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Abstract: After a large-scale investigation into carbon nanotubes, significant research efforts have
been devoted to discovering and synthesizing other nanotubes formed by chemical elements other
than carbon. Among them, non-carbon nanotubes based on compounds of the elements of the
13th group of the periodic table and phosphorus. These inorganic nanotubes have proved to be
more suitable candidates than carbon nanotubes for the construction of novel electronic and optical-
electronic nano-devices. For this reason, until recently, mainly the structural and electrical properties
of phosphide nanotubes were investigated, and studies to understand their mechanical behavior are
infrequent. In the present work, the elastic properties of single-walled boron phosphide, aluminum
phosphide, gallium phosphide and indium phosphide nanotubes were numerically evaluated using
a nanoscale continuum modelling (also called molecular structural mechanics) approach. The force
field constants required to assess the input parameters for numerical simulations were calculated for
boron phosphide, aluminum phosphide, gallium phosphide and indium phosphide nanostructures
using two different methods. The influence of input parameters on the elastic properties evaluated
by numerical simulation was studied. A robust methodology to calculate the surface elastic moduli
of phosphide nanotubes is proposed.

Keywords: non-carbon nanotubes; numerical simulation; force constants; rigidity; elastic moduli

1. Introduction

Achievements in the fabrication of carbon nanotubes (CNTs) and their successful em-
ploying in numerous applications have given impetus to prediction and synthesis of new
one-dimensional (1D) tubular structures with a honeycomb atomic arrangement. These
nanostructures with graphene-like hexagonal lattice are based on compounds of chemical el-
ements other than carbon. Among the examples of such compounds are those based on the
elements of the 13th group of the periodic table, such as boron (B), aluminum (Al), gallium
(Ga) and indium (In), which are able to establish with phosphorus (P) honeycomb diatomic
arrangements, forming nanotubes (NTs) of boron phosphide (BP), aluminum phosphide
(AlP), gallium phosphide (GaP) and indium phosphide (InP). These phosphorus-based
diatomic NTs are, in general, broadband gap semiconductors with valuable electronics and
optoelectronics properties and have promising applications as light-emitting devices oper-
ating in the visible range, such as light-emitting diodes (LEDs) [1–4], solar cells [5], building
blocks for nano-integrated circuits [6,7] and parts in quantum electronic devices [8,9].

The synthesis of tubular phosphide nanostructures has been a challenge so far. Bakkers
and Verheijen [8] synthesized for the first time crystalline InPNTs employing the vapor–
liquid–solid (VLS) laser ablation method and not using a template. Yin et al. [10] proposed
a simple template-free thermal chemical process in a conventional furnace with controlled
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reaction temperature and gas flow for synthetizing single-crystalline InPNT. Palit et al. [11],
in their recent study, grew single-crystalline InPNTs using the Metal-Organic Chemical
Vapor Deposition (MOCVD) method in patterned template developed on germanium
substrate by electron beam lithography (ELB) technique. Wu et al. [2] synthesized crystalline
GaPNTs using a chemical reaction in a high-temperature tubular furnace and suggested
that the growth of the GaP nanotube occurs according to the VLS mechanism [12].

The remaining phosphide nanotubes, BPNTs and AlPNTs, have not yet been synthe-
sized, but these nanotubes were theoretically predicted. Mirzaei and Giahi [13], and Mirzaei
and Meskinfam [14] used density functional theory (DFT) calculations to study optimized
geometry and characterize the electronic structure of BPNTs. Theoretical results were also
obtained regarding the functionalization of single-walled BPNTs and their suitability for
drug carriage, using DFT calculations, in two works by Zahra Sayyad-Alangi et al. [15,16].
Lisenkov et al. [17] calculated the equilibrium geometry and energetic stability of AlPNTs,
employing DFT, and Mirzaei and Mirzaei [18] examined the electronic structure of AlPNTs
also using DFT calculations.

It is worth mentioning that the characterization of structural and electronic properties
of GaPNTs and InPNTs was also carried out. Mirzaei and Mirzaei [19] used DFT calcu-
lations to optimize structure of single-walled GaPNTs and to compute the electric field
gradient (EFG) tensors for the optimized nanotubes structure. Kamal et al. [20] studied the
geometric and electronic structures of single-walled GaPNTs, based on ab initio calcula-
tions. Srivastava et al. [21] also employed the ab initio method to investigate the stability,
electronic band structure and transport properties of single-walled zigzag GaPNTs. The
band structure of the InPNTs was studied by Palit et al. [11], using a theoretical model
based on the experimental observation of spectral emission lines. Erkoç [22] computed
the optimized geometry and electronic properties of single-walled armchair and zigzag
InPNTs, using semi-empirical calculations. In their work, Muhsen et al. [23] employed DFT
to analyze the stability and electronic properties of single-walled zigzag InPNTs.

As it is of great importance to investigate the prospective employment of phosphide
nanotubes in nano-electronics, their structure and electronic properties have been the focus
of the research attention so far [18–25]. Consequently, the mechanical properties of the
phosphide NTs have been less studied, although the understanding of the NTs’ mechanical
behavior can ensure the robustness and appropriate functioning of nano-devices involving
nanotubes as components (building blocks).

Until now, the mechanical properties of phosphide NTs have been evaluated in the
works of Kochaev [26], and Jiang and Guo [27], both studies exploring theoretical ap-
proaches to this end. Kochaev [26] evaluated the surface Young’s modulus, that is, the
product of Young’s modulus by the wall thickness of the nanotubes, and the Poisson’s ratio
of AlPNTs and GaPNTs, using ab initio simulation within the atomistic approach. Jiang and
Guo [27] applied the “stick-and-spring” model to obtain closed-form analytical solutions
for the surface Young’s modulus and Poisson’s ratio and computed these values for BPNTs,
GaPNTs and InPNTs. The model of Jiang and Guo [27] was developed under the nanoscale
continuum modelling (NCM), also called molecular structural mechanics (MSM), approach,
where the bonds between two atoms in the diatomic hexagonal nanostructure are regarded
as beams or springs. For successful modelling of these bonds, first, an appropriate choice
of the force field constants is necessary, which allows computing of the elastic properties of
beams (springs). As for most non-carbon nanotubes, with the exception of boron nitride
NTs, the force field constants for phosphide NTs practically do not appear in the literature.
To the best of our knowledge, only Jiang and Guo [27] have suggested a method to calculate
force constants for BP, GaP and InP nanotubes.

The present study is a systematic evaluation of the elastic properties of single-walled
boron phosphide, aluminum phosphide, gallium phosphide and indium phosphide nan-
otubes (SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs, respectively) in a wide range
of chiral indices and diameters, by finite element (FE) simulation. The force field constants
for BP, AlP, GaP and InP nanostructures were determined using two different calculation
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approaches. The influence of the input parameters, selected for the FE modelling and com-
puted basing on two sets of the force field constants, on the elastic properties of phosphide
NTs was investigated. A comprehensive analysis was performed on the nanotube wall
thickness, required for the calculation of the Young’s and shear moduli. As a result, a robust
methodology was proposed to assess the surface Young’s and shear moduli.

2. Materials and Methods
2.1. Atomic Structure of Phosphide Nanotubes

The atomic structure of single-walled phosphide nanotubes is characterized by the
chiral vector, Ch, and the chiral angle, Θ, as follows:

Ch = na1+ma2, (1)

Θ = sin−1
√

3
2

m√
n2+nm + m2

, (2)

where n and m are the chiral indices, both having integers values; a1 and a2 are the unit
vectors of the diatomic hexagonal lattice. This lattice consists of the A13 atom, which is
one of the 13th group of the periodic table, such as boron (B), aluminum (Al), gallium (Ga)
or indium (In), and phosphorus (P) atom, as shown in Figure 1 for AlP lattice. The length
of the unit vector a is expressed by a =

√
3aA13−P, where aA13−P is the equilibrium bond

length. As can be seen in Table 1, in which the bond lengths of the phosphide NTs available
in the literature are presented, there is no agreement regarding the aA13−P values.
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Table 1. Bond length values of phosphide nanostructures available in the literature.

BP AlP GaP InP

aA13−P, nm 0.183 [28]
0.193 [29]

0.234 [17]
0.240 [26]

0.220 [26]
0.225 [28]
0.229 [25]
0.236 [29]

0.246 [28]
0.256 [29]
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The phosphide NTs are formed by rolling up the respective diatomic hexagonal sheet
into a cylinder of diameter, Dn, which is considered the nanotube diameter and expressed by

Dn =
aA13−P

√
3
(
n2+nm + m2

)
π

, (3)

where n and m are the chiral indices and aA13−P is the equilibrium bond length of the
diatomic structure of the phosphide.

The chiral indices, n and m, together with the magnitudes of the chiral angle, which
are within the range of 0◦ to 30◦ (see Figure 1), allow defining three main symmetry groups
of single-walled phosphide nanotubes: for zigzag NTs Θ = 0◦ and n = 0, for armchair
NTs Θ = 30◦ and n = m, and for chiral NTs 0◦ < Θ < 30◦ and n 6= m 6= 0. The zigzag and
armchair configurations are called non-chiral NTs. Non-chiral (zigzag and armchair) and
chiral SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs, displayed in ascending order of
the chiral angle, Θ, are represented schematically in Figure 2.
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2.2. Molecular Mechanics of Phosphide Nanotubes and Equivalent Continuum Properties of
Interatomic Bonds
2.2.1. Force Field Constants

According to Mayo et al. [30] and Rappé et al. [31], the total potential energy of a molecular
system is presented as the sum of the energy terms due to bonded and non-bonded interactions:

Utotal= Ubond+Unon−bond (4)

The energy of bonded interactions, which are presented in Figure 3, is expressed
through those associated with bond stretching, Ur, bond bending, Uθ, dihedral angle
torsion, Uφ, and out-of-plane torsion, Uω, as follows:

Ubond= Ur+Uθ+Uφ+Uω. (5)

The energy of non-bonded interactions comprises the van der Waals, UvdW, electro-
static, UQ, and explicit hydrogen bonds, UHbs, terms:

Unon−bond= UvdW+UQ+UHbs. (6)

In molecular systems, as in the case of phosphide nanotubes, Unon−bond term can be
omitted due to its smallness when compared with Ubond term [27]; thus, Utotal= Ubond.
The four terms of Equation (5), which contribute to the total potential energy, Utotal, are
given by the following expressions:

Ur =
1
2

kr(r− r0)
2, (7)

Uθ =
1
2

kθ(θ− θ0)
2,

Uφ =
1
2

kφ{1− cos[2(φ−φ0)]},

Uψ =
1
2

kψ(ψ−ψ0)
2,

where kr, kθ, kφ and kψ are the bond stretching, bond bending, dihedral torsion and
inversion force constants, respectively; r, θ, φ and ψ are bond length, bond angle, dihedral
angle and inversion angle, respectively, and r0, θ0, φ0 and ψ0 correspond to the equilibrium
position (see Figure 3).
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The dihedral angle torsion term describes the torsion interaction for two interatomic
bonds linked by means of a common bond [30,31] (see Figure 3c). The out-of-plane torsion
or inversion term illustrates how difficult it is to rotate three bonds (when one atom in a
diatomic honeycomb lattice is bonded to three other atoms), keeping them in the same
plane [30] (see Figure 3d). Under the assumption of small deformation and with the
approximation that the variation of the dihedral angle, (φ−φ0), is equal to that of the
inversion angle, (ψ−ψ0), the energies of the dihedral angle torsion and the out-of-plane
torsion can be merged into a single equivalent term:

Uτ = Uφ + Uω ⇒ (8)

Uτ =
1
2
(2kφ+kψ)·(φ−φ0)

2 =
1
2

kτ(φ−φ0)
2,

where kτ is the torsional resistance force constant expressed by

kτ = 2kφ + kψ. (9)

Thus, the total potential energy of the molecular system can be rewritten using three
energy terms, Ur, Uθ and Uτ , in the form of harmonic functions, as follows:

Utotal= Ur+Uθ+Uτ =
1
2

kr(∆r)2 +
1
2

kθ(∆θ)
2 +

1
2

kτ(∆φ)
2, (10)

where ∆r, ∆θ and ∆φ are the bond stretching increment, bond angle bending variation and
angle variation of the twist bond, respectively.
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With regard to the calculation of the bond stretching, kr, and bond bending, kθ, force
constants for the diatomic nanostructures, there are two established methods, one based on
Universal Force Fields (UFF) [31], and the other using ab initio DFT computations in com-
bination with the analytical expressions obtained using molecular mechanics (MM) [32,33].
Until now, these methods were mainly used for determination of the force field constants
of boron nitride nanostructures (see, for example, [32–35]). Jiang and Guo [27], based on
a UFF approach, proposed expressions for kr and kθ force constants for a wide class of
non-carbon nanotubes, including BP, GaP and InPNTs.

According to Rappé et al. [31], the bond stretching constant, kr, in the UFF method is
determined by the following expression:

kr= 664.12
Z∗i Z∗j

r3
ij

, (11)

where Z∗i and Z∗j are the effective charges of the atoms of diatomic nanostructure; rij and rik
are the lengths of the A13–P and P–A13 bonds, respectively, as presented in Figure 4, being
rij= rik= aA13−P (see Figure 3a).
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The bond bending constant, kθ, in the UFF method is determined by the following
expression [31]:

kθ= 664.12
Z∗i Z∗j

r5
jk

[
3rijrik

(
1− cos2θ0

)
−r2

jkcos θ0

]
, (12)

where θ0 is the angle between neighboring bonds in the diatomic nanostructure (see
Figure 4) and r2

jk= r2
ij+r2

ik−2rijrikcos θ0.
Rappé et al. [31], using UFF, showed that the bond bending constant, kθ, of the di-

atomic nanostructure depends on the three-body angles between the bond pairs A13–P–A13
and P–A13–P (see Figure 3b), which results in two different values for the bond bending con-
stant. Moreover, in the same work, the relationship between two values for the bond bending
constant, kθ1 and kθ2, and the effective charges of the atoms A13 and P (Z∗1,2) was proposed:

kθ1

kθ2
=

Z∗22

Z∗21
. (13)

The alternative method for obtaining the bond stretching and bond bending force con-
stants is based on molecular mechanics (MM) and employs results from DFT calculations.
The expressions, which result from MM analytical models for two-dimensional honeycomb
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diatomic nanostructures, allow relating the surface Young’s modulus, Es, and the Poisson’s
ratio, ν, with the force field constants, kr, kθ1 and kθ2, as follows [32,33]:

Es =
4
√

3kr(kθ1+kθ2)

krr2
ij+9(kθ1+kθ2)

ν =
krr2

ij−3(kθ1+kθ2)

krr2
ij+9(kθ1+kθ2)

(14)

The values of Es and ν can be obtained experimentally or from ab initio DFT computa-
tions (see, for example, [28,36]).

Thus, solving the system of Equations (14) and taking into account Equation (13),
the following expressions can be derived to determine the bond stretching, kr, and bond
bending, kθ1 and kθ2, constants of the diatomic nanostructure:

kr =
9Es√

3(1− ν)
, (15)

kθ1(2) =
Esr2

ij(
1+

Z∗21(2)

Z∗22(1)

)√
3(1 + 3ν)

, (16)

where Es and ν are the surface Young’s modulus and Poisson’s ratio of the diatomic sheet,
respectively; Z∗1 and Z∗2 are the effective charges of the atoms; and rij= aA13−P is the bond length.

Literature data, which are required to calculate the bond stretching, kr, and bond
bending, kθ1 and kθ2, force constants for phosphide NTs, are summarized in Table 2.

Table 2. Effective charges of atoms [31], and bond length, surface Young’s modulus and Poisson’s
ratio, obtained from DFT computations [28], for phosphide nanostructures.

Compound Atom 1 Atom 2
Z∗1 Z∗2 aA13−P, nm Es, nN/nm [28] ν [28]Charge [31] Charge [31]

BP B P 1.755 2.863 0.183 [28] 135 0.28
AlP Al 1.792 0.234 [17] – –
GaP Ga 1.821 0.225 [28] 59 0.35
InP In 2.070 0.246 [28] 39 0.43

To the best of our knowledge, the methods for calculating the torsional force constant,
kτ , for phosphide nanostructures have not been appropriately explored and the values of
kτ have not been reported so far. Jiang and Guo [27] proposed an expression to calculate
the inversion force constant, kψ, adopting the UFF method. Among the generic molecular
force fields, DREIDING force field [30] allows the determination of the force constants, based
only on the hybridization of atoms, regardless of the atoms involved. For diatomic phos-
phide nanostructures, the DREIDING force field provides the dihedral torsion force constant,
kφ= 25 kcal/mol, and the inversion force constant, kψ = 40 (kcal/mol)/rad2. Consequently,
the torsional resistance force constant, kτ, can already be calculated using Equation (9).

Table 3 presents the bond stretching, kr, bond bending, kθ1 and kθ2, force constants
obtained using both calculation methods, UFF (case 1) and DFT+MM (case 2), and the tor-
sional resistance force constant, kτ , taken from DREIDING, for phosphide nanostructures.
As far as we know, there are no values of Es and ν, obtained experimentally or with the
help of DFT calculations, which would allow the calculation of bond stretching and bond
bending force constants for AlP nanostructures, using Equations (15) and (16). Thus, the
study of numerical simulation of the elastic properties of the AlPNTs is limited by case 1 of
the set of force constants.
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Table 3. kr, kθ and kτ force field constants for phosphide nanostructures.

Compound Case 1 kr, nN/nm kθ1, nN·nm/rad2 kθ2, nN·nm/rad2 kτ, nN·nm/rad2

BP
1 379 1.486 0.558

0.625

2 325 1.031 0.387

AlP
1 185 0.711 0.278
2 – – –

GaP
1 211 0.853 0.345
2 157 0.599 0.242

InP
1 184 0.852 0.446
2 119 0.391 0.204

1 Case 1 corresponds to the UFF calculation method, and case 2 to DFT+MM.

2.2.2. Equivalent Properties of Elastic Beams

In the present study, the NCM/MSM approach was used to evaluate the elastic
properties of phosphide NTs. This approach makes use of the connection between the
potential energies of bond interactions (see Equation (10) and Figure 3) and the strain
energies associated with axial, bending and torsional elastic deformations of equivalent
beam elements. Figure 5 shows the beam element undergoing pure tension (a), pure
bending (b) and pure torsion (c).
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The energies related to stretching, UA, bending, UB, and torsion, UT, of the beam with
length, l, are expressed as follows:

UA =
1
2

∫ L

0

F2
A

EbAb
dl =

1
2

EbAb
l

(∆l)2, (17)

UB =
1
2

∫ L

0

M2
B

EbIb
dl =

1
2

EbIb
l

(2ω)2, (18)

UT =
1
2

∫ L

0

T2

GbJb
dl =

1
2

GbJb
l

(∆ϑ)2, (19)

where FA is the axial force, MB is the bending moment, and T is the torsion moment; Eb
and Gb are the beam Young’s and shear moduli, respectively; Ab is the beam cross-section
area, Ib is the beam moment of inertia and Jb is the beam polar moment of inertia; EbAb is
the beam tensile rigidity, EbIb is the beam bending rigidity and GbJb is the beam torsional
rigidity; ∆l is the beam axial stretching displacement,ω is the rotational angle at the ends
of the beam and ∆ϑ is the relative rotation between the ends of the beam.
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Equations (10) and (17)–(19) allow one to establish the equality between the potential
energies related to bond interactions and strain energies associated with elastic deformation
of the beam elements, i.e., Ur= UA, Uθ= UB and Uτ= UT. In other words, the tensile, EbAb,
bending, EbIb, and torsional, GbJb, rigidities of the beam with length l are expressed with the
help of bond stretching, kr, bond bending, kθ, and torsional resistance, kτ, force constants [37]:

EbAb= lkr, (20)

EbIb= lkθ, (21)

GbJb= lkτ . (22)

Equations (20)–(22) together with the assumption that the beam length, l, is equal
to the bond length, aA13−P, support the use of the NCM/MSM approach to model the
mechanical response of phosphide NTs.

Assuming that the beam has a circular cross-section with diameter d, its cross-section
area, Ab, moment of inertia, Ib, and polar moment of inertia, Jb, are determined by the
following expressions:

Ab= πd2/4, (23)

Ib= πd4/64, (24)

Jb= πd4/32. (25)

The diameter, d, the Young’s modulus, Eb, and the shear modulus, Gb, of the beam
can be calculated comparing Equations (20)–(22) with Equations (23)–(25) and taking into
account the two values of the bond bending constant, kθ1 and kθ2, as follows:

d = 2

√
2(kθ1+kθ2)

kr
, (26)

Eb =
k2

r l
2π(kθ1+kθ2)

, (27)

Gb =
k2

r kτl

2π(kθ1+kθ2)
2 . (28)

The Poisson’s ratio of the beam can be assessed by the relationship derived from
molecular mechanics [32,33,38] as follows:

νb =
krl2– 3(kθ1+kθ2)

krl2+9(kθ1+kθ2)
. (29)

Thus, knowing the values of the force field constants, kr, kθ1 and kθ2, kτ , for phosphide
nanostructures (Table 3), the geometrical and elastic properties of the beam elements can
be deduced, as shown in Table 4.

2.3. Geometrical Characteristics of Phosphide Nanotubes and FE Analysis

Table 5 shows the geometrical characteristics of SWBPNTs, SWAlPNTs, SWGaPNTs
and SWInPNTs of three main configurations, armchair (Θ = 30◦), zigzag (Θ = 0◦) and chiral
(family of Θ = 19.1◦), used in the FE analysis. The chiral indices of NTs were chosen in
order to obtain structures with comparable diameters. The length of the NTs was chosen to
be about 30 times greater than the NT diameter to ensure that the mechanical response of
nanotubes is independent of the NT length [39].

The input parameters (two sets of these parameters for each NTs, except for SWAlPNTs)
used for FE simulation of phosphide nanotubes are those presented in Table 4.



Nanomaterials 2022, 12, 2360 11 of 30

Table 4. Geometrical and elastic properties of the beam element (input values for FE simulations).

Compound Case 1 l, nm
[17,28]

d, nm
Equation (26)

Eb, GPa
Equation (27)

Gb, GPa
Equation (28)

νb
Equation (29)

BP
1

0.183
0.2078 2042 624 0.21

2 0.1869 2165 954 0.28

GaP
1

0.225
0.2130 1335 696 0.33

2 0.2069 1052 782 0.35

AlP
1

0.234
0.2069 1287 813 0.38

2 - - - -

InP
1

0.246
0.2377 1019 491 0.32

2 0.2004 924 722 0.43
1 Case 1 corresponds to the UFF calculation method, and case 2 to DFT+MM.

Table 5. Chiral indices and diameters of the SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs.

NT type SWBPNTs SWAlPNTs SWGaPNTs SWInPNTs
(n, m) Dn, nm (n, m) Dn, nm 1 (n, m) Dn, nm 1 (n, m) Dn, nm

armchair
(n, n), Θ = 30◦

(4, 4) 0.699 (3, 3) 0.659 (3, 3) 0.653 (3, 3) 0.705
(6, 6) 1.049 (5, 5) 1.098 (5, 5) 1.089 (4, 4) 0.940
(8, 8) 1.398 (6, 6) 1.318 (6, 6) 1.306 (6, 6) 1.409

(10, 10) 1.748 (8, 8) 1.757 (8, 8) 1.742 (8, 8) 1.879
(12, 12) 2.097 (10, 10) 2.196 (10, 10) 2.177 (9, 9) 2.114
(15, 15) 2.621 (12, 12) 2.636 (12, 12) 2.613 (11, 11) 2.584
(17, 17) 2.971 (13, 13) 2.855 (13, 13) 2.830 (12, 12) 2.819
(19, 19) 3.320 (15, 15) 3.295 (15, 15) 3.266 (14, 14) 3.289
(21, 21) 3.670 (17, 17) 3.734 (17, 17) 3.701 (16, 16) 3.759
(24, 24) 4.194 (19, 19) 4.173 (19, 19) 4.137 (18, 18) 4.228

zigzag
(n, 0), Θ = 0◦

(5, 0) 0.504 (4, 0) 0.507 (4, 0) 0.503 (4, 0) 0.543
(7, 0) 0.706 (6, 0) 0.761 (6, 0) 0.754 (5, 0) 0.678

(10, 0) 1.009 (8, 0) 1.014 (8, 0) 1.006 (7, 0) 0.949
(14, 0) 1.413 (11, 0) 1.395 (11, 0) 1.383 (10, 0) 1.356
(17, 0) 1.715 (14, 0) 1.775 (14, 0) 1.760 (13, 0) 1.763
(20, 0) 2.018 (16, 0) 2.029 (16, 0) 2.011 (15, 0) 2.034
(25, 0) 2.522 (20, 0) 2.536 (20, 0) 2.514 (19, 0) 2.577
(30, 0) 3.027 (24, 0) 3.043 (24, 0) 3.017 (22, 0) 2.984
(34, 0) 3.430 (27, 0) 3.424 (27, 0) 3.394 (25, 0) 3.391
(40, 0) 4.036 (32, 0) 4.058 (32, 0) 4.022 (30, 0) 4.069

chiral
(n, m), Θ = 19.1◦

(6, 3) 0.801 (4, 2) 0.671 (4, 2) 0.665 (4, 2) 0.718
(8, 4) 1.068 (6, 3) 1.006 (6, 3) 0.998 (6, 3) 1.077

(10, 5) 1.335 (8, 4) 1.342 (8, 4) 1.330 (8, 4) 1.435
(12, 6) 1.602 (10, 5) 1.677 (10, 5) 1.663 (10, 5) 1.794
(16, 8) 2.136 (12, 6) 2.013 (12, 6) 1.995 (12, 6) 2.153
(20, 10) 2.669 (16, 8) 2.684 (16, 8) 2.661 (14, 7) 2.512
(22, 11) 2.936 (18, 9) 3.019 (18, 9) 2.993 (16, 8) 2.871
(24, 12) 3.203 (20, 10) 3.355 (20, 10) 3.326 (18, 9) 3.230
(28, 14) 3.737 (22, 11) 3.690 (22, 11) 3.658 (20, 10) 3.588
(30, 15) 4.004 (24, 12) 4.026 (24, 12) 3.991 (22, 11) 3.947
(32, 16) 4.271 (26, 13) 4.361 (26, 13) 4.324 (24, 12) 4.306

1 Diameters, Dn, of SWAlPNTs and SWGaPNTs were calculated assuming Al-P length aAl−P = 0.230 nm and Ga-P
length aGa−P = 0.228 nm as defined by software Nanotube Modeler©.

The meshes of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs used in FE analyses
were constructed with the help of the Nanotube Modeler© software (version 1.8) developed
by JCrystalSoft (www.jcrystal.com accessed on 21 June 2022). The in-house application
InterfaceNanotubes.NM [39] was used for conversion of the PDB (Program Database) files,
obtained from the Nanotube Modeler© software, into the format usable in the ABAQUS®

code. Afterwards, the FE code ABAQUS® was used to study the mechanical response of
the phosphide NTs under conventional tensile, bending and torsion tests. For this, in order
to carry out the respective numerical tests, the axial tensile force, Fa, the transverse force,
Ft, and the torsional moment, T, were applied to one end of the NT, when the other end
was fixed. In the torsion test, the nodes under loading were prevented from moving in
the radial direction. The results taken from the FE analysis of the tensile, bending and

www.jcrystal.com
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torsion test are, respectively, the axial displacement, ua, the transverse displacement, ut,
and the twist angle, ϕ. This makes it possible to determine the tensile, EA, bending, EI, and
torsional, GJ, rigidities of the phosphide NT with a length Ln by the following expressions:

EA =
FaLn

ua
, (30)

EI =
FtL3

n
3ut

, (31)

GJ =
TLn

ϕ
. (32)

3. Results and Discussion
3.1. Rigidities of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs

The tensile, EA, bending, EI, and torsional, GJ, rigidities of SWBPNTs, SWAlPNTs,
SWGaPNTs and SWInPNTs obtained by Equations (30)–(32) for the two cases (except
SWAlPNTs) of the numerical simulation input values presented in Table 4, are plotted as
a function of the nanotube diameter, Dn, in Figures 6–8, respectively. For case 1 and case
2 of numerical simulation input parameters from Table 4, the rigidity values for chiral or
non-chiral (zigzag and armchair) NTs follow the same trend with increasing Dn. The EA,
EI and GJ rigidities obtained for case 1 (UFF) are higher than those for case 2 (DFT + MM).

As for the cases of the single-walled carbon nanotubes (SWCNTs) [40,41] and single-
walled boron nitride nanotubes (SWBNNTs) [39], and for the phosphide NTs under study,
the values of the tensile rigidity, EA, can be represented by a linear function of nanotube
diameter, Dn (see Figure 9a,b), and the values of bending, EI, and torsional, GJ, rigidities
can be represented by a linear function of D3

n (see Figure 9c–f).
Similar to what was found in the authors’ previous work for the SWBNNTs [39], the

straight lines in Figure 9a–f can be expressed as follows:

EA = αA13PDn, (33)

EI = βA13PDn
3, (34)

GJ = γA13PDn
3, (35)

where αA13P, βA13P and γA13P are the fitting parameters. The values of these parameters,
obtained from the graphs in Figure 9a–f for single-walled phosphide NTs, are shown in Table 6.

The accuracy of the evaluation of the EA, EI and GJ rigidities values analytically
estimated with Equations (33)–(35), respectively, was verified through the comparison with
the values of the EA, EI and GJ rigidities calculated by Equations (30)–(32), respectively,
using the data taken from FE analysis. The mean differences between the EA, EI and GJ
values evaluated analytically and those obtained by the FE analysis are shown in Table 7. It
can be seen from Table 7 that Equations (33)–(35) allow an accurate calculation of the three
rigidities of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs. The mean difference does
not exceed 0.85%, which is the greatest value observed for the bending rigidity.

In order to better comprehend the results of the tensile, EA, bending, EI, and torsional,
GJ, rigidities presented in Figure 9, the evolutions of αA13P, βA13P and γA13P fitting param-
eters with the bond length value, aA13P (see Table 2), considering the cases of SWBPNTs,
SWAlPNTs, SWGaPNTs and SWInPNTs, are shown in Figure 10, for the two cases of input
parameters. For case 1, all three fitting parameters decrease from SWBPNTs to SWAlPNTs,
i.e., as the value of aA13−P increases, and then the values of αA13P, βA13P and γA13P remain
nearly unchanged when moving to SWInPNTs. For case 2, the fitting parameters αA13P,
βA13P and γA13P decrease with increasing bond length from SWBPNTs to SWInPNTs.

It should be noted that for case 1 of SWBPNTs, the ratio βA13P/γA13P is about 1,
which means that the EI and GJ rigidities are nearly equal. The value of this ratio,
βA13P/γA13P = 1.1, for SWBPNTs (case 2), SWAlPNTs, SWGaPNTs and SWInPNTs (case 1),
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indicates a certain difference between the values of bending, EI, and torsional, GJ, rigidities.
This difference becomes higher for case 2 of SWInPNTs, for which βA13P/γA13P = 1.2.
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Table 6. Fitting parameters αA13P, βA13P and γA13P for phosphide nanotubes.

NTs Case αA13P, nN/nm βA13P, nN/nm γA13P, nN/nm

BP
1 680.40 84.99 84.44
2 550.96 68.80 64.75

AlP
1 292.99 36.60 32.17
2 – – –

GaP
1 334.07 41.78 37.43
2 243.15 30.40 26.81

InP
1 300.5 37.54 34.29
2 171.35 21.39 17.84

Table 7. Mean difference between the rigidity values of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs
evaluated with Equations (33)–(35) and the corresponding values obtained from the FE analysis.

NTs Case
Mean Difference, %

EA, nN EI, nN·nm2 GJ, nN·nm2

BP
1 0.34 0.60 0.37
2 0.25 0.65 0.43

AlP
1 0.53 0.83 0.51
2 – – –

GaP
1 0.38 0.82 0.55
2 0.40 0.85 0.52

InP
1 0.39 0.77 0.43
2 0.39 0.82 0.50
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3.2. Elastic Moduli of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs
3.2.1. Effect of Nanotube Wall Thickness on the Calculation of Elastic Moduli

As previously deduced for SWCNTs [40,41] and SWBNNTs [39], the Young’s and shear
moduli of NTs structures can be calculated using the following expressions, respectively:

E =
EA

πtn

√
8
(

EI
EA

)
–t2

n

, (36)
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G =
GJ

2πtn

(
EI
EA

)√
8
(

EI
EA

)
–t2

n

, (37)

where EA, EI and GJ are the tensile, bending and torsional rigidities, respectively, and tn
is the nanotube wall thickness. The EA, EI and GJ rigidities can be calculated from the
results of the FE analysis by Equations (30)–(32), respectively, or evaluated analytically
using Equations (33)–(35), respectively. To date, regarding the NT wall thickness, no tn
value, observed experimentally or calculated by theoretical approaches, has been reported for
phosphide nanotubes. Furthermore, there are no reliable data indicating that the wall thickness
value of phosphide NTs can be adopted equal to 0.34 nm (the graphite interlayer spacing).

For this reason, the Young’s, E, and shear, G, moduli determined by Equations (36)
and (37), respectively, are plotted as a function of the inverse of the nanotube wall thickness,
1/tn, (in the range 0.1 ≤ tn ≤ 1.5 nm) for phosphide NTs selected from Table 5, as shown in
Figure 11 (for E values) and Figure 12 (for G values). All three NT configurations, zigzag,
chiral and armchair, and the two cases of input parameters are considered.
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SWInPNTs; (a,b) case 1, (c,d) case 2.
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Figure 12. Evolution of the shear modulus, G, as a function of the inverse of the nanotube wall
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SWInPNTs; (a,b) case 1, (c,d) case 2.

The evolutions of both the Young’s, E, and the shear, G, moduli as a function of the
inverse nanotube wall thickness, 1/tn, follow a quasi-linear trend for NTs with diameter
Dn & 1.7 nm. For phosphide NTs with diameters Dn . 1.7 nm, the deviation from the
quasi-linear trend occurs for high values of NTs wall thickness, when tn is in the range
between the nanotube diameter and half the nanotube diameter, Dn . tn . Dn/2. Thus,
the smaller the value of Dn, the more noticeable is the deviation from the quasi-linearity
of the evolution of the Young’s and shear moduli with 1/tn. The SWBPNTs, SWAlPNTs,
SWGaPNTs and SWInPNTs with diameters Dn . 1.7 nm and wall thickness in the range
Dn . tn . Dn/2 behave as solid cylinders instead of hollow tubes, which influences the
results of elastic moduli.

3.2.2. Surface Young’s Modulus of Phosphide Nanotubes

The lack of knowledge about the reliable wall thickness value has caused the studies,
concerning evaluation of the elastic properties of the non-carbon nanotubes (N-CNTs),
to mainly focus on determining the N-CNTs’ surface elastic moduli [42]. Regarding the
elastic properties of the phosphide NTs, Kochaev [26] and Jiang and Guo [27], are the only
authors who calculated the surface Young’s modulus of BP [27], AlP [26], GaP [26,27] and
InPNTs [27]. Thus, to calculate the Young’s, E, and shear, G, moduli without the necessity of
knowing the NT wall thickness and to facilitate the comparison with the literature results,
a methodology for calculation of the surface Young’s, Es, and shear, Gs, moduli, based on
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the linear evolutions of E and G moduli as a function of the inverse of the NT thickness,
1/tn, is suggested.

As long as the wall thickness of phosphide nanotube is greater than half of its diameter,
the Young’s and shear moduli become quasi-linear functions of the inverse wall thickness
(see Figures 11 and 12). The linear parts of the evolutions of E and G moduli with 1/tn can
be described by expressions E = α1(1/tn) and G = α2(1/tn), respectively, where α1 and
α2 are the slopes of the corresponding straight lines. Taking into account that the surface
Young’s, Es, modulus is the Young’s modulus, E, multiplied by the NT wall thickness,
Es= Etn, and, likewise, the surface shear modulus, Gs, is the shear modulus, G, multiplied
by the NT wall thickness, Gs= Gtn, it can be written as

Etn= α1 ⇔ Es= α1, (38)

Gtn= α2 ⇔ Gs= α2 . (39)

Thus, Equations (38) and (39) are the basis of the methodology to calculate the surface
Young’s, Es, and shear, Gs moduli through the slope of the linear portion of the evolution
of the corresponding elastic modulus (E or G) as a function of the inverse of the nanotube
wall thickness.

In this context, the evolutions of the E and G moduli as a function of 1/tn, as shown in
the examples in Figures 11 and 12, were plotted for all SWBPNTs, SWAlPNTs, SWGaPNTs
and SWInPNTs in Table 5. Only the linear portions of the evolutions of the elastic moduli,
with an R-squared value of at least 0.9997, which approximately corresponds to the NT
wall thickness range tn . Dn/3, were considered for analysis. Then, to assess the surface
Young’s, Es, and shear, Gs, moduli, the slopes of straight lines were determined (see
equations (38) and (39), respectively).

Figure 13 shows the evolutions of Es with the diameter of the nanotubes, Dn, for
SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs. The surface Young’s modulus is nearly
stable over the entire diameter range of the NTs studied, regardless of the case of the input
parameters, the NTs chirality and the first element (B, Al, Ga, In) of phosphide compound
forming the nanotube. As can be seen in Figure 13a, for case 1 of input parameters, the
SWBPNTs have the highest value of Es of about 0.218 TPa·nm, and the value of Es decreases
approximately by half for SWAlPNTs (Es = 0.094 TPa·nm), SWGaPNTs (Es = 0.107 TPa·nm)
and SWInPNTs (Es = 0.096 TPa·nm). For case 2 of input parameters, the surface Young’s
modulus decreases from SWBPNTs to SWInPNTs, the Es value being approximately 2.2 and
3.2 times smaller for SWGaPNTs (Es = 0.078 TPa·nm) and SWInPNTs (Es = 0.055 TPa·nm),
respectively, when compared with SWBPNTs (Es = 0.176 TPa·nm) (see Figure 13b). The
values of Es calculated for case 1 are higher than those evaluated for case 2, whatever the
NTs, as can be seen in Figure 13c for the SWBPNTs and SWInPNTs. Figure 13d compares
the surface Young’s modulus, Es, results obtained for case 2 of (n, n) and (n, 0) SWInPNTs
with those available in the literature.

Among the literature results, the values of the surface Young’s modulus reported by
Jiang and Guo [27] for (n, n) and (n, 0) SWInPNTs, which are in better agreement with the
Es values calculated in the present study, were chosen for comparison. A mean difference
of about 7.9% was observed for nanotubes with diameter Dn & 1.0 nm, when comparing
the Es results by Jiang and Guo [27] with those obtained for case 2. Comprehensive
comparison with the literature results appears to be difficult due to the scarcity of studies
on the evaluation of the phosphide NTs’ surface Young’s modulus, but discrepancies were
noticed in the reported Es values and trends. For example, in an ab initio simulation study,
Kochaev [26] observed, for SWAlPNTs and SWGaPNTs, a considerable increase of the
surface Young’s modulus, for (n, n) nanotubes when Dn . 1.2 nm and (n, 0) nanotubes
when Dn . 0.9 nm, and then Es reaches the maximum, followed by a sharp decrease. An
alternative trend reported in the literature for SWBPNTs, SWGaNTs and SWInPNTs [27]
consists of a slight increase of the Es value when the nanotube diameter increases, and then
Es becomes practically constant for NTs with diameters Dn & 0.7 nm (see Figure 13d for
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the case of SWInPNTs). Finally, the comparison with the available results was carried out
as far as possible, as documented in Table 8.
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In contrast to the reasonable agreement of the Es values for SWInPNTs assessed by 
Jiang and Guo [27] and those obtained for case 2 of the input parameters (see Figure 13c), 
less agreement is observed when the Es  results reported in the same work [27] for 
SWBPNTs and SWGaPNTs are compared with the current results calculated for case 2. 
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Figure 13. Evolution of surface Young’s modulus, Es, as a function of the nanotube diameter, Dn:
(a) for case 1 of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs; (b) for case 2 of SWBPNTs,
SWGaPNTs and SWInPNTs; (c) for case 1 and case 2 of SWBPNTs and SWInPNTs; and (d) comparison
with the literature results [27].

Table 8. Comparison of the current surface Young’s modulus results for phosphide nanotubes with
those reported in the literature.

Reference NT Type
Es, TPa

Comments
SWBPNTs SWAlPNTs SWGaPNTs SWInPNTs

Kochaev [26]

(n, n)

-

0.228 0.161

-
maximum value(n, 0) 0.208 0.139

(n, n) 0.050 0.050
minimum value(n, 0) 0.072 0.025

Jiang and Guo [27] (n, n) 0.118 - 0.060 0.051 converged
average value(n, 0) 0.117 0.059 0.051

Present study
(n, n) 0.218 1 0.094 1 0.107 1 0.096 1

average value0.176 2 - 0.078 2 0.055 2

(n, 0) 0.218 1 0.094 1 0.107 1 0.096 1

0.176 2 - 0.078 2 0.055 2

1 For case 1 (UFF); 2 For case 2 (DFT+MM).

In contrast to the reasonable agreement of the Es values for SWInPNTs assessed by
Jiang and Guo [27] and those obtained for case 2 of the input parameters (see Figure 13c),
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less agreement is observed when the Es results reported in the same work [27] for SWBPNTs
and SWGaPNTs are compared with the current results calculated for case 2. For SWBPNTs
and SWGaPNTs with diameter Dn & 1.0 nm, the difference between the Es values by Jiang
and Guo [27] and the current ones reaches ≈33% and ≈23%, respectively (see Table 8).
These dissimilarities can be attributed to different calculation methods for the surface
Young’s modulus and force field constants. Jiang and Guo [27] assessed Es employing
closed-form analytical solutions based on the “stick-and-spring” model. To calculate the
bond stretching, kr, and bond bending, kθ, force constants for phosphide NTs, Jiang and
Guo [27] modified the UFF method and used bond length values not equal to the present
study. Moreover, they introduced a negative inversion force constant, kψ, without taking
into account the dihedral torsion force constant, kφ. With regard to the results reported by
Kochaev [26], the best agreement is observed when comparing with the current Es values
for SWGaPNTs. The difference between the values of Es for case 1 and the maximum
Es values evaluated by Kochaev [26] reaches ≈34% and ≈23% for (n, n) and (n, 0) GaP
nanotubes, respectively (see Table 8).

To clarify the results shown in Figure 13, the surface Young’s modulus of the phos-
phide NTs is plotted as a function of the bond length, aA13−P, for cases 1 and 2 of input
parameters, in Figure 14a. The values of Es evaluated by Jiang and Guo [27] are also
shown in Figure 14a. The evolution of the ratio of the surface Young’s moduli obtained for
cases 1 and 2, Es(UFF)/Es(DFT), with aA13−P is presented in Figure 14b.
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Figure 14. Evolutions of the: (a) surface Young’s modulus, Es, for the two cases of input parameters,
calculated in the present study, and evaluated by Jiang and Guo [27], and (b) ratio of the surface
Young’s moduli, obtained for case 1 and 2, Es(UFF)/Es(DFT), as a function of the bond length, aA13−P.

For phosphide nanotubes, Es decreases with increasing bond length, aA13−P, i.e., from
SWBPNTs to SWInPNTs, except for case 1, for which the values of Es calculated for SWAlP-
NTs and SWInPNTs are nearly equal. Furthermore, the decreasing trend of the surface
Young’s modulus with aA13−P can be easily established from the results of Jiang and
Guo [27] (see Figure 14a).

Regarding the Es results calculated for case 1 (UFF) and case 2 (DFT+MM) of the input
parameters for numerical simulation, the ratio of Es(UFF)/Es(DFT) increases with the bond
length of NTs, achieving the highest difference between the values of Es for the SWInPNTs.
For these NTs, Es calculated for case 1 is 1.8 times larger than that for case 2.

3.2.3. Surface Shear Modulus of Phosphide Nanotubes

Figure 15 shows the evolutions of the surface shear modulus, Gs, calculated based on
Figure 12 and Equation (39), as a function of the nanotube diameter, Dn, for SWBPNTs,
SWAlPNTs, SWGaPNTs and SWInPNTs.
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For small NT diameters, Dn, the surface shear modulus, Gs, decreases for zigzag (n, 0) 
NTs (Figure 15a) and increases for armchair (n, n) NTs (Figure 15b), being stable for high val-
ues of Dn, regardless of the NTs symmetry group. The surface shear modulus for chiral (n, m) 
NTs is nearly constant over the entire range of NT diameters and is equal to the converged 
average value of Gs, obtained for (n, n) and (n, 0) NTs (Figure 15a,b). For case 1, the SWBPNTs 
have the highest convergent average value of the surface shear modulus (Gs = 0.108 TPa⋅nm) 

Figure 15. Evolution of the surface shear modulus, Gs, as a function of the nanotube diameter, Dn:
(a) for case 1 of (n, 0) and (n, m) SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs; (b) for case 2 of
(n, n) and (n, m) SWBPNTs, SWGaPNTs and SWInPNTs; (c) for SWBPNTs; (d) for SWGaNTs; (e) for
SWAlPNTs; and (f) for SWInPNTs.

For small NT diameters, Dn, the surface shear modulus, Gs, decreases for zigzag (n,
0) NTs (Figure 15a) and increases for armchair (n, n) NTs (Figure 15b), being stable for
high values of Dn, regardless of the NTs symmetry group. The surface shear modulus for
chiral (n, m) NTs is nearly constant over the entire range of NT diameters and is equal
to the converged average value of Gs, obtained for (n, n) and (n, 0) NTs (Figure 15a,b).
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For case 1, the SWBPNTs have the highest convergent average value of the surface shear
modulus (Gs = 0.108 TPa·nm) and Gs decreases approximately 2.4 times for SWGaPNTs
(Gs = 0.048 TPa·nm), SWAlPNTs (Gs = 0.041 TPa·nm) and SWInPNTs (Gs = 0.044 TPa·nm).
For case 2, the converged average value of Gs decreases from SWBPNTs (Gs = 0.083 TPa·nm)
to SWGaPNTs (Gs = 0.034 TPa·nm) and also for SWInPNTs, which have the lowest Gs value
of 0.023 TPa·nm. The value of Gs, of the three symmetry groups of phosphide NTs, for
small diameters nanotubes depends on the chiral angle and decreases from zigzag (n, 0)
NTs with Θ = 0◦ to chiral (n, m) NTs with Θ = 19.1◦, and then to armchair (n, n) NTs with
Θ = 30◦ (Figure 15c–f). It can be noted in Figure 15c–f that the greater the value of the bond
length, aA13−P ,of the phosphide nanotube (see Table 2), the greater the value of the NT
diameter, Dst

n , for which the shear modulus becomes nearly constant, regardless of the NTs
symmetry. The values of Dst

n are the same regardless of the input parameters case, although
the values of Gs calculated for case 1 are always higher than those for case 2.

In order to understand better the results shown in Figure 15, the convergent average
value of the surface shear modulus, Gs, the NT diameter, Dst

n , for which the value of Gs
becomes stable, and the ratio between the surface shear moduli calculated for cases 1 and 2,
Gs(UFF)/Gs(DFT), were plotted in Figure 16 as a function of the NT bond length, aA13−P.
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As can be seen from Figure 16a, the decrease in the value of the surface shear modulus
calculated for case 1 occurs when the bond length increases from 0.183 nm (SWBPNTs)
to 0.225 nm (SWGaPNTs). Nearby are the SWAlPNTs and SWInPNTs nanotubes, for
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which the values of Gs are close to each other and to those evaluated for SWGaPNTs. For
case 2, the Gs value decreases with increasing of aA13−P. On the contrary, the diameter,
Dst

n , increases with increasing the bond length (see Figure 16b). With regard to the ratio
Gs(UFF)/Gs(DFT), the values of Gs obtained for case 1 (UFF) is 1.3, 1.4 and 1.9 times bigger
than those calculated for case 2 (DFT + MM) for SWBPNTs, SWGaPNTs and SWInPNTs,
respectively (see Figure 16c).

It is worth noting that, similarly to the surface Young’s modulus, the shear modulus
of phosphide NTs is also sensitive to the input parameters for numerical simulation, which
in turn depend on the bond length and the force field constants.

Since the phosphide NTs have a potential application in the NT-based devices and
hybrid nanostructures, where they can be combined with carbon or other non-carbon
NTs, the surface Young’s and shear moduli of the SWBPNTs, SWAlPNTs, SWGaPNTs
and SWInPNTs were compared with respective surface elastic moduli of the SWCNTs
and SWBNNTs in Table 9. Es and Gs of carbon and boron-nitride NTs were calculated
from the results of the authors’ previous work [39], using the expressions Es= Etn and
Gs= Gtn, respectively, and taking into account that the value of the nanotube wall thickness
tn = 0.34 nm, for both classes of NTs.

Table 9. Surface elastic moduli of carbon, boron nitride and phosphide single-walled nanotubes.

Elastic Moduli SWCNTs SWBNNTs SWBPNTs SWAlPNTs SWGaPNTs SWInPNTs

Es, TPa·nm 0.361 [39,40] 0.335 [39] 0.218 1
0.094 1 0.107 1 0.096 1

0.176 2 0.078 2 0.055 2

Gs, TPa·nm 0.171 [39,41] 0.165 [39] 0.108 1
0.041 1 0.048 1 0.044 1

0.083 2 0.034 2 0.023 2

1 For case 1 (UFF); 2 For case 2 (DFT+MM).

It can be concluded from Table 9 that SWBPNTs and, particularly, SWAlPNTs, SWGaP-
NTs and SWInPNTs have weak mechanical properties when compared with SWCNTs
and SWBNNTs. Thus, when designing and constructing NT-based devices and hybrid
nanostructures, it is desirable to combine the phosphide NTs, with low mechanical strength,
with CNTs or N-CNTs, with high mechanical strength.

3.3. Poisson’s Ratio of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs

The Poisson’s ratio of the phosphide NTs can be calculated, assuming the isotropy
condition and considering Equations (36) and (37), by the following expression:

ν =
E

2G
– 1 =

EI
GJ

– 1, (40)

where EI and GJ are bending and torsional rigidities, respectively. The EI and GJ rigidi-
ties can be calculated either from the results of FE analysis by Equations (31) and (32),
respectively, or analytically using Equations (34) and (35), respectively.

Combining Equation (40) with relationships (34) and (35), the Poisson’s ratio can be
expressed by an equation independent of the NT diameter, through the fitting parameters
βA13P and γA13P, as follows:

ν =
βA13P
γA13P

– 1. (41)

Figure 17 shows the evolution of the Poisson’s ratio, ν, calculated by Equation (40),
with the NT diameter, Dn, for SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs in Table 5.
The two cases of the analyzed input parameters are considered. The values of ν calculated
by Equation (41), which is independent of Dn, are also presented in Figure 17. The Poisson’s
ratio evaluated for case 2 is higher than that for case 1. For (n, n), (n, 0) and (n, m) phosphide
NTs with high diameters, the Poisson’s ratio converges to the constant value calculated by
Equation (41). The greater the value of the bond length, aA13−P, the greater the value of the
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nanotube diameter, Dst
n , for which ν becomes stable (see Figure 17). The value of Dst

n does
not depend on the case of input parameters used for numerical simulations.
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For phosphide NT diameter lower than Dst
n , the Poisson’s ratio decreases for (n, n)

armchair and (n, m) chiral NTs, but for (n, 0) zigzag NTs, the ν value increases. In addition,
the (n, 0) phosphide NTs with small diameters Dn < 1.0 nm have a negative Poisson’s ratio
(demonstrate an auxetic behavior). It can also be seen from Figure 17 that for NTs with
a diameter smaller than the diameter Dst

n , the Poisson’s ratio noticeably depends on the
chiral angle and is greater for (n, n) NTs (Θ = 30◦) and smaller for (n, 0) NTs (Θ = 0◦). This
effect is particularly evident for the small phosphide NT diameters, Dn ≤ 1.0 nm. A similar
dependence of the value of ν on the NT chiral angle was reported for the SWBNNTs with
diameter below 1.5 nm [39]. This result was explained by the fact that the ratio between
bending and torsion rigidities, EI/GJ, did not have a constant value for Dn< 1.5 nm.

To analyze the influence of the input parameters on the Poisson’s ratio results, the
evolutions of the Poisson’s ratio, ν, as a function of the NT diameter, Dn, for cases 1 and 2 of
(n, 0) and (n, n) SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs are plotted in Figure 18.
The available literature results for (n, n) SWBPNTs, SWGaPNTs and SWInPNTs are also
shown (Figure 18e). As can be seen in Figure 18a,b, for case 1 of the phosphide NTs, the
convergent average value of ν increases from SWBPNTs (ν = 0.01) to SWAlPNTs (ν = 0.14),
and then decreases for SWInPNTs (ν = 0.09). For case 2, the Poisson’s ratio grows from
0.06 for SWBPNTs to 0.20 for SWInPNTs (see Figure 18c,d). The values of ν obtained for
cases 1 and 2 of SWGaPNTs are close and equal to 0.12 and 0.13, respectively.
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Figure 18. Evolution of the Poisson’s ratio, ν, as a function of the nanotube diameter, Dn, for:
(a) (n, n) SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs, case 1, (b) (n, 0) SWBPNTs, SWAlPNTs,
SWGaPNTs and SWInPNTs, case 1, (c) (n, n) SWBPNTs, SWGaPNTs and SWInPNTs, case 2, (d) (n, 0)
SWBPNTs, SWGaPNTs and SWInPNTs, case 2, and (e) (n, n) SWBPNTs, SWGaPNTs and SWInPNTs,
case 2 and Jiang and Guo [27].

Although the Poisson’s ratio values evaluated by Jiang and Guo [27] for SWBPNTs,
SWGaPNTs and SWInPNTs are 83%, 69% and 56% higher, respectively, than those calculated
in the present study for case 2, it is possible to compare the trends of the evolutions of ν as
a function of NT diameter, Dn, as shown in Figure 18d. Jiang and Guo [27] found that for
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(n, n) and (n, 0) phosphide NTs, the Poisson’s ratio decreases with increasing Dn, and then
the ν value converges to an approximately constant value. This trend is in agreement with
the current trend of evolution of νwith NT diameter for (n, n) phosphide NTs, although,
the decreasing rate is slower for the ν evolution reported by Jiang and Guo [27].

To clarify the results shown in Figures 17 and 18, the convergent average value of the
Poisson’s ratio, ν, and the NT diameter, Dst

n , for which the value of ν becomes stable, are
plotted as a function of the NT bond length, aA13−P in Figure 19. The values of ν evaluated
by Jiang and Guo [27] are presented in both plots for comparison purposes.
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Figure 19. Evolutions of the: (a) Poisson’s ratio, ν, and (b) NT diameter, Dst
n , for which the value of ν

becomes stable, as a function of the bond length, aA13−P.

The Poisson’s ratio, ν, obtained for case 1 of phosphide NTs increases with the increas-
ing of the aA13−P value up to 0.234 (SWAlPNTs), and then ν drops after aA13−P = 0.246 nm
(SWInPNTs). For case 2, the value of ν increases with increasing bond length, which is in a
good agreement with the results of Jiang and Guo [27] (see Figure 19a). Moreover, the same
good agreement is found between trends of Dst

n values, obtained in the present work and
reported by Jiang and Guo [27]. In both studies, it is shown that the greater the bond length,
aA13−P, the greater the NT diameter, Dst

n , for which ν becomes stable (see Figure 19b). It
is worth mentioning that the Dst

n values obtained in the present study and reported in the
work of Jiang and Guo [27] are close.

The current Poisson’s ratio results for (n, n) and (n, 0) phosphide NTs are summarized
in Table 10 together with the values of ν available in the literature.

Table 10. Comparison of the current Poisson’s ratio results for phosphide nanotubes with those
reported in the literature.

Reference NT Type ν
CommentsSWBPNTs SWAlPNTs SWGaPNTs SWInPNTs

Kochaev [26] (10, 10) - 0.51 0.51 - -
(10, 0) 0.51 0.52

Jiang and Guo [27] (n, n) 0.36 - 0.43 0.46 converged average value
(n, 0) 0.36 0.44 0.46

Present study
(n, n) 0.01 1 0.14 1 0.12 1 0.10 1

converged average value0.06 2 - 0.14 2 0.055 2

(n, 0) 0.01 1 0.13 1 0.11 1 0.09 1

0.06 2 - 0.12 2 0.19 2

1 For case 1 (UFF); 2 For case 2 (DFT+MM).

It can be seen from Table 10 that the Poisson’s ratio results are scarce so far and
the existing ν values show large scattering, regardless of the modelling and calculation
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approaches used for this end. Analyzing current Poisson’s ratio results and those reported
by Jiang and Guo [27], it can be concluded that, similar to the surface elastic moduli, the
ν values are sensitive to the values of bond length and force field constants.

4. Conclusions

The elastic properties, comprising the three rigidities, tensile, bending and torsional,
the surface Young’s and shear moduli and the Poisson’s ratio of SWBPNTs, SWAlPNTs,
SWGaPNTs and SWInPNTs were evaluated resorting to a numerical simulation study, based on
the NCM/MSM approach. The main conclusions of the present study are indicated below.

The force field constants, required for calculating the input parameters for numerical
simulation, were computed for BP, AlP, GaP and InP nanostructures, using two approaches,
which resulted in two input sets.

Equations describing the relationship between each of the three rigidities and the
nanotube diameter were obtained for SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs,
and the fitting parameters for the Equations (30)–(32) were calculated for two sets of input
parameters for numerical simulation. This allowed to expand, to phosphide nanotubes, the
previously established method, allowing the calculation of tensile, bending and torsional
rigidities without resorting to numerical simulation.

A robust methodology was proposed to assess the surface Young’s and shear moduli
of the SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs, based on the Young’s and shear
moduli evolutions as a function of the inverse nanotube thickness. It is expected that this
methodology will be useful to evaluate the surface elastic moduli of the N-CNTs, for which
the exact value of the nanotube wall thickness is unknown.

The tensile, bending and torsional rigidities, the surface Young’s and shear moduli,
and the Poisson’s ratio of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs are sensitive
to the bond length and force field constants of the diatomic phosphide nanostructures.

The results obtained provide a substantial contribution to a benchmark with regard to
the determination of the elastic properties of the phosphide nanotubes by numerical and
analytical methods.
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28. Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of

group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453. [CrossRef]
29. Huber, K.P.; Hertzberg, G. Molecular Spectra and Molecular Siructure: IV. Constants of Diatomic Molecules, 1st ed.; Van Nostrand

Reinhold Company: New York, NY, USA, 1979.
30. Mayo, S.L.; Barry, D.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem.

1990, 94, 8897–8909. [CrossRef]
31. Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skid, W.M. UFF, a full periodic table force field for molecular mechanics

and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10039. [CrossRef]
32. Jiang, L.; Guo, W. A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J.

Mech. Phys. Solids 2011, 59, 1204–1213. [CrossRef]
33. Genoese, A.; Genoese, A.; Rizzi, N.L.; Salerno, G. Force constants of BN, SiC, AlN and GaN sheets through discrete homogeniza-

tion. Meccanica 2018, 53, 593–611. [CrossRef]
34. Ansari, R.; Rouhi, S.; Mirnezhad, M.; Aryayi, M. Stability characteristics of single-walled boron nitride nanotubes. Arch. Civ.

Mech. Eng. 2015, 15, 162–170. [CrossRef]
35. Tapia, A.; Cab, C.; Hernández-Pérez, A.; Villanueva, C.; Peñuñuri, F.; Avilés, F. The bond force constants and elastic properties of

boron nitride nanosheets and nanoribbons using a hierarchical modeling approach. Phys. E 2017, 89, 183–193. [CrossRef]
36. Kudin, K.N.; Scuseria, G.E.; Yakobson, B.I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64,

235406–235416. [CrossRef]

http://doi.org/10.1063/1.1447312
http://doi.org/10.1038/415617a
http://doi.org/10.1021/ja0299102
http://doi.org/10.1146/annurev.matsci.34.040203.112300
http://doi.org/10.1063/1.1812596
http://doi.org/10.1016/j.physleta.2020.127056
http://doi.org/10.1126/science.279.5348.208
http://www.ncbi.nlm.nih.gov/pubmed/9422689
http://doi.org/10.1016/j.physe.2010.01.022
http://doi.org/10.1016/j.solidstatesciences.2011.08.018
http://doi.org/10.1080/10426507.2013.829827
http://doi.org/10.1080/17415993.2012.745127
http://doi.org/10.1134/1.1914878
http://doi.org/10.1016/j.theochem.2010.04.009
http://doi.org/10.1016/j.physe.2011.03.001
http://doi.org/10.1016/j.physe.2013.07.008
http://doi.org/10.1007/s00894-014-2171-2
http://doi.org/10.1016/j.theochem.2004.03.013
http://doi.org/10.1016/j.solidstatesciences.2012.04.013
http://doi.org/10.1007/s00706-010-0433-y
http://doi.org/10.1103/PhysRevB.96.155428
http://doi.org/10.1007/s10409-016-0581-3
http://doi.org/10.1103/PhysRevB.80.155453
http://doi.org/10.1021/j100389a010
http://doi.org/10.1021/ja00051a040
http://doi.org/10.1016/j.jmps.2011.03.008
http://doi.org/10.1007/s11012-017-0686-1
http://doi.org/10.1016/j.acme.2014.01.008
http://doi.org/10.1016/j.physe.2016.12.003
http://doi.org/10.1103/PhysRevB.64.235406


Nanomaterials 2022, 12, 2360 30 of 30

37. Li, C.; Chou, T.W. A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 2003, 40, 2487–2499.
[CrossRef]

38. Chang, T.; Gao, H. Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J.
Mech. Phys. Solids 2003, 51, 1059–1074. [CrossRef]

39. Sakharova, N.A.; Antunes, J.M.; Pereira, A.F.G.; Chaparro, B.M.; Fernandes, J.V. On the determination of elastic properties of
single-walled boron nitride nanotubes by numerical simulation. Materials 2021, 14, 3183. [CrossRef]

40. Sakharova, N.A.; Pereira, A.F.G.; Antunes, J.M.; Brett, C.M.A.; Fernandes, J.V. Mechanical characterization of single-walled carbon
nanotubes. Numerical simulation study. Compos. B-Eng. 2015, 75, 73–85. [CrossRef]

41. Pereira, A.F.G.; Antunes, J.M.; Fernandes, J.V.; Sakharova, N.A. Shear modulus and Poisson’s ratio of single-walled carbon
nanotubes: Numerical evaluation. Phys. Status Solidi B 2016, 253, 366–376. [CrossRef]

42. Antunes, J.M.; Pereira, A.F.G.; Sakharova, N.A. Overview on the Evaluation of the Elastic Properties of Non-Carbon Nanotubes
by Theoretical Approaches. Materials 2022, 15, 3325. [CrossRef]

http://doi.org/10.1016/S0020-7683(03)00056-8
http://doi.org/10.1016/S0022-5096(03)00006-1
http://doi.org/10.3390/ma14123183
http://doi.org/10.1016/j.compositesb.2015.01.014
http://doi.org/10.1002/pssb.201552320
http://doi.org/10.3390/ma15093325

	Introduction 
	Materials and Methods 
	Atomic Structure of Phosphide Nanotubes 
	Molecular Mechanics of Phosphide Nanotubes and Equivalent Continuum Properties of Interatomic Bonds 
	Force Field Constants 
	Equivalent Properties of Elastic Beams 

	Geometrical Characteristics of Phosphide Nanotubes and FE Analysis 

	Results and Discussion 
	Rigidities of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs 
	Elastic Moduli of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs 
	Effect of Nanotube Wall Thickness on the Calculation of Elastic Moduli 
	Surface Young’s Modulus of Phosphide Nanotubes 
	Surface Shear Modulus of Phosphide Nanotubes 

	Poisson’s Ratio of SWBPNTs, SWAlPNTs, SWGaPNTs and SWInPNTs 

	Conclusions 
	References

