variant of PPA, shares some similarities
with conduction aphasia, in that it is associated with cerebral
atrophy involving the posterior superior temporal gyrus,
supramarginal gyrus, and angular gyrus, which overlaps with
regions associated with conduction aphasia in patients with
stroke. Reminiscent of conduction aphasia associated with stroke,
one of the prominent features observed in the logopenic variant
of PPA is impairment of repetition. However, logopenic PPA is
also characterized by several other deficits, including impaired
single word retrieval and phonologic errors in spontaneous
speech (Gorno-Tempini et al., 2011). The term “logopenic”
translates to “few words,” and in keeping with that label, the
speech of patients with this variant of PPA is slow and halting
with frequent pauses due to word-finding difficulties. However,
unlike the non-fluent variant of PPA or most patients with non-
fluent aphasia due to stroke, grammar is generally preserved in
patients with the logopenic variant.

In summary, while the underlying pathoetiology clearly differs
between these two causes of aphasia–lesion vs. atrophy—the
three variants of primary progressive aphasia share some of the
clinical deficits and anatomic regions of damage with the aphasia
syndromes seen in aphasias after stroke including non-fluent
aphasias (e.g., Broca’s aphasia), fluent aphasias (e.g., Wernicke’s
aphasia), and conduction aphasia. Mounting evidence supports
neuromodulation as a therapeutic option for language recovery
in aphasia. As we will discuss below, there is now substantive
evidence supporting the effectiveness of brain stimulation in
treating aphasia due to stroke, and a small but growing body
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TABLE 2 | Included treatments studies.

Authors Diagnosis NIBS Frequency/Orientation Sample size Chronicity Control

Tsapkini et al., 2014 PPA–non-specified tDCS L-anodal 6 Sham (within subject

crossover)

Cotelli et al., 2014 naPPA tDCS L-anodal 16 Sham controlled (n = 8)

Wang et al., 2013 naPPA tDCS L-anodal 1 Sham (within subject

crossover)

Finocchiaro et al., 2006 PPA–non-specified TMS L-high frequency 1 Sham controlled

Cotelli et al., 2012 naPPA an svPPA TMS L-high frequency, R-high

frequency

10 Sham controlled

Trebbastoni et al., 2013 lvPPA TMS L-high frequency 1 Sham (within subject

crossover)

Galletta and Vogel-Eyny, 2015 Post-stoke non-fluent

aphasia

tDCS L-anodal 1 Chronic Sham (within subject

crossover)

Shah-Basak et al., 2015 Post-stoke non-fluent

aphasia

tDCS L-anodal, L cathodal,

R-anodal, R-cathodal

7 Chronic Sham partial crossover (n = 3)

Wu et al., 2015 Post-stoke non-fluent

aphasia

tDCS L-anodal 12 Chronic (n = 4);

Subacute (n = 8)

Sham controlled; and healthy

controls (n = 12)

Vestito et al., 2014 Post-stoke non-fluent

aphasia

tDCS L-anodal 3 Chronic Sham controlled

Lee et al., 2013 Post-stoke non-fluent

aphasia

tDCS L-anodal and R-cathodal 11 Chronic Crossover between single and

dual electrode stimulation

Marangolo et al., 2013 Post-stoke non-fluent

aphasia

tDCS L-anodal and R-anodal 12 Chronic Sham controlled; and healthy

controls (n = 20)

Marangolo et al., 2011 Post-stoke non-fluent

aphasia

tDCS L-anodal 3 Chronic Sham (within subject

crossover)

Datta et al., 2011 Post-stoke non-fluent

aphasia

tDCS L-anodal 1 Chronic Sham controlled

You et al., 2011 Post-stoke non-fluent

aphasia

tDCS L-anodal, R-cathodal 78 Chronic Sham controlled

Fridriksson et al., 2011 Post-stoke non-fluent

aphasia

tDCS L-anodal 8 Chronic Sham controlled

Fiori et al., 2011 Post-stoke non-fluent

aphasia

tDCS L-anodal 3 Chronic Sham controlled; and healthy

controls (n = 10)

Baker et al., 2010 Post-stoke non-fluent

aphasia

tDCS L-anodal 10 Chronic Sham controlled

Flöel et al., 2011 Post-stoke non-fluent

aphasia

tDCS R-anodal, R-cathodal 12 Chronic Sham controlled

Monti et al., 2008 Post-stoke non-fluent

aphasia

tDCS L-anodal and L-cathodal 8 Chronic Sham controlled

Dammekens et al., 2014 Post-stoke non-fluent

aphasia

TMS L-high frequency 1 Chronic Sham (within subject

crossover)

Al-Janabi et al., 2014 Post-stoke non-fluent

aphasia

TMS R-high frequency 2 Chronic Sham controlled

Rosso et al., 2014 Post-stoke non-fluent

aphasia

tDCS R-cathodal 25 Chronic Sham controlled

Santos et al., 2013 Post-stoke non-fluent

aphasia

tDCS R-cathodal 19 Chronic No control

Jung et al., 2011 Post-stoke non-fluent

aphasia

tDCS R-cathodal 37 Subacute and Chronic No control

Kang et al., 2011 Post-stoke non-fluent

aphasia

tDCS R-cathodal 10 Chronic Sham (within subject

crossover)

Martin et al., 2014 Post-stoke non-fluent

aphasia

TMS R-low frequency 2 Chronic Within subject control

Heiss et al., 2013 Post-stoke non-fluent

aphasia

TMS R-low frequency 29 Subacute Sham controlled

Medina et al., 2012 Post-stoke non-fluent

aphasia

TMS R-low frequency 10 Chronic Sham partial crossover (n = 5)

Naeser et al., 2012 Post-stoke non-fluent

aphasia

TMS R-low frequency 2 Chronic Sham controlled

(Continued)
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TABLE 2 | Continued

Authors Diagnosis NIBS Frequency/Orientation Sample size Chronicity Control

Barwood et al., 2012 Post-stoke non-fluent

aphasia

TMS R-low frequency 7 Chronic No control

Naeser et al., 2011 Post-stoke non-fluent

aphasia

TMS R-low frequency 8 Chronic Healthy controls (n = 8)

Barwood et al., 2011 Post-stoke non-fluent

aphasia

TMS R-low frequency 12 Chronic Sham controlled (n = 6)

Martin et al., 2009 Post-stoke non-fluent

aphasia

TMS R-low frequency 2 Chronic No control

Costa et al., 2015 Post-stoke non-fluent

aphasia

tdcs Bihemisphere: L-anodal

and R-cathodal

1 Chronic Sham controlled

Marangolo et al., 2014 Post-stoke non-fluent

aphasia

tdcs Bihemisphere: L-anodal

and R-cathodal

7 Chronic Sham controlled

Khedr et al., 2014 Post-stoke non-fluent

aphasia

TMS L-high frequency and

R-low frequency

30 Subacute Sham controlled

Winhuisen et al., 2005 Post-stoke non-fluent

aphasia

TMS L and R low frequency 11 Subacute Healthy controls

PPA, primary progrssive aphasia; naPPA, non-fluent aggramatic variant PPA; svPPA, semantic varient PPA; lvPPA, logopenic PPA; NIBS, non-invasive brain stimulation, Subacute < 6

month post-stroke, Chronic > 6 months post-stroke.

of evidence demonstrating the promise of these technologies in
treating patients with PPA.

NON-INVASIVE BRAIN STIMULATION IN
THE TREATMENT OF APHASIA

To date, two forms of NIBS have been explored as potential
treatments for aphasia: (TMS) and (tDCS). TMS creates a fluxing
magnetic field, which allows for the generation of current in
underlying cortical neurons, causing them to depolarize. As a
result, TMS can be used to manipulate cortical function in a
focal manner, effectively allowing for investigation of structure-
function relationships in the human cerebral cortex (Pascual-
Leone et al., 1998). tDCS, another form of NIBS that has been
employed in aphasia, modulates brain activity by delivering a
weak polarizing electrical current, which subtly but demonstrably
modulates neural activity in the cortex (Schlaug et al., 2009). In
addition to the mechanistic differences between tDCS and TMS,
these two technologies also differ in several practical ways that
are germane to their potential use as therapies. tDCS is a less
expensive and much more portable option compared to TMS.
The sham condition in tDCS is more reliable, as patients are often
able to perceive the sensation of the stimulus in TMS (Priori
et al., 2009; Ambrus et al., 2012). The two methods also differ
with regards to spatial resolution, where TMS provides focal
stimulation and conventional tDCS provides a more distributed
current flow in the brain, although recently developed “high-
definition” tDCS systems may allow for more focused electrical
stimulation (Datta et al., 2009). Lastly the manner in which
the current is delivered in tDCS—that is, electrodes strapped to
the scalp—allows for greater freedom of movement such that
tDCS can be paired with other treatments like physical or speech
therapy compared to TMS (Priori et al., 2009).

Non-invasive brain stimulation (NIBS) techniques have been
shown to facilitate neuroplastic changes and to yield cumulative

effects that last beyond the time of stimulation (Pascual-Leone
et al., 1994; Bolognini et al., 2009; Rossi et al., 2009). The
biological underpinnings of stimulation-induced changes in
neural function are not completely understood. A recent review
by Bolognini et al. (2009) highlights evidence that suggests that
long-term changes in neural activity and behavior related to TMS
are mediated by well-known neural mechanisms of plasticity,
including long-term potentiation (LTP) or long-term depression
(LTD) seen following repetitive activation of synaptic pathways
(Hoffman and Cavus, 2002; Huang et al., 2005), sustained
modulation of neurotransmitter levels (Hasselmo, 1995; Strafella
et al., 2001, 2003), and gene induction (Hausmann et al., 2000).
The same review also explored potential underlying mechanisms
of tDCS, suggesting that the long-term effects that accompany
this form of stimulation may also be due to synaptic mechanism
similar to LTP and LTD (Bolognini et al., 2009). Additionally,
the glutamatergic system, specifically NMDA, has been show to
play a role in the maintenance of neuroplastic change following
stimulation (Liebetanz et al., 2002; Paulus, 2004).

While the various mechanisms described above provide
plausible explanations the behavioral effects of neuromodulation,
it is noteworthy that the reliability and to some extent the
efficacy of brain stimulation techniques—particularly tDCS—
remains controversial. In different quantitative reviews and
meta-analyses, investigators have debated whether the effects of
tDCS on cognition and neurophysiology are reliable, consistent,
and predictable (e.g., Horvath et al., 2015, 2016, but also
Price et al., 2015). This ongoing controversy underscores the
importance of conducting well-controlled, adequately powered
studies employing brain stimulation, including studies of aphasia.
Importantly, with respect to patients with aphasia, the notion
that brain stimulation results can be unreliable or inconsistent
further emphasizes the importance of characterizing underlying
mechanisms of language reorganization in both post-stroke and
neurodegenerative aphasia, and of understanding how these
mechanisms ought to inform brain stimulation approaches.
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TMS AND tDCS IN THE TREATMENT OF
POST-STROKE APHASIA

TMS
To date, most of the TMS research involving brain stimulation
and aphasia has been conducted on post-stroke aphasic
patients. These studies frequently involve low frequency (1–
4 Hz) stimulation to the right hemisphere at sites that are
homotopic to damaged left hemisphere structures that are
generally understood to be components of the intact language
network. The stimulation typically lasts for 20–40min per session
over the course of 10–15 days, and the demonstrated language
improvements have, in a number of studies, been shown to persist
for months after the discontinuation of stimulation (Naeser et al.,
2005; Barwood et al., 2011, 2013; Weiduschat et al., 2011; Abo
et al., 2012; Medina et al., 2012; Waldowski et al., 2012; Thiel
et al., 2013). For instance, in a case-study reported by our lab,
we demonstrated that when low-frequency TMS was applied
to the inferior frontal gyrus of the intact right hemisphere of
a patient with chronic non-fluent aphasia, there were marked
improvements in object naming and spontaneous speech that
were maintained for 10 months following a 10-day course of
stimulation (Hamilton et al., 2010).

A recent meta-analysis explored the utility of low-frequency
repetitive transcranial magnetic stimulation (rTMS). Across
4 articles and 132 patients inhibitory TMS facilitated
improvements in naming more so than repetition or
comprehension (Li et al., 2015). A second meta-analysis
focused specifically on studies that applied low-frequency TMS
to the right inferior frontal gyrus of patients with subacute and
chronic aphasia after stroke. In this study, Ren and colleagues
demonstrated that inhibitory TMS to homotopic areas in the
right hemisphere enhanced language recovery, as measured by
aphasia severity, expressive language, and receptive language
(Ren et al., 2014).

There are different theoretical models that account for
how the brains of patients with stroke reorganize language
ability, and these models prescribe different approaches for
the use of TMS in persons with aphasia. The first and least
controversial of these posits that after focal injury of the
language dominant hemisphere in stroke, perilesional regions
of the left hemisphere (i.e., regions near the area damaged
by stroke) are recruited to subserve reorganized language
function. This model suggests that one promising approach
using TMS would be to excite brain activity in these perilesional
left hemisphere regions, an approach successfully taken by
Dammekens and colleagues when they applied high-frequency
(10 Hz) TMS to the left inferior frontal gyrus a chronic
aphasic patient that sustained a stroke affecting the left
hemisphere. They found that patient’s performance dramatically
improved in repetition and naming tasks. These improvements
lasted at least 4 months after stimulation (Dammekens et al.,
2014).

Other models of stroke recovery focus on the observation
that the right hemisphere increases its activation during language
tasks in the setting of left-hemisphere strokes. However,
the specific role played by the right hemisphere remains

controversial. One often-invoked account suggests that right
hemisphere activation in the setting of left hemisphere stroke
and aphasia is deleterious to language performance. Following
severe damage to the left hemisphere, there is thought to be a
reduction of transcallosal inhibition, which leads to activation
of the right hemisphere. The remodeled language network that
arises from the recruitment of the right hemisphere is thought by
some to result in inefficient functioning when compared to the
activity of the left hemisphere prior to injury (Turkeltaub et al.,
2011a). The deleterious nature of the right hemisphere is thought
to be due to interhemisphereic inhibition preventing perilesional
left hemisphere areas from resuming their role in language
production (Belin et al., 1996; Rosen et al., 2000; Shimizu et al.,
2002; Martin et al., 2004). This model suggests that inhibiting
right hemisphere structures would be an appropriate strategy for
enhancing language recovery.

A study by Naeser and colleagues targeted a focal segment of
the non-damaged right hemisphere and applied low-frequency
rTMS. They found that suppressing the right pars triangularis
(PTr) with low-frequency (1 Hz) rTMS led to a significant
increase in picture naming accuracy and a decrease in response
time. Suppressing the right pars opercularis (Pop), on the other
hand, led to a significant increase in response time and no change
in the number of pictures named accurately (Naeser et al., 2011).
This suggests certain specific areas of the right hemisphere may
need to be inhibited for optimal language recovery. Further
supporting the utility of inhibiting the right hemisphere, Khedr
et al. (2014) employed a bi-hemispheric stimulation paradigm.
In their study Broca’s area was stimulated with high-frequency
rTMS (20 Hz) and the right hemisphere homolog of Broca’s
area was inhibited with low-frequency rTMS (1 Hz). In this
sham controlled study, patients demonstrated improvement in
language that was sustained at the 2-month follow up session
(Khedr et al., 2014).

A third model is that the right hemisphere’s main role
is compensatory in nature. Because TMS studies have largely
focused on the interhemispheric inhibition model, there is little
data from magnetic brain stimulation studies to support this,
however, it is supported by a variety of other accounts including
case studies and functional neuroimaging reports (Turkeltaub
et al., 2012).

Evidence, however, also supports the notion that these
models are not mutually exclusive. Taking into consideration
the evidence supporting left and right hemisphere models of
aphasia recovery, it is likely that the process is dynamic and
involves neuroplastic changes in both hemispheres. Utilizing
studies of activation patterns and lesion distribution data,
Heiss and Thiel presented a hierarchical model that explored
three primary patterns of lesion distribution facilitating
recovery in post-stroke aphasia. The first model proposes the
restoration of the original activation pattern in the dominant
hemisphere. In order to activate perilesional areas, the second
model proposes the inhibition of recruited areas in the
contralesional hemisphere. The last model, presents the idea
of interhemispheric compensation, wherein the recruited
homotopic areas are beneficial to language recovery (Heiss and
Thiel, 2006).
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A meta-analysis of functional imaging literature in patients
with aphasia conducted by our lab utilized an activation
likelihood estimation (ALE) on functional magnetic resonance
imaging (fMRI) data to determine areas of language task-
related activity in chronic non-fluent aphasic patients. This
study demonstrated a bilateral network of activation in the
aphasic population. We also compared patterns of functional
activity between sites in patients with chronic aphasia and
healthy individuals, in order to make inferences about the roles
that activated regions may play in patients with aphasia. Areas
recruited in the right hemisphere by aphasic patients by and
large mirrored those activated in the left hemisphere of the
healthy controls in both location and activation pattern, with the
exception of one area, the right pars triangularis (PTr). The right
PTr exhibited a different pattern of functional activity than the
left hemisphere, suggesting some degree of discordance with the
function of left hemisphere language areas in healthy subjects
(Turkeltaub et al., 2011a). While this finding in the right PTr
suggests that there are areas that do not contribute efficiently to
language performance, the finding that most other active areas in
the right hemisphere mirrored those of the left suggested that the
activity of the right hemisphere is not entirely detrimental to the
language recovery process, and may be largely compensatory.

Further exploring the role of the right hemisphere, our lab
published a case report of a patient with sequential left and
right hemisphere strokes. Following the initial stroke affecting
the left hemisphere, the subject enrolled in a TMS trial where
she received 10 daily sessions of inhibitory TMS to the right PTr.
Inhibitory TMS to the right PTr led to improvements in naming
that were maintained 2 months after stimulation. At that time,
fMRI confirmed a reduction in the activity of the right PTr. Three
months after TMS the patient sustained a second ischemic stroke
affecting the right hemisphere, which resulted in worsening
aphasia in the absence of other clinical deficits, such as weakness
or sensory loss. Behavioral tests confirmed that language function
was affected more so than other cognitive domains (Turkeltaub
et al., 2011b). The improvements in language function seen after
inhibitory TMS to the right PTr and the subsequent worsening
after a stroke affecting the right hemisphere supports the idea
that the role of the right hemisphere in aphasia recovery is not
monolithic, and that some areas of the right hemisphere are
beneficial to the recovery of language in post-stroke aphasia.

Language reorganization is a dynamic process and different
mechanisms of recovery may be important to different degrees
at different times in the post-stroke population. TMS studies,
in general, have ranged in their chronicity from subacute to
chronic. For example, the studies by Ren et al. and Dammekens
et al. engage subjects ranging from 9.4 days to 75 months. A
study by Saur and colleagues demonstrated that, after stroke,
aphasic patients exhibit increased brain activation on the right
during the subacute phase of recovery, followed by a leftward
shift in the chronic phase (Saur et al., 2006). These dynamic shifts
in language-associated brain activity could theoretically inform
which brain stimulation approach is likely to be the most useful
in different populations at different times. However, to date no
investigation has directly investigated the efficacy of different
sides of stimulation at different phases of post-stroke recovery.

A recent meta-analysis by Shah-Basak et al. (2016) investigated
the efficacy of rTMS and tDCS, including a subanalysis that
explored stimulation at different post-stroke phases. They found
comparable effect sizes in subacute and chronic studies, though
the majority of studies employed a similar approach: low
frequency stimulation of the right hemisphere. Whether patients
in the subacute or acute phases of stroke recovery would benefit
optimally from a different rTMS approach remains an open
question.

tDCS
Evidence now suggests that tDCS, may also improve aspects of
language production in persons with chronic left hemisphere
stroke and non-fluent aphasia (Monti et al., 2008; Baker et al.,
2010; Fiori et al., 2011; Fridriksson et al., 2011; Medina
et al., 2012). Utilizing a multimodal approach, studies have
explored whether different stimulation approaches might be
more beneficial for different patients (Datta et al., 2011; Shah-
Basak et al., 2015). For example, a study conducted by our
lab investigated whether individualized tDCS with different
montages could result in lasting language recovery. In this two-
phase study chronic patients were first stimulated with four
different montages, which included placement of the anode and
the cathode over the right and left frontal lobes on different days.
Then in the second phase, subjects were randomized into a sham
or treatment arm. In the treatment arm patients were stimulated
with the montage identified as being most effective in Phase 1
of the study for 10 consecutive days. If randomized into the
sham arm subjects received sham stimulation for 10 consecutive
days and then crossed over into the treatment arm. Language
ability significantly improved at the 2-week and 2-month follow-
up time point. Seven out of 12 subjects responded well to a least
1 montage, but the optimal electrode montage across subjects
was inconsistent, suggesting not only that tDCS can effectively
modulate language recovery, but also that the optimal current
pattern for facilitating lasting recovery may differ between
patients (Shah-Basak et al., 2015).

In support of the notion that language recovery can be
driven by the activation of perilesional brain areas, several
studies have demonstrated that activating the left hemisphere
with excitatory anodal tDCS has been associated with lasting
improvements in language (Flöel et al., 2008; Baker et al.,
2010; Fiori et al., 2011; Marangolo et al., 2013; Santos et al.,
2013; Meinzer et al., 2014; Vestito et al., 2014; Wu et al.,
2015). Baker and colleagues evaluated the effect of tDCS on
chronic aphasic patients. Subjects received 5 days of anodal
tDCS and 5 days of sham stimulation to the left frontal cortex.
During stimulation patients performed a computerized anomia
treatment. Significant improvement was observed in naming
accuracy after anodal tDCS compared to sham (Baker et al.,
2010). A more recent study by Wu and colleagues demonstrated
that following anodal stimulation to the left hemisphere, chronic
and sub-acute patients demonstrated marked improvements in
picture naming and auditory comprehension compared to sham
stimulation (Wu et al., 2015).

Regarding the second model, in which the right hemisphere
is thought to be deleterious to the language recovery process,
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some groups have explored inhibitory paradigms. Cathodal tDCS
(ctDCS), for example, is thought to decrease excitability of
stimulated cortical sites (Nitsche and Paulus, 2001). Kang and
colleagues designed a study to evaluate the effect of ctDCS over
the right hemisphere in the homologous region to Broca’s area
in 10 patients with aphasia after stoke. They found that patients
demonstrated a significant improvement in picture naming after
the last tDCS session, as compared to no change after sham
tDCS (Kang et al., 2011). In a different study with patients
receiving ctDCS to the undamaged right hemisphere, Rosso
and colleagues found improvements in picture naming were
predicated on whether or not the arcuate fasciculus had been
damaged. The authors also found that patients who had an
abnormal interhemispheric balance responded well to inhibition
of the undamaged hemisphere (Rosso et al., 2014), which suggests
that the right hemisphere contribution to language recovery may,
in some circumstances, be deleterious.

Integrating the first and second model, there is growing body
of evidence supporting bi-hemispheric stimulation, wherein
patients receive anodal tDCS to the left hemisphere and cathodal
tDCS to the right hemisphere (Lee et al., 2013; Marangolo
et al., 2014; Meinzer et al., 2014; Costa et al., 2015). Meinzer
and colleagues conducted a study that contrasted the effect
of anodal tDCS, dual hemisphere tDCS, and sham. They
found that in both stimulation conditions word retrieval greatly
improved (Meinzer et al., 2014). Other studies employing a
bilateral stimulation approach support Meinzer, demonstrating
that ctDCS to the right hemisphere Brodmann area 44/45 and
anodal stimulation to left Brodmann 44/45 results in improved
language performance (Costa et al., 2015).

Currently there are not many tDCS studies that directly
support the third model of language plasticity, in which the
contribution of the recruited right hemisphere is presumed to be
beneficial to language recovery. However, one study by Vines and
colleagues reported excitatory tDCS to the right inferior frontal
gyrus resulted in improved fluency of speech (Vines et al., 2011).

Insofar as different mechanisms of plasticity may emerge
in post-stroke aphasia at different times, there is reason to
examine whether different tDCS approaches are more or less
effective at different stages of recovery. Shah-Basak et al. (2016)
examined the relevance of stroke chronicity in a meta-analysis,
demonstrating that tDCS delivered in the subacute period
resulted in a smaller and less consistent language benefit than
stimulation applied in the chronic phase. However, it is unclear
from this analysis whether the difference in effect was related
to consistent differences in study design between subacute (all
between-subject) and chronic (within-subject) investigations.

TMS AND tDCS IN THE TREATMENT OF
PPA

TMS
In primary progressive aphasia, the mechanisms by which
language ability is represented in the brain are presumed to be
different than those posited in post-stroke aphasia, insofar as
these patients have cortical areas that are undergoing progressive

atrophy, but are still believed to be involved in aspects of language
function. Though these atrophic areas maintain some degree of
activity in language tasks, over time they lose their processing
efficiency and ultimately their functional and structural integrity
(Ash et al., 2009; Grossman, 2010; Wilson et al., 2010; Rogalski
et al., 2011).

Functional MRI performed during language tasks has been
used to contrast the location and degree of brain activity
of healthy subjects with that of subjects who have the non-
fluent agrammatic variant of primary progressive aphasia
(naPPA). Healthy controls were shown to activate both ventral
regions of the left frontal lobe (which is associated with
grammatical processing) and dorsal left frontal regions (which
are associated with working memory). Patients with naPPA,
however, only activated the dorsal portions of the left frontal
lobe (Wilson et al., 2010). The absence of activity in the
cortical regions associated with grammatical processing in the
imaging data not only supports the clinical features of the
disease, but also suggests that patients with naPPA utilize their
remaining left hemisphere to engage in language production
without significant right hemisphere recruitment. Of note,
one study has previously suggested that a shift in temporal
lobe activation from dominant to non-dominant hemisphere
can be seen in PPA patients performing comprehension tasks
(Vandenbulcke et al., 2005). The shift observed in this study
was only observed in patients with a comorbid comprehension
deficit (Vandenbulcke et al., 2005), which is not characteristic
of non-fluent PPA. At this time the majority on (NIBS)
studies in the PPA population focus on patients with fluency
deficits. The overall interpretation and significance of this
laterality shift remains unclear, particularly since it appears
to correlate with worsening performance (Marsh and Hillis,
2006).

Currently, the conceptual approach taken by investigators
studying PPA is not predicated on the idea that patients with
different PPA subtypes are remapping language functions to
novel networks, as seen in stroke patients, but rather that they
are still using pre-existing neural areas, but with progressively
declining efficiency. This suggests that a therapeutic strategy
of facilitating brain activity in these pathologically weakened
networks could be beneficial.

While low-frequency TMS is frequently implemented in
studies with post-stroke aphasia, high-frequency excitatory rTMS
(hf-rTMS) has more often been used in studies of PPA, based
on the notion that the left hemisphere language network is
broadly downregulated. Hf-rTMS (>5 Hz) has been shown
to have an excitatory effect on cortical activity (Maeda et al.,
2000). Studies have shown that left hemisphere hf-rTMS can
augment a variety of language related tasks, including but
not limited to picture naming (Töpper et al., 1998; Mottaghy
et al., 1999) and oral word associations (Bridgers and Delaney,
1989). A case report by Finocchiaro and colleagues evaluated
the effect of hf-rTMS to the left prefrontal cortex on language
and memory. The study demonstrated that following hf-
rTMS, subjects sustained a significant and lasting improvement
in verb production (Finocchiaro et al., 2006). The study
suggests that hf-rTMS to the dominant hemisphere directly
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strengthens processing within atrophic areas of the language
network.

In a more recent study, Trebbastoni and colleagues
demonstrated that when hf-TMS was applied to Broca’s area
and to underlying white matter bundles in the left dorsolateral
prefrontal cortex (DLPFC), patients with logopenic variant PPA
demonstrated improved accuracy of sentence production only
after real stimulation (Trebbastoni et al., 2013). These results
support the use of excitatory brain stimulation to enhance the
remaining language function in atrophic cortical areas. Cotelli
and colleagues conducted a similar study with progressive non-
fluent aphasic patients. In their study, patients demonstrated
improvement in action naming following hf-rTMS to the left
and right DLPFC (Cotelli et al., 2012).

tDCS
Similar to TMS in PPA, research concerning tDCS in PPA is
currently sparse. The few studies that have explored the effects
of tDCS in PPA have focused on the use of anodal (facilitative)
stimulation of the left hemisphere, in order to enhance the
activity of still existent but atrophied elements of the perisylvian
language network.

Wang and colleagues reported a case in which anodal tDCS
of the left posterior perisylvian region was applied in the
morning and anodal stimulation of Broca’s area was applied in
the afternoon in a patient with non-fluent variant PPA. The
paradigm resulted in improved auditory word comprehension,
picture naming, oral word reading, and word repetition (Wang
et al., 2013). More recently, Tsapkini and colleagues explored
the effects of anodal tDCS of the left inferior frontal gyrus
paired with a behavioral spelling intervention in patients with
primary progressive aphasia. Using a within-subject crossover
design, they were able to compare a tDCS+ spelling intervention
paradigm to a sham + spelling intervention paradigm. They
found that spelling ability in patients in both the sham group and
the stimulation group improved, however, patients that received
tDCS + spelling intervention had a persistent improvement
at least 2 months after stimulation (Tsapkini et al., 2014).
All studies to date have focused on increasing activity the
dominant hemisphere. Consistent with differences in models of
language representation between post-stroke aphasia and PPAs,
no investigators to date have attempted to enhance language
abilities in patients with PPA by applying excitatory stimulation
to the non-dominant hemisphere.

DISCUSSION

The differences in the mechanisms of language representation
between post-stroke aphasia and PPA (Figure 1) inform us with
respect to the factors and properties that may define and limit
the success of different neuromodulation therapies. Additionally,
these differences may also point to likely future directions for
research in neuromodulation therapies for these two etiologies
of aphasia.

The theorized mechanisms for recovery in post-stroke aphasia
are largely predicated on the notion that regions of the brain
that had previously been uninvolved in language processing

or involved in a different way may take on new roles that
had previously been subserved by the dominant hemisphere’s
perisylvian structures (Belin et al., 1996; Rosen et al., 2000;
Shimizu et al., 2002; Martin et al., 2004; Heiss and Thiel,
2006; Turkeltaub et al., 2011a; Anglade et al., 2014). Intuitively,
the effectiveness of this mechanism is constrained by at least
two basic properties. The first is the extent to which the
regions of brain that are being recruited to compensate for lost
functions harbor the same kinds of computational affordances
and capacities that injured regions had possessed. In other
words, how well are the brain areas that are reassigned to take
over for lost areas able to perform the same tasks as the areas
that were lost to injury? The second property is the degree of
overlap in anatomic or functional connectivity between recruited
compensatory brain regions and areas that have been injured.
In other words, in order to do the job of a lesioned area of
brain, it is beneficial to have existing connections to the areas
that the old region used to connect to. With respect to both of
these properties, perilesional and right hemisphere homotopes
of the injured left hemisphere areas are reasonable targets.
However, these may not be the only good anatomic candidates
for neuroplastic change in patients with aphasia due to stroke.
For example, a recent study by Xing and colleagues suggests that
increased right temporoparietal gray matter volume is associated
with improved language performance in patients with post-
stroke aphasia even when those regions are not homotopic to the
patients’ lesions (Xing et al., 2016).

Other studies favor the recovery of the residual left
hemisphere, suggesting that the contributions of the right
hemisphere are ineffective (Belin et al., 1996; Rosen et al.,
2000; Shimizu et al., 2002; Martin et al., 2004). One property
thought to influence the efficacy of left hemisphere perilesional
compensation relative to right hemisphere recruitment with
respect to language recovery is lesion size (Heiss and Thiel,
2006). It has been suggested that smaller lesions of the left
hemisphere aremore associated with left hemisphere/perilesional
recruitment and large left hemisphere lesions are associated
with more right hemisphere activity (Heiss and Thiel, 2006),
although some recent lesion evidence may weigh against this
view (Turkeltaub, 2015). Another property that has been shown
to influence the compensatory potential of the right hemisphere
worth considering is lesion location (Anglade et al., 2014). A
recent review by Saur and colleagues explored the possibility that
the involvement of right hemisphere homologs of left hemisphere
language regions may depend on the degree of premorbid
lateralization. That is, patients with more bilaterally distributed
language representation prior to their strokemay be better able to
recruit the right hemisphere for additional language processing in
the setting of left hemisphere injury (Saur and Hartwigsen, 2012).

If we accept that these properties probably influence the
compensatory potential of undamaged brain regions after stroke,
it seems likely that the success of neuromodulation interventions
in post-stroke aphasia rests on finding the best candidate targets
to stimulate (i.e., those that have the necessary computational
affordances and connectivity). Existing TMS studies have already
provided some evidence of this. Our data and that of other
investigators demonstrate that the site of stimulation in the brain
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FIGURE 1 | (A) Sites and mechanism of stimulation for TMS post-stroke aphasia (Garcia et al., 2013; Vuksanović et al., 2015). (B) Sites and mechanism of stimulation

for tDCS post-stroke aphasia. (C) Sites and mechanism of stimulation for TMS and tDCS for PPA (red, facilitation; black, inhibition).

is pivotal in post-stroke aphasia (Hamilton et al., 2010; Ren et al.,
2014).

Moreover, as tools for characterizing connectivity in the brain
become more sophisticated, models of language reorganization

are being informed by an increasingly nuanced understanding
of brain networks, which may in turn inform therapeutic
neuromodulation approaches. Post-stroke aphasia studies have
demonstrated that an increase in frontoparietal integration
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was correlated with language recovery (Sharp et al., 2010).
Naming treatment studies have also demonstrated alterations
in functional connectivity specific to a shift from activity in
the right middle temporal gyrus to the left middle temporal
and supramagrinal gyrus after treatment (van Hees et al.,
2014). A recent study by Yang and colleagues demonstrated
that patients with aphasia exhibited increased regional activity
in the contralesional mesial temporal and lateral temporal
cortices compared to aged matched controls (Yang et al.,
2016). Taken together the post-stroke studies suggest that
increased integration and/or activity in frontoparietal or
contralesional temporal regions is associated with language
recovery. To date, there are fewer functional connectivity
studies in the PPA population compared to post-stroke
aphasia. A recent study by Mandelli and colleagues evaluated
functional connectivity in healthy controls and patients with
PPA. Unlike the observed increase in contralateral activity
seen in the post-stroke population, the authors demonstrated
marked areas of reduced strength of functional connectivity
to the dorsal portion of the opercular region of the left
inferior frontal gyrus (Mandelli et al., 2016). Overall the
existing functional connectivity literature for the two types
of non-fluent aphasia suggests that that language-related
changes in connectivity in PPA are relatively isolated, while
post-stroke shifts in activity are more bilaterally distributed.
This broader distribution supports consideration of multiple
mechanisms of recovery and multiple montages as targets for
neuromodulation.

We already have tools such as BOLD fMRI that are capable
of suggesting which areas of the brain are capable of taking
on compensatory roles with respect to language processing
in patient with aphasia (Carter et al., 2012; Havsteen et al.,
2013). Excitingly, more recent tools like advanced structural
imaging, diffusion tensor imaging (DTI), diffusion spectrum
imaging (DSI) and computational network modeling can be
used to tell us which brain regions are the best candidates
for compensation by characterizing their connectivity and
network properties, respectively (Dijkhuizen et al., 2012; Ovadia-
Caro et al., 2013). Moreover, a recent study by Cipollari
and colleagues demonstrated that, in the post-stroke aphasic
population, tDCS can be paired with TMS-EEG to target and
modulate specific areas of excitability, resulting in specific
language improvements (Cipollari et al., 2015). Armed with
this knowledge, it may eventually be possible to use focused
neuromodulation techniques like TMS and tDCS to entrain
optimal regions into networks for language recovery (regions
that may be potentially better suited for language processing than
those that the brain may have otherwise recruited in the absence
of neuromodulation).

The mechanisms of language representation and loss in PPAs
present with different kinds of limitations and opportunities.
PPAs are characterized by the slow, distributed degeneration
of cellular units within the language system. This process may
initially be characterized by a graceful degradation, wherein
the language system and other affected systems are initially
robust against the behavioral effects of diffuse ongoing injury.
This is borne out by evidence from neuropathology studies,

which demonstrate that in neurodegenerative dementias like
AD and FTD, neural injury occurs for years and perhaps
decades before patients become symptomatic (Grossman, 2010).
Eventually, however, language systems and other behaviorally
relevant networks cannot tolerate the distributed network failure
created by neurodegenerative dementias.

Evidence indicates that neuromodulation techniques can be
used to enhance neuronal plasticity at the level of synaptic
communication (Bindman et al., 1964; Bliss and Lomo, 1973;
Hattori et al., 1990; Moriwaki, 1991; Liebetanz et al., 2002).
The onset of aphasia is less clearly defined in PPA as compared
to stroke, so it is challenging to define a precise timeframe
for intervention. In order to influence neuronal plasticity in
the residually functioning networks, it is reasonable that the
ideal timeframe for stimulation would be close to symptom
recognition and diagnosis. We can conceptualize the effect
of brain stimulation in PPA as a race to create neuroplastic
changes that improve the strength of connections within
language networks. These intervention-induced changes may
work to partially counter the behavioral effects of distributed
degradation of the language network at the cell and circuit
level, in effect permitting the language network to do more
with less. Therefore, it stands to reason that the efficacy of
neuromodulation approaches in PPA would depend, at least to
some extent, on the effectiveness of the intervention in inducing
distributed increases in compensatory plasticity.

In light of this, our prediction is that, unlike stroke,
the near future of neuromodulation in PPA is not going
to be focused on identifying the best sites to stimulate in
conjunction with behavioral therapies, but rather on determining
the parameters and paired behavioral therapies that are best
suited for inducing plastic changes that reinforce the robustness
of already-connected but weakening language systems. While
this may be attainable with TMS, tDCS seems well suited
for these demands, owing to its comparatively low spatial
resolution. Additionally, tDCS is a technique of interest
because it has been shown that pairing stimulation with
behavioral training can create persistent changes in neural
activity and behavior that are specific to the kinds of activities
that were employed during stimulation (Gill et al., 2015).
Other related neuromodulation technologies like transcranial
alternating current stimulation (tACS) and transcranial random
noise stimulation (tRNS) may also have promising effects
on network plasticity (Fertonani et al., 2011; Antal and
Paulus, 2013) that may prove beneficial in these patient
populations.

Given the presumedmechanism of language representation in
PPA discussed above, it is not clear how inhibitory stimulation
would be useful in PPAs. Unlike stroke, there is currently no
theoretical role for suppressing components of the language
network based on current evidence. Rather, the evidence favors
using excitatory stimulation to create a more plastic and robust
system. Again, like stroke, the development of imaging tools like
resting state functional connectivity MRI (rs-fcMRI) allow us to
discern change in the robustness of networks which will prove
valuable for helping us understand the effects and efficacy of
neuromodulation technologies in PPA.
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CONCLUSION

Given the burden of suffering imposed on patients by both
post-stroke aphasia and PPAs, and the promising results seen
in neuromodulation studies of aphasia to date, larger and more
extensive future clinical studies involving TMS, tDCS, and
related NIBS approaches as treatments for both etiologies aphasia
seem likely. These future investigations will need to take into
account how pathologic processes could be strong determinants
of brain stimulation effects, and could predict the optimal
technology (TMS, tDCS, or other), target sites, and stimulation
parameters for neuromodulation therapies. Importantly, the
notion that the neural mechanisms of injury and neuroplastic
reorganization should influence decision-making around the use
of NIBS is not specific to the aphasia treatment. Models of
normal and abnormal brain function are becoming increasingly
complex, accurate, and predictive owing to continuing advances
in cognitive neuroscience, neuroimaging, and network science.
It is clear that clinicians and researchers hoping to pursue
investigations involving the use of TMS, tDCS, or other non-
invasive neuromodulation technologies to remediate cognitive
deficits beyond aphasia as well as other symptoms associated with

neurologic disease will need to devise approaches that align well
with existing and future models of brain injury, plasticity, and
recovery.
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