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ABSTRACT
Background and the purpose of the study: Candida species are the agents of local and systemic 
opportunistic infections and have become a major cause of morbidity and mortality in the last 
few decades. Azole resistance in Candida krusei (C. krusei) species appears to be the result of 
gene alterations in relation to the ergosterol biosynthesis pathway, as well as efflux pumps. The 
main objective of this study was to examine the RNA expression of ERG11 in C. krusei which 
had been identified to be resistance to azoles.
Methods: The ERG11 mRNA expression was investigated in four Iranian clinical isolates of       
C. krusei, which were resistant to fluconazole and itraconazole by a semiquantitative RT-PCR. 
Results: The mRNA expression levels were observed in all four isolates by this technique. 
Furthermore, it was found that ERG11 expression levels vary among four representative isolates 
of C. krusei. Although DNA sequencing revealed no significant genetic alteration in the ERG11 
gene, one heterozygous polymorphism was observed in two isolates, but not in others. This 
polymorphism was found in the third base of codon 313 for Thr (ACT>ACC). 
Major conclusion: Even though such a polymorphism creates a new Ear1 restriction site, no 
significant effect was found on the resistance of C. krusei to azoles. Results of this investigation are 
consistent with previous studies and may provide further evidence for the genetic heterogeneity 
and complexity of the ergosterol biosynthetic pathway or efflux pumps. 
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INTRODUCTION
Candida species (spp) are agents of local and 
systemic opportunistic infections worldwide and 
have been described as the fourth leading cause 
of nosocomial bloodstream infections (BSIs). 
Moreover, treatment failures and development of 
the drug resistance have frequently been reported 
(1). Although C. albicans is the most important 
cause of candidemia, an increasing number of 
infections due to non Candida albicans species 
such as C. glabrata and C. krusei have also been 
reported (2). On the basis of reports 95% of  
Candida BSIs are associated with C. albicans, C. 
parapsilosis, C. glabrata, and C. tropicalis species 
and 12-14 of other Candida spp are involved in 
5% of BSIs (3-5). A slight increase of BSIs due 
to non-albicans species has been reported, and C. 
krusei accounts for 24% of all Candida nosocomial 
bloodstream infections. It is known that this 
species has a tendency to appear in a setting where 
fluconazole has been administered for prophylaxis 
(5). Colonization and infection with fluconazole-
resistant Candida spp. has often been observed 
among high risk patients with hematological 
malignancies under the selective routine fluconazole 
prophylaxis (6, 7). C. krusei has been detected as 

an uncommon and potentially multi-drug resistant 
(MDR) pathogen. In vitro antifungal testing has 
shown a considerable reduction in susceptibility 
of C. krusei to fluconazole (2.9% sensitive) and 
amphotriecin B (8% of all isolates), and the emerging 
pathogenicity of this organism is of increasing 
public health concern (8). It has been demonstrated 
that multiple mechanisms are involved in azole 
resistance, including overexpression of several 
genes encoding efflux pumps such as CDR1, CDR2 
and MDR1 (multi-drug resistance), which lead to 
reduced intracellular accumulation of fluconazole 
and overexpression of the ERG11 gene, coding for 
the sterol 14α-demethylase (9, 10).
Some studies have proposed reduction in 
susceptibility of sterol 14α-demethylase to 
fluconazole as major resistance mechanism in      C. 
krusei (11-14). The present study was aimed to 
investigate the expression of ERG11 in four Iranian 
C. krusei isolates.

MATERIAL AND METHODS

Fungal strains 
Four fluconazole and itraconazole resistant C. krusei 
strains were included in the present study (Table1). 
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These strains were isolated from cancerous patients 
with oropharyngeal Candida infections during 
2006-2008 and had been identified previously 
(15). The susceptibility testing of the isolates 
to fluconazole and itraconazole was performed 
according to the National Committee for Clinical 
Laboratory Standards M27-A (NCCLS) by broth 
microdilution method (16). Susceptibility tests 
were carried out in RPMI 1640 medium (Sigma-
Aldrich, USA) buffered to pH 7.0 with 0.165 M 
morpholinepropanesulfonic acid (MOPS). The 
MICs were defined as concentrations of the drug 
that reduced growth by 80% compared to that 
of organisms grown in the absence of the drug. 
NCCLS-recommended quality control (Candida 
krusei ATCC 6258) was included in each test run, 
and MICs were within the recommended range for 
each test. The isolates had been stored in glycerol/
water at -80°C until used. The inocula for each 
individual experiment were prepared from these 
stocks.

Total RNA and cDNA synthesis extraction
C. krusei cells were grown on Sabouraud dextrose 
agar at 37°C for 24 hrs. Two to three fresh colonies 
were transferred to yeast peptone dextrose (YPD) 
broth (yeast extract 1%, peptone 2%, dextrose 2%), 
(Suprapur, Merck, Germany) at the same temperature 
for 48 hrs. 
Total RNA was isolated from exponential-phase 
of the YPD broth cultures using RNeasy Mini 

kit (Qiagen) according to the manufacturer’s 
instruction. Quantification of RNA was performed 
by absorbance at 260 nm using a Spectrophotometer 
(Biophotometer). The mean RNA concentration 
and the mean ratio for OD260/280 were 421+6 
ng/µl and 1.8+0.04, respectively. For cDNA 
synthesis, 10 μl of total RNA was heated in 80°C 
for 10 min followed by cooling on ice. The master 
mixture contained 4 μl of 5x reverse transcriptase 
(RT) buffer, 10 mM of each dNTP, 20 pmol/μl 
random primer, 20 U RNase inhibitor (Fermentas, 
Burlington Canada), 200 U of Moloney Murine 
Leukemia Virus (MMuLV) Reverse Transcriptase 
(Fermentas, Burlington Canada), and 1.5 μl of 
DEPC-treated water. The cDNA synthesis was 
performed under following conditions: 42°C for 
60 min, 70°C for 10 min, and finally cooling to             
4°C. The integrity of cDNA was checked using the 
house keeping gene 18sRNA primers (as shown 
in table 2) which amplify region 1433-1639 (GB.
EU348783.1). Samples with similar cDNA quality 
through 18sRNA PCR were stored at -70°C for 
further investigation.
PCR amplification of the ERG11 gene was conducted 
on samples using 1 µl of cDNA, specific forward and 
reverse primers corresponding to ERG11gene (Table 
2), dNTP, MgCl2, Taq DNA polymerase, and buffer 
(CinnaGen, Tehran, Iran). The thermocycling was 
performed using a Touch-Down amplification program 
on 2720 Thermal Cycler, ABI . The PCR condition 
was as the same as previously described (17).

Strain Predisposing factor Site of isolation 
MICa (µg/ml)

FLCb     ITCc

C. krusei 2    Carcinoma (lung) Orophrynex 64         1

C. krusei 118 Lymphoma “ 128       1

C. krusei 124 Lymphoma “ 64 2

C. krusei 144 Leukaemia “ 64 2

a: Minimum Inhibitory Concentration; b:Fluconazole; c:Itraconazole

Table 1. Characteristics of Candida krusei strains used in this study.

Primer Primer Sequences Accession PCR Product 

Name 5’→3’ Number Sizes (bp)

Semi-Quantitative RT-PCR  Primers

18SCF
18SCR

5’-GACGGAGCCAGCGAGTATAA-3′
5’-GGGCTCACTAAGCCATTCAA-3′ GB.EU348783.1 206

ERG11F
ERG11R

5′-AATGGGTGGTCAACATACTT-3′
5′-TGGTGGTAGACATAGATGTATT-3’ DQ903905 508

Sequencing Primers

ER11SF
ER11SR

5′-GTTTACGGAAAACCTTAC- 3′
5’-GGTACATCTATGTCTACCACCACCA-3′ DQ903905 1218

Table 2. List of primers used in this study.
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Semi-quantitative RT-PCR 
Semi-quantitative RT-PCR was conducted by the 
reported method with minor modification (18, 19).
Briefly, specific primers corresponding to ERG11 
and 18s rRNA mRNA sequences were designed. 
Appropriate dilutions of the samples were determined 
for each cDNA to make sure that examined transcripts 
and 18sRNA (internal control) amplification was in 
the exponential phase of the reaction. 

DNA sequencing
For mutation screening, genomic DNA was extracted 
from 5×107 cells using DNGPLUS kit (CinnaGen, 
Tehran, Iran). PCR amplification of whole ERG11 
gene was carried out using specific primer pairs 
(Table 2).  To detect any mutation, the PCR product 
was subjected to direct sequencing (Gen-Fanavaran, 
Tehran, Iran). Sequence data searches were 
performed in non-redundant nucleic and protein 
databases BLAST (http://www.ncbi.nlm.nih.gov/
BLAST).

RESULTS
Four C. krusei isolates exhibited ERG11 mRNA 
overexpression at various levels. A semiquantitative 
RT-PCR was used to compare positive results of 
expression levels as: no expression (0), mild (1+), 
moderate (2+), high expression (3+) and the highest 
expression (+4) (Fig. 1).  
Direct DNA sequencing was carried out for 
investigation of the molecular bases of ERG11 
overexpression. Amplified PCR products of                
the complete coding sequences of this gene 
from four C. krusei isolates were sequenced. The 
chromatogram of ERG11 DNA sequencing (Figures. 
2A, B) indicated a heterozygous base-substitution 
in two C. krusei isolates, in which a heterozygous 
change had occurred in the third base of codon 313 
for Thr (DQ903905).  Figure 2 C shows homozygous 
condition of the mentioned polymorphism.  Although 
this genetic alteration (ACT>ACC) can not change 
the amino acid sequence of the ERG11 protein, it 
leads to the creation of an Ear1 restriction enzyme 
recognition site. Also, direct PCR sequencing of other 
samples revealed no mutation (data not shown).

DISCUSSION
Ergosterol biosynthesis is a complex metabolic 
pathway. So far, the involvement of several 
genes encoding enzymes in this pathway has 
been identified. It has been well documented that 
some of these metabolic steps are critical for cell 
viability. For instance, ERG11 deletions are lethal 
in S. cerevisiae (9), whereas no specific gene in C. 
krusei has been reported to exert significant effect. 
Previous studies have shown the role of ERG11 
upregulation in fluconazole-resistant clinical 
isolates of Candida spp. (20). Several lines of 
evidence suggested that other genes of the sterol 
biosynthetic pathway (ERG3) and another pathway 
such as efflux pumps also play critical roles in the 
antifungal resistance of yeast (21-24). Moreover, 
some studies have shown involvement of efflux 
pumps in increasing the levels of resistance of 
C. krusei to azoles (25-30). In this study a semi- 
quantitative RT-PCR employing 18sRNA as an 
internal control was performed for detection of  
the levels of ERG11 expression in clinical isolates 
of C. krusei. All isolates revealed variations in 
ERG11 expression levels. To date, more than 20 
genes have been found that are involved in azole 
resistance. 
In general, ERG genes were found to be unregulated 
by either the reduction of a late product; or an 
accumulation of an early substrate or toxic sterol 
intermediates of the ergostrol biosynthetic pathway. 
It has been clearly demonstrated that several 
different inhibitors can affect different enzymes 
of this pathway which lead to upregulation of 
ERG genes in S. cerevisiae and Candida spp. 
Moreover, most previous studies have shown 
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Figure 1. ERG11 mRNA expression.
 RT-PCR products of ERG11 gene of clinical isolates of C. krusei, 
resistant to fluconazole and itraconazole on 1.8% agarose gel 
stained with ethidium bromide. Lanes 1(+1), 2 (+4), 3 (+3) and 
4 (+2): indicate different levels of ERG11 mRNA expression 
(508bp); lane 5: negative control (water).18srRNA (206bp) was 
used as a positive control.

18s RNA
206bp

ERG11
 508bp

Figure 2. Mutation analysis of the ERG11 genomic DNA. 
(A, B) A heterozygous polymorphism in codon 313 for 
Thr (ACT>ACC) in which T→C at position 939 of mRNA 
(DQ903905) was found in two samples. (C) A chromatogram 
from one of the samples indicates wild type homozygous 
condition.
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that the levels of ergosterol or other intermediate 
sterols which are formed in this pathway might 
be responsible for regulation of ERG expression 
in these  species (20, 30). The exact molecular 
mechanism behind the upregulation of ERG11 
gene in response to azoles and other antifungal 
drugs is not completely understood. Therefore, 
it was considered to investigate whether various 
amino acid substitutions or probable mutations, 
cause enhanced expression of ERG11 and 
changes in azole susceptibility (31). Our DNA 
sequence analysis of the ERG11 coding region 
displayed a heterozygous base substitution T→C 
(ACT>ACC) in two C. krusei isolates. However, 
this genetic alteration cannot lead to a change in 
the amino acid sequence of ERG11 protein which 
creates an Ear1 restriction enzyme recognition 
site. It has been well documented that protein–
DNA interactions play a fundamental role in cell 
biology (32). Therefore, this polymorphism might 
play a critical role in the transcriptional regulation 
of genes which might be involved in the processes 
of ergosterol biosynthesis. 
In addition, data of this study revealed that C. krusei 
is a diploid organism, which is in agreement with 
most recent findings which have identified different 

alleles for ERG11 gene in C. kruse strains (27). 

CONCLUSION
The ERG11 overexpression is unlikely to be the 
cause of azole resistance in C. krusei isolates. A 
potential mechanism for azole resistance could be 
the level of promoter activity which is equivalent 
to the rate of ergosterol or sterol biosynthesis, 
as it has been confirmed in yeasts and human 
beings. In fact, it appears that stimulation of the 
ERG11 promoter has arisen in response to sterol 
deprivation or a reduced level of sterol resources. 
It is noteworthy that upregulation of ERG11 
could be affected by its upstream (ERG9, ERG1, 
ERG7) or downstream genes (ERG3, ERG25). 
Additionally, genetic changes in the ERG11 
promoter region may also modulate levels of the 
expression of genes that are involved in ergosterol 
biosynthesis. Other possibilities to explain ERG11 
overexpression and azole resistance might be due 
to the growth conditions, carbon source and semi-
anaerobic growth of fungal cells.
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