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Angiogenesis is the process of new vessel formation, which sprouts from preexisting vessels. This process is highly complex and
primarily involves several key steps, including stimulation of endothelial cells by growth factors, degradation of the extracellular
matrix by proteolytic enzymes, migration and proliferation of endothelial cells, and capillary tube formation. Currently, it is
considered that multiple cytokines play a vital role in this process, which consist of proangiogenic factors (e.g., vascular
endothelial growth factor, fibroblast growth factors, and angiopoietins) and antiangiogenic factors (e.g., endostatin,
thrombospondin, and angiostatin). Angiogenesis is essential for most physiological events, such as body growth and
development, tissue repair, and wound healing. However, uncontrolled neovascularization may contribute to angiogenic
disorders. In physiological conditions, the above promoters and inhibitors function in a coordinated way to induce and sustain
angiogenesis within a limited period of time. Conversely, the imbalance between proangiogenic and antiangiogenic factors could
cause pathological angiogenesis and trigger several diseases. With insights into the molecular mechanisms of angiogenesis,
increasing reports have shown that a close relationship exists between angiogenesis and oxidative stress (OS) in both
physiological and pathological conditions. OS, an imbalance between prooxidant and antioxidant systems, is a cause and
consequence of many vascular complains and serves as one of the biomarkers for these diseases. Furthermore, emerging
evidence supports that OS and angiogenesis play vital roles in many dermatoses, such as psoriasis, atopic dermatitis, and skin
tumor. This review summarizes recent findings on the role of OS as a trigger of angiogenesis in skin disorders, highlights newly
identified mechanisms, and introduces the antiangiogenic and antioxidant therapeutic strategies.

1. Introduction

The complex process, regulated by proangiogenic and anti-
angiogenic factors, scientifically understood as the beginning
formation of new blood vessels from existing ones, is known
as angiogenesis [1]. New blood vessel formation, based on the
balance of proangiogenic and antiangiogenic factors, is over-
whelmingly responsible for most physiological events, such
as embryogenesis, organ regeneration, body growth and
development, skin renewal, and wound healing [2–4]. In
the skin, angiogenesis is reactivated during skin renewal,
wound healing, and tissue repair; furthermore, in these con-
ditions, many angiogenic factors are released by activated

keratinocytes and some inflammatory cells and jointly func-
tion to promote skin recovery and rejuvenation [5]; however,
this process may be impaired by excessive angiogenic factors.
In certain pathological conditions, these factors become
overmuch and the balance between angiogenic promoters
and inhibitors shifts, resulting in an angiogenic switch. The
most well-known conditions where this switch is seen are
malignant and inflammatory skin disorders as well as other
pathological events, e.g., age-related macular degeneration,
rheumatoid arthritis, tumor growth, proliferative retinopa-
thies, and skin diseases (psoriasis, atopic dermatitis (AD),
systemic sclerosis (SSc), cutaneous carcinoma, etc.) [5–8].
Either physiological or pathological angiogenesis is in need
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of initial mediation by various proangiogenic factors, con-
sisting of endothelial growth factor (VEGF), fibroblast
growth factors (FGF), interleukin-8 (IL-8), platelet-
derived growth factor (PDGF), placental growth factor
(PGF), angiopoietin-1 (Ang-1), and transforming growth
factor-β (TGF-β) [9]. These proangiogenic factors subse-
quently induce a continuous recruitment of inflammatory
cells to participate in the pathological process, which in
turn serve as a substantial source of reactive oxygen spe-
cies (ROS) [10, 11]. More importantly, excessive ROS trig-
ger oxidative stress (OS), further promoting angiogenesis,
damaging cells/tissue, and resulting in a variety of patho-
logical changes [12].

OS is frequently considered as an imbalance of redox
originating from the overproduction of prooxidants (e.g.,
ROS, reactive nitrogen species (RNS), nitric oxide (NO),
and lipid peroxides) or from the insufficiency of antioxidant-
s/antioxidant enzymes, like superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx)
(Figure 1) [13, 14]. Although the definition of OS is contro-
versial, OS is currently regarded as a state in which stationary
ROS/RNS transiently or gradually accumulate and ascend,
further damaging cellular constituents and disturbing cellu-
lar metabolism [15]. Based on its intensity, OS is classified
as basal OS (BOS), low-intensity OS (LOS), intermediate
intensity OS (IOS), and high-intensity OS (HOS). OS, mean-
while, is categorized as mild OS (MOS), temperate OS (TOS),
and severe OS (SOS) according to its degree [16]. In the pro-
cess of OS, multiple redox signaling pathways are involved,
primarily containing the mitogen-activated protein kinase-
s/activator protein-1 (MAPK/AP-1), nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), Janus
kinase-signal transducer and activator of transcription
(JAK-STAT), nuclear factor erythroid 2-related factor (Nrf-
2), phosphatidylinositol-3-kinase/protein kinase B
(PI3K/Akt), and Toll-like receptor- (TLR-) mediated signal
transduction pathway [17]. Through these signaling path-
ways, OS mediates in physiological or pathological events.
For example, MOS contribute to cell survival, whereas SOS
may damage macromolecules (DNA, proteins, and lipids)
and organelles (mitochondria and membranes), even the
whole tissues (Figure 1) [18]. ROS, the major contributors
to OS, including oxygen-centered radical species (superoxide
anion (O2

•-), hydroxyl radical (•OH), and peroxyl radical
(R-O2

•)) and nonradical compounds (ozone (O3), hypo-
chlorous acid (HOCl), and hydrogen peroxide (H2O2)), are
often generated by various categories of cells like endothelial
cells (ECs), perivascular adipocytes, epithelial cells, smooth
muscle cells, and adventitial fibroblasts [17]. In a physiologi-
cal context, ROS have important roles in cell/tissue physio-
logical processes including cell signaling, homeostasis, skin
regeneration/renewal, and wound healing. In the skin in par-
ticular, ROS are mainly responsible for cell damage in the
ageing process. ROS in low concentrations, nevertheless, par-
ticipate in a substantial number of physiological cell redox
signaling pathways to maintain redox equilibrium [19]; more
importantly, ROS generated from immune cells are potently
available for host defense [20]. As germicides or an important
player in cellular signaling, they are also vital to wound

healing and skin repair, while high-level ROS create a redox
imbalance in the skin further causing severe “oxidative
stress,” eventually leading to DNA, cell, and tissue damage
[21–27]. Several studies have demonstrated that in high con-
centration, H2O2 could induce endothelial injury; however,
H2O2 in low concentration generally stimulates angiogene-
sis in wound healing and skin repair [28]. Accumulating
evidence also supports that ROS as well ROS-mediated
OS are involved in the process of physiological and patho-
logical angiogenesis [29, 30] and closely implicated in the
pathogenesis and exacerbation of angiogenesis-related dis-
eases containing dermatoses, neurodegenerative disorders,
cardiovascular diseases, and metabolic disorders [31–38]. In
this review, we provide an overview of the current knowledge
of the link between OS and angiogenesis and their roles in
certain skin diseases as well as the emerging therapeutic
strategies.

2. Role of OS in Angiogenesis

With further knowledge of angiogenesis, the pathogenesis of
angiogenesis to some extent gradually becomes clear. It
arrives at a consensus that ROS-mediated OS plays a crucial
role in the development of angiogenesis. Moreover, two sig-
nal pathways of angiogenesis mediated by OS have been
identified. One is the VEGF-dependent signaling pathway,
while another is the VEGF-independent pathway [10, 39, 40].

2.1. Generation of ROS in Angiogenesis. At present, it is dem-
onstrated that ROS-mediated redox signaling has a central
role in angiogenesis. ROS act as a double-edged sword in
the vasculature. In a physiological process, ROS work as an
important component of signaling events and play an impor-
tant role in cellular differentiation and maintenance of
homeostasis [41]. However, overproduction of ROS (O-2

and H2O2) in turn contributes to neovascularization [21].
In this process, two endogenous ROS sources are mainly
involved in the angiogenesis; one is nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase of the NOX fam-
ily, and another is mitochondrial electron transport chain
reactions [21, 31, 42, 43]. NADPH oxidase, a major source
of ROS in ECs, generates O2

•- by transferring electrons from
NADPH to oxygen. There are seven isoforms of NADPH
oxidases expressed in mammals, namely, Nox1, Nox2 (previ-
ously gp91phox), Nox3, Nox4, Nox5, Duox1, and Duox2.
This NADPH oxidase homologue consists of the following
subunits: gp91phox (newly termed Nox2), p22phox,
p40phox, p47phox, p67phox, and GTPase Rac1 [35, 44–46].
NADPH oxidase may be activated by diverse growth factors
including VEGF, angiopoietin-1, ischemia, and hypoxia,
and then, ROS derived from NADPH oxidase mediate
in VEGFR-2 autophosphorylation [45, 47]. Apart from
NADPH oxidase, ROS, the intracellular ROS in particular,
were as well originated from the mitochondria. In the mito-
chondria, over 95% of oxygen consumed by cells affords
water molecule production via redox reactions. But at com-
plexes I and III in the transport chain, less than 4% of oxygen,
which is reduced to superoxide anion instead of water, can
generate OS [31, 45].

2 Oxidative Medicine and Cellular Longevity



2.2. OS and Physiological Angiogenesis. Angiogenesis is phys-
iologically essential for skin renewal, wound healing, tissue
repair, skeletal remodeling, individual reproduction, etc.
Among these physiological events, wound healing is a typical
process involving angiogenesis and OS [20]. In this process,
angiogenesis is induced by tissue hypoxia and ROS in either
a VEGF-dependent way or a VEGF-independent way [48].
Low-concentration ROS facilitate angiogenesis in mouse
wound healing and skin repair, which are involved in VEGF
and its receptor signaling [49]. As the potent inducer of
VEGF, hypoxia inducible factor 1 (HIF1) activated by ROS
promotes angiogenesis via triggering VEGF expression dur-
ing wound repair [50]. Thus, angiogenesis could be induced
by ROS-mediated OS in a VEGF-dependent manner in
wound healing. Increasing evidence has verified that VEGF
can promote angiogenesis via binding to VEGF receptor-2
(VEGFR-2) in endothelial cells. The binding of VEGF to
VEGFR-2 allows to activate a series of signal transduction
molecules, including phospholipase C gamma (PLCγ) and
phosphatidylinositol 3-kinase (PI3K), further stimulates the
Raf-MAPK-ERK (mitogen-activated protein kinase/extracel-
lular signal-regulated kinase) pathway, and finally facilitates
angiogenesis [51, 52]. It is therefore considered that VEGF/-
VEGFR-2 signaling is a crucial signal transducer in both
physiologic and pathologic angiogenesis. Apart from VEGF,
other soluble factors like PDGF play an important role in
angiogenesis during wound healing, which is dependent on
H2O2 for its biological function [53]. Upon activation of the
PDGF pathway, signaling occurs via the PI3K/Akt complex
pathway and MAPK molecules [54]. Besides, endogenous

2-ω-carboxyethyl pyrrole (CEP), one major member of the
carboxyalkyl pyrrole (CAP) family, is recognized by Toll-
like receptor2 (TLR2) on endothelial cells and then activates
MyD88-dependent signaling to promote angiogenesis at the
wound site, which, in turn, accelerates wound healing. Con-
sequently, OS also acts as the chief mediator of the VEGF-
independent pathway in angiogenesis during the wound
repair process [10].

2.3. OS and Pathological Angiogenesis. Pathological angio-
genesis, fundamentally similar to physiological angiogenesis,
is also affected by OS in VEGF-dependent and VEGF-
independent ways, which proceeds in an unbalanced and
uncontrolled fashion, finally resulting in an excessive and
abnormal vascular pattern [55].

2.3.1. VEGF-Dependent Signaling Pathway. As one of the
major angiogenesis factors, VEGF stimulates EC prolifera-
tion and migration via binding to VEGFR-2 regardless of
physiological status or pathological condition, further acti-
vates several downstream signaling cascades, such as
mitogen-activated protein kinases (MAPKs), PI3k/AKT, or
eNOS, and eventually leads to physiological or pathological
angiogenesis. Physiological angiogenesis like wound angio-
genesis has been discussed before, and the mechanism of
pathological angiogenesis is as follow.

The VEGF signal is essential for homeostasis and vascu-
lar development, which is always influenced by ROS [35].
Increasing evidence has indicated that most OS-related
angiogenesis depends on VEGF involvement. Xia et al.
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Figure 1: The process of oxidative stress (OS) generation. OS occurs when prooxidants (e.g., ROS, NO, and lipid peroxides) outbalance
antioxidant defenses (e.g., SOD, CAT, and GSH-px). OS mediates in physiological or pathological events by activating/suppressing
multiple redox signaling pathways (e.g., Nrf-2, MAPK, NF-κB, PI3K/Akt, and JAK-STA). For example, high-level OS may induce the
damage of macromolecules (DNA, proteins, and lipids), organelles (mitochondria and membranes), and even the whole tissues, whereas
low-level OS may contribute to cell survival. In this process, ROS, including radical and nonradical ROS such as O2

•-, •OH, R-O2
•, O3,

HOCl, and H2O2, play a pivotal role in the generation of OS. ⊕ means “to promote or enhance”; ⊖ means “to inhibit or suppress.”
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showed that NADPH oxidase-dependent ROS stimulated
VEGF secretion and facilitated excessive angiogenesis in a
tumor microenvironment through the HIF-1α-mediated
VEGF pathway, further promoting tumor growth [56]. ROS
from follicle-stimulating hormone (FSH) triggered HIF-1α
signal and activated the VEGF signaling pathway by binding
HIF-1α to the VEGF promoter and further accelerated exces-
sive angiogenesis and finally contributed to ovarian epithelial
cancer progression [57]. Likewise, products of oxidation
exemplified by oxidized phospholipids (OxPLs) stimulate
VEGF expression both in vivo and in vitro, thereby interact-
ing with VEGFR-2 and triggering angiogenesis [58]. Espe-
cially, oxidized low-density lipoproteins (OxLDL)
originated from OS could strongly induce HIF-1a and VEGF
expression in monocyte macrophages and significantly
enhance tube formation in cocultured endothelial cells [59–
61]. As Toll-like receptor (TLR) ligands, poly (I:C) and lipo-
polysaccharide (LPS) both generated from OS, are also able
to encourage angiogenesis via stimulating VEGF secretion
or production and activate HIF-1α and the TLR pathway in
a TLR-dependent manner [55, 62]. In addition, nitric oxide
(NO) is considered to be one of the major contributors to
angiogenesis and it has a capability of increasing the expres-
sion of HIF-1α and VEGF, thereby leading to angiogenesis
[63]. Thus, ROS-promoting angiogenesis is dependent on
VEGF and the HIF-1α/VEGF/VEGFR-2 pathway is a key
molecular mechanism of OS-mediated angiogenesis [60].

2.3.2. VEGF-Independent Signaling Pathway. Apart from the
VEGF-dependent pathway, another novel mechanism of OS-
mediated angiogenesis in a VEGF-independent manner
recently has been demonstrated. Nowadays, because of some
malignant tumors being resistant to anti-VEGF therapy, it is
widely considered that the existence of VEGF-independent
signaling is mainly responsible for this treatment-resistant
event. In most cases, this resistance to anti-VEGF is linked
with inflammation and infiltration of myeloid cells, which
could create substantial oxygen tension and result in the
accumulation of CEPs and finally accelerate neovasculariza-
tion in a VEGF-independent manner [10]. There are two
main VEGF-independent signaling pathways involved in
angiogenesis, the CEP/TLR2/MyD88 axis and ROS/ataxia-
telangiectasia mutated (ATM)/p38α pathways [10, 64]. The
former mediates proangiogenesis and involves the accumula-
tion of new lipid oxidation products, e.g., CAP protein
adducts [55, 65]. CEP acts as a potential biomarker for OS-
induced vascular disorders and has the same proangiogenic
effect as VEGF in vitro [66]. It has been demonstrated that
TLRs not only serve as guardians of innate immunity but also
function as prominent contributors to angiogenesis [67]. At
present, it has been discovered that several proangiogenic
ligands of TLRs produced by OS promote angiogenesis in a
VEGF-independent way, such as CEP (a TLR2 ligand),
macrophage-activating lipopeptide-2 (MALP-2) (a TLR2/6
ligand), and LPS (a TLR4 ligand). The molecular pattern of
CEP, for example, is recognized by TLR2 on endothelial cells
and triggers the MyD88-dependent signal to accelerate neo-
vascularization [68]. LPS could stimulate endothelial sprout-
ing directly in vitro through a TRAF6-mediated activation of

NF-κB and JNK [69]. Angiogenesis is also induced via GM-
CSF by TLR2/6 ligand binding to its receptor [70–72].

On the other hand, the latter, namely, ATM kinase,
known for its function in the regulation of cell cycle and
DNA damage repair, has been identified as an alternative
mediator of OS-induced angiogenesis [73–75]. Remarkably,
compared to CEP-TLR2 in angiogenesis, ATM in angiogen-
esis is uniquely limited to promoting the pathological process
and ATM activation enhances no other cells but endothelial
cell proliferation, which provides a probability for anti-
ATM therapy [73]. As the downstream of ATM in endothe-
lial cells, p38 is also involved in response to ROS; diminishing
of ATM also suppressed angiogenesis even in the absence of
VEGF inhibitors, suggesting a VEGF-independent proangio-
genic role of ATM [73]. Figure 2 sketches two pathways of
OS-mediated angiogenesis.

3. OS and Angiogenesis in Dermatoses

Growing evidence supports that OS and angiogenesis are
both closely implicated in the occurrence and development
of some skin diseases, such as psoriasis, AD, malignant mel-
anoma (MM), Behcet’s disease (BD), and scleroderma. How-
ever, the specific mechanism still remains unclear; thus, we
concentrate on recent findings to present the possible mech-
anism of OS and angiogenesis in these cutaneous diseases.

3.1. OS and Angiogenesis Associated with Psoriasis. Psoriasis
is a common chronic inflammatory skin disease approxi-
mately affecting 2% of the population. It characteristically
manifests as erythema and papules/plaques accompanied by
thick silvery-white scales. Nowadays, there is a wide range
of options available for the treatment of psoriasis, such as
topical therapies, phototherapy, older small-molecule sys-
temic agents (e.g., methotrexate, cyclosporine, acitretin, and
fumaric acid), the newer oral phosphodiesterase-4 inhibitor
apremilast, and the biologics (e.g., etanercept, adalimumab,
infliximab, and ustekinumab) [76]. Despite that these thera-
pies offer a certain efficacy, patients scarcely get satisfaction
with substantial psoriatic lesion clearance, symptom relief,
and improvements in quality of life [77]. Thus, there is a
pressing need to develop some novel effective remedies.
Although the etiology of psoriasis still remains unclear, it is
thought that oxidative and angiogenic mechanisms both get
involved in the pathological process of psoriasis. As one of
major pathological features of psoriasis, angiogenesis has
been persistently studied and various proangiogenic media-
tors have been identified in the psoriatic skin. Heidenreich
et al. revealed a large spectrum of proangiogenic factors to
mediate in psoriasis, including VEGF, HIF-1α, TNF, angio-
poietins, IL-8, IL-17, and TGF-α [78].VEGF expression, in
particular, remarkably elevated in the psoriatic serum and
lesions. Moreover, ROS induced VEGF releasing from vari-
ous cell types, whereas VEGF in turn promoted endothelial
cell migration and proliferation through an increase of intra-
cellular ROS. Thus, the VEGF pathway may be a crucial link
between OS and angiogenesis in psoriasis, especially for the
HIF-1α/VEGF signaling pathway playing a synergistic role
in the neovascularization of psoriasis [79, 80]. By
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upregulating the expression of cell adhesion molecules,
VEGF could enhance the migration of leukocytes into the
psoriatic skin and increase oxygen consumption, further acti-
vating HIF-1α and perpetuating the angiogenic/inflamma-
tory cycle of psoriasis [30, 81]. Furthermore, OxPLs afford
the pathogenesis of psoriasis through enhancing VEGF gen-
eration from keratinocytes [30]. Besides, Elias et al. discov-
ered that epidermal VEGF knockout mice scarcely
appeared acanthosis after barrier disruption, suggesting an
important contributor for VEGF to the development of ker-
atinocyte hyperplasia. Hence, ROS-VEGF signaling may be
a potential target for the treatment of psoriasis. However,
the specific relationship between OS and angiogenesis in pso-
riasis requires to be further studied, which is conducive to
fully clarify the pathogenesis of psoriasis and expand the
optimal treatments for this disease.

3.2. OS and Angiogenesis Associated with AD. AD, a chronic
inflammatory skin disease, adversely affects many people
especially young children [82]. The current management of
AD covers avoidance of triggering factors, skin care, and
anti-inflammatory therapy (mostly topical corticosteroids
and topical calcineurin inhibitors). Once these first-line
approaches are unsuccessful, systemic therapy or photother-
apy tends to be carried out as second-line treatment [83].
After being treated with these vehicles, most symptoms
may be relieved. However, long-term use of the above

therapeutic probably causes many side effects such as skin
atrophy and dryness, photoaging, and potential occurrence
of cutaneous malignancies [84]. Therefore, some novel ther-
apies are needed for the management of AD. The pathogen-
esis of AD is complex and still poorly understood. Recently,
emerging evidence suggests that OS is a potential key factor
in the pathogenesis of AD [85]. OS is implicated in AD for
several decades and remains present throughout the disease,
including the onset of AD, the development of AD, and the
exacerbation of AD. Moreover, excessive ROS overwhelm
and destroy the skin antioxidant defense, which ultimately
lead to AD progression and exacerbation [86]. Apart from
OS, angiogenesis, as a hallmark of chronic inflammatory dis-
orders, also gets involved in AD [87]. Several angiogenic fac-
tors contribute to the presence of angiogenic switch in the
AD skin, such as VEGF, Angs, and IL-17. It has been demon-
strated that angiogenesis is dysregulated in AD patients or
models and high-level VEGF is detected in AD patient
lesions. Meanwhile, Chen et al. discovered that a progressive
increase of VEGF-A mRNA appeared in the skin of an AD
mouse model [88]. Taken together, both OS and angiogenesis
are mainly responsible for the pathogenesis of AD and the
VEGF pathway may be a potential link between OS and
angiogenesis in AD. Therefore, specific inhibitors targeting
various mediators (e.g., VEGFs), receptors (e.g., VEGFRs
and Tie-2), and oxides offer a promising foreground for the
treatment of AD [7].
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Figure 2: Schematic illustration of angiogenesis signaling pathways induced by OS. According to different responses to OS, two signal
pathways of angiogenesis are covered, namely, the VEGF-dependent signaling pathway and VEGF-independent signaling pathway. In the
VEGF-dependent pathway, ROS, NO, OxLDL, and OxPLs strongly stimulate the expression of HIF-1a and VEGF. Meanwhile, Poly I:C
and LPS promote the expression of HIF-1α and VFGF by coupling with their specific receptors (TLR3 and TLR4). These further combine
to the downstream receptor VEGFR-2 and facilitate angiogenesis by activating the HIF-1α/VFGF/VEGFR-2 signaling pathway in a VEGF-
dependent manner. On the other hand, many mediators are involved in the VEGF-independent pathway, including CEP, LPS, MALP-2,
PDGF, and ROS. CEP/yyMALP-2 initially couples to their receptors (TLR2/6), then sensitizes specific downstream targets (e.g., MyD88
and GM-CSF), and finally promotes angiogenesis. Meanwhile, ROS activate the P38 pathway via inducing the activation of ATM and
ultimately result in angiogenesis. Besides, LPS is considered to induce angiogenesis through a TRAF6-mediated activation of NF-κB and
JNK. As another soluble mediator, PDGF triggers PI3K/Akt andMAPK signaling by binding to its receptor and promotes neovascularization.
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3.3. OS and Angiogenesis Associated with MM.MM, a malig-
nant tumor of melanocytes, is accounted for about 10% of
skin cancers, but it is responsible for over 90% of skin cancer
deaths. For years, the cornerstones of cancer treatment have
been surgery, chemotherapy, and radiation therapy. During
the last decade, new strategies emerge from antitumor ther-
apy for MM, including immunotherapy (e.g., checkpoint
blockades) and targeted therapy (e.g., protein kinase inhibi-
tors) or their combination [89]. Despite of extensive novel
approaches serving for MM, the response rate is rarely higher
than 20% and drug resistance is very common [90]. Up to
date, rarely effective treatment has been approved for MM
due to these reasons. As a result, it is urgent to invent other
alternatives and targeted therapies [91, 92]. Compared to
other tumors, MM is known for abundant ROS that exist in
the primary tumor environment [93, 94]. ROS from OS at
one time had been recognized as a powerful weapon for the
immune system to kill tumor cells [95]. However, once
MM cells successfully escape ROS-induced apoptosis, persis-
tent ROS tend to favor melanoma survival, proliferation, and
metastasis through activating several related pathways [96].
Thus, ROS and ROS-mediated OS are closely implicated in
different stages of MM. Elevated ROS could trigger the occur-
rence of OS, which further disrupt the homeostasis of mela-
nocytes, affect the epigenetic regulation, and induce gene
mutation, ultimately leading to cancer generation [97].
Accordingly, much efforts have been made to battle mela-
noma by using antioxidants so far [98]. Moreover, ROS and
ROS-mediated OS would promote MM angiogenesis in a
VEGF-dependent or VEGF-independent manner; in their
publication, Bald et al. as well have emphasized the impor-
tance of the vascular network for MM [99]. Several angio-
genic factors (e.g., VEGF, bFGF, PIGF, PDGF, IL-8, and
Ang-1) have been found to highly express in primary skin
MM, and these mediators further promote MM angiogenesis
and metastasis [100]. In addition, intratumoral hypoxia
encourages the consequent expression of HIF-α transcription
factors, in turn modulating VEGF and transcriptional prod-
uct expression and mediating in cell growth, metabolism,
and death [101, 102]. Meanwhile, preclinical studies indicate
that the inhibitors targeting VEGF or VEGFR are effective in
slowing the growth and metastasis of MM in murine models
[103, 104]. Apart from VEGF, PDGF and its receptor
PDGFR-β are responsible for MM angiogenesis. PDGF sig-
naling is also implicated in angiogenesis in a VEGF-
independent fashion. Therefore, OS and angiogenesis play
vital roles in the development of MM; VEGF and PDGF sig-
naling, moreover, may be the key link to OS and angiogene-
sis, which probably become the potential targets for the
treatment of MM [105].

3.4. OS and Angiogenesis Associated with BD. BD, a chronic
and recurrent vasculitis disease, is characterized by various
clinical manifestations including skin lesions, oral/genital
ulcer, ocular symptoms/lesions, joint signs, and organ
involvements [106–108]. Glucocorticoids, azathioprine,
cyclophosphamide, and cyclosporine A are currently the
mainstay of treatments in vasculo-Behcet’s disease, but
long-term use of these drugs may induce some systemic

adverse reactions [109]. Once immunosuppressive and corti-
costeroid therapies fail, biologic agents (e.g., infliximab,
alemtuzumab, and adalimumab) can help for vascular
lesions. However, high cost may be an obstacle to their wide-
spread application [110]. Although BD etiology keeps being
unknown, recently, growing evidence supports that elevated
OS and insufficient antioxidant capacity are primarily
involved in the pathogenesis of BD [111–113]. In the process
of BD attack, ROS overproduction from OS may in turn
accelerate OS aggression, then lead to tissue damage, and
ultimately result in the pathological and clinical manifesta-
tions of BD. More importantly, we have demonstrated in
our previous studies that there is an abnormal OS indeed
existing in BD and a skewed redox balance remains present
throughout this disease [114]. Apart from the OS-mediated
mechanism, vascular endothelial activation is also considered
to be a major one in BD [115–117]. Nowadays, it has been
confirmed that several angiogenesis-promoting molecules
(namely, angiogenic promoters) get involved in the patho-
genesis of BD, including IL-8, matrix metalloproteinases, E-
selectin, vascular endothelial-cadherin, and VEGF [118].
Among them, VEGF, the dominant factor controlling angio-
genesis, was found to highly express in BD serum and
elevated-level VEGF was proportional to BD activity [119–
121]. VEGF, at the same time, plays an active role in the
maintenance and growth of vascular endothelial cells.
Kamoun et al. thought that high-level VEGF was closely
associated with high concentration of NO from OS in BD
[122]. Thus, OS and angiogenesis are crucial in BD patho-
genesis and OS zealously mediates in the process of angio-
genesis. However, further studies are needed to investigate
the underlying mechanisms of OS-mediated angiogenesis in
BD, in order to develop new therapeutic strategies for BD
patients to suppress OS and angiogenesis.

3.5. OS and Angiogenesis Associated with Scleroderma.
Scleroderma, also known as systemic sclerosis (SSc), is a
chronic immune-mediated connective tissue disease
involving the skin, blood vessels, systemic organs, lungs,
kidney, and gastrointestinal tract in particular [91]. SSc
consists of two clinical subsets: one is limited cutaneous
SSc (lc-SSc) and another is diffuse cutaneous SSc (dc-
SSc). Because skin sclerosis can cause joint contracture,
disability, and poor quality of life, various systemic treat-
ments (e.g., penicillamine, cyclophosphamide, methotrex-
ate, azathioprine, mycophenolate mofetil, intravenous
immunoglobulin, and tyrosine kinase inhibitors) have been
applied to alleviate the symptoms. These treatments, how-
ever, may cause severe side effects and offer inconsistent
efficacy [123]. Phototherapy, another approach used to
relieve skin sclerosis, provides a local effect on the skin
without systemic involvement, but it alone cannot
completely reverse skin sclerosis and it is just used as an
adjunctive therapy together with other antifibrotic treat-
ments (i.e., corticosteroids and pentoxifylline) [124].
Recently, it is thought that OS plays an important part
in promoting scleroderma development, though SSc path-
ogenesis remains obscure [125]. Murrell proposed that an
abnormal generation of ROS should be responsible for
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most of the pathologic features of SSc [126]. For example,
ROS could stimulate the production of profibrotic cyto-
kines (including PDGF and TGF-β) and proinflammatory
factors, accelerate the activation and proliferation of fibro-
blasts, promote the synthesis of type I collagen, and induce
vascular dysfunction [127]. By targeting ROS-generating
NADPH oxidase, fibroblast activation and experimental
skin fibrosis are inhibited in vitro and in vivo [128]. On
the other hand, several abnormalities in regulating angio-
genic responses in scleroderma indicate that aberrant
angiogenesis may be another important pathogenic factor
of scleroderma [129]. Hummers et al. have found that
high levels of angiogenic factors were measured in patients
with scleroderma, e.g., VEGF, PDGF-BB, FGF2, and PlGF
[130]. Meanwhile, increased-level VEGF and VEGFR have
been discovered in the serum and skin samples from
scleroderma patients [131–135]. Besides, HIF-1a is more
prevalent in SSc patients than normal subjects [136].
Accordingly, the pathogenesis of scleroderma is closely
associated with OS and abnormal angiogenesis but further
studies focused on the link between OS and angiogenesis
in SSc are still needed, which may lead to the development
of a new way for scleroderma treatment.

3.6. OS and Angiogenesis Associated with Rosacea. Rosacea is
a common chronic inflammatory dermatosis, clinically char-
acterized by erythema of the central face, episodic flushing,
papules, and pustules [137, 138]. Skin care and pharmaco-
logic treatments are the pillars of effective management of
rosacea. Apart from existing topical agents (sodium sulface-
tamide, azelaic acid, metronidazole, and the alpha-
adrenergic agonist brimonidine) and systemic medications
(tetracyclines, beta-blockers and isotretinoin), new therapies
including serine protease inhibitors and mast cell stabilizers
may ameliorate rosacea symptoms [139]. However, some of
these approaches have not been approved by the Food and
Drug Administration. Though the exact pathogenesis of
rosacea needs to be clarified, OS and oxidation of lipids are
considered as crucial factors to trigger and aggravate the
inflammatory processes of rosacea. Increased OS and
decreased antioxidants are determined in systemic circula-
tion of rosacea [140, 141]. OS, in addition, is complicated
in vascular changes, inflammation, and oxidative tissue dam-
age in rosacea [142]. Therefore, antioxidants may be a poten-
tial strategy for treating rosacea. As an essential process in
chronic inflammatory dermatoses, angiogenesis also contrib-
utes to the development of rosacea [143–145]. Amal et al.
reported that VEGF expression elevated in cutaneous lesions
of rosacea and was consistent with vascular histological
changes which clinically presented as erythema and telangi-
ectasia [146]. VEGF, indeed, has an important impact on
the angiogenesis process, responsible for telangiectasia and
increased vascular permeability, leading to cutaneous inflam-
mation and the presence of papules, pustules, and nodules in
rosacea [147, 148]. Thus, attenuation of OS and VEGF may
be relevant approaches for the therapy of rosacea. However,
more research should be carried out to clarify the relation-
ship of OS and angiogenesis and provide a novel therapeutic
way for rosacea.

4. Therapeutic Implications

Given that OS and OS-mediated angiogenesis have impor-
tant roles in promoting various dermatoses, it should be fully
suitable to develop novel therapies for skin disorders aimed
at both aspects (Figure 3). As a major regulator of angiogen-
esis, VEGF and its pathway are considered as key targets for
antiangiogenic therapy [149, 150]. Some effective drugs tar-
geting VEGF have emerged from the pharmaceutical indus-
try to inhibit new vessel formation.

4.1. Antiangiogenic Agents in the Management of Skin
Diseases. Based on successful phase III trials, antiangiogenic
therapeutics, anti-VEGF agents in particular (e.g., sorafenib,
bevacizumab, and sunitinib), have entered the clinical prac-
tice in the USA and elsewhere. Strategies have been devel-
oped to inhibit the VEGF signaling pathway including anti-
VEGF antibody therapy (e.g., bevacizumab), anti-VEGFR
antibody therapy (e.g., ramucirumab), inhibitors of
VEGFR-2 tyrosine kinases (e.g., apatinib), and inhibitors of
angiogenic receptor tyrosine kinases (e.g., sunitinib, pazopa-
nib, sorafenib, and regorafenib) [151]. Due to their antian-
giogenic, antioxidative, and antiproliferative effects,
phytochemicals are beneficial in the battle against cutaneous
carcinoma [152]. Intraperitoneal injection of recombinant
thrombospondin type 1 repeat domain (rTSR1) or a
disintegrin-like and metalloproteinase with thrombospondin
motifs 5 (ADAMTS5) could potently inhibit subcutaneous
melanoma growth by diminishing angiogenesis, promoting
apoptosis, and decreasing cell proliferation in the tumor tis-
sue [153]. Antiangiogenic agent AE-941 from extracts of car-
tilage potentially provides a beneficial effect to treat
cutaneous and systemic diseases especially for psoriasis
[154]. It is speculated that cannabinoids have a potential role
in treatment of psoriasis by controlling angiogenesis and
inflammation through decreasing HIF-1α and VEGF levels
[155]. Meanwhile, Kuang et al. also demonstrated that topical
sunitinib ointment contributed to attenuate imiquimod-
induced psoriasis-like inflammation through regulating the
proliferation and apoptosis of keratinocytes via suppressing
p-Stat3 and VEGF expression [156]. Besides, thalidomide
effectively works in skin disorders such as BD through inhi-
bition of VEGF- and FGF-2-mediated angiogenesis [157].

4.2. Agents against OS in the Management of Dermatoses. On
the other side, it is quite beneficial to skin disorder recovery
by employing OS-targeted drugs like antioxidants. Because
OS-dependent angiogenesis is an important contributor to
the progression of cancers, antioxidants may overcome the
limitations of anti-VEGF therapy, especially in relation to
tumor resistance. Related documents revealed that glabridin
ameliorated imiquimod-induced psoriasis-like inflammation
on BALB/c mice skin through improvement of antioxidant
status and downregulation of proinflammatory cytokines
[158]. By decreasing lipid peroxidation and modulating
Ca2+ release, colchicine significantly induced protective
effects on OS in the neutrophils of BD patients [159]. More
importantly, high-dose vitamin C could effectively work in
the skin diseases of MM and AD owing to its antioxidant
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protection [160]. Apart from the traditional antioxidants,
NADPH oxidase, a key enzyme generation of ROS in neovas-
cularization, potentially becomes the important target of
pharmacological inhibitors. And NOX inhibitors are the
most promising therapeutic option for diseases associated
with OS. Among them, traditional NADPH oxidase inhibi-
tors, such as apocynin and diphenylene iodonium, have no
specificity and little isoform selectivity. Instead, several novel
NOX inhibitors (GKT137831, ML171, and VAS2870) exhibit
improved specificity for NADPH oxidases and NOX isoform
selectivity [161].

4.3. Natural Plant Extracts in the Management of
Dermatoses. Nowadays, natural extracts from plants increas-
ingly arrest the attention frommedical fields and pharmaceu-
tical industry. Numerous natural extracts, like tea
polyphenol, proanthocyanidins, and allicin, are potently ben-
eficial to various skin disorders. As the main active ingredient
of tea polyphenol, epigallocatechin-3-gallate (EGCG) could
prevent OS-induced damage and suppress angiogenesis to
avail against skin cancer and psoriasis basing on its antioxi-
dant, antitumor, and antiangiogenic properties [162, 163].
Due to their powerful antioxidation, antiangiogenesis, anti-
proliferation, and antioncogenesis, proanthocyanidins have
a wide utilization in the management of various OS-related
and angiogenic complaints [164, 165]. Phenolic metabolites
[166]. Moreover, we have proposed in our previous publica-
tions that proanthocyanidins are good for the treatment of
psoriasis, AD, allergic purpura, SSc, rosacea, skin cancer,
and other dermatoses [167]. Besides, our recent finding
reveals that allicin, an active substance from garlic, has a
favorable efficacy on BD by attenuation of OS and balance
of oxidant/antioxidant status [168].

5. Conclusion

In summary, there are two main mechanisms implicated in
the area bridging angiogenesis and OS; one is the VEGF-
dependent signaling pathway (HIF/VEGF signaling), while

another is the VEGF-independent signaling pathway
(CEP/TLR2/MyD88 axis and ROS/ATM/p38α pathway). It
is clear that OS and OS-derived angiogenesis are important
contributors to the progression of chronic diseases and
tumors. There is no doubt that both OS and angiogenesis
participate in the development of certain skin diseases; how-
ever, a deeper understanding of the mechanisms behind OS
and OS-dependent angiogenesis is necessary. There is a need
for an investigation of multifaceted pathways involved in OS-
induced angiogenesis in dermatoses and a specific target dis-
criminating pathological vasculature from the physiological
one. Therefore, in addition to the anti-VEGF drugs and OS
inhibitors or antioxidants, it is necessary to develop some
newly specific target strategies.
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