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Temporal Effect of Adrenocorticotrophic Hormone on Adrenal
Glucocorticoid Steroidogenesis: Involvement of the Transducer of
Regulated Cyclic AMP-Response Element-Binding Protein Activity
F. Spiga*, Y. Liu�, G. Aguilera1,� and S. L. Lightman1,*

*Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.

�Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.

The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine

system that shows diurnal variation and is activated by stress to

maintain homeostasis. Its activity is regulated by a feedforward

mechanism involving the release of neuropeptides (corticotrophin-

releasing hormone and vasopressin) from the paraventricular

nucleus of the hypothalamus, which in turn stimulates anterior

pituitary corticotrophs to secrete adrenocorticotrophic hormone

(ACTH). ACTH subsequently induces glucocorticoid synthesis in the

zona fasciculata of the adrenal cortex. Newly synthesised glucocor-

ticoids are then released into the circulation to regulate a broad

range of physiological processes, including metabolic and cardiovas-

cular functions, immune response and behaviour.

Adrenal steroidogenesis is activated by the binding of ACTH to

the specific melanocortin type-2 receptor (MC2R), cell surface

seven-transmembrane domain G-protein-coupled receptor. Upon

ACTH binding, MC2R undergoes conformational changes that acti-

vate adenylyl cyclase, leading to an increase in intracellular levels

of cyclic AMP (cAMP) and subsequent activation of protein kinase
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The availability of active steroidogenic acute regulatory protein (StAR) and side-chain cleavage

cytochrome P450 (P450scc) are rate-limiting steps for steroidogenesis. Transcription of StAR and

P450scc genes depends on cyclic AMP-response element-binding protein (CREB) phosphorylation

and CREB co-activator, transducer of regulated CREB activity (TORC), which is regulated by salt-

inducible kinase 1 (SIK1). In the present study, we investigated the relationship between TORC

activation and adrenocorticotrophic hormone (ACTH)-induced steroidogenesis in vivo, by examin-

ing the time-course of the effect of ACTH injection (4 ng, i.v.) on the transcriptional activity of

StAR and P450scc genes and the nuclear accumulation of transducer of regulated CREB activity

2 (TORC2) in rat adrenal cortex. ACTH produced rapid and transient increases in plasma cortico-

sterone, with maximal responses between 5 and 15 min, and a decrease to almost basal values

at 30 min. StAR and P450scc hnRNA levels increased 15 min following ACTH and decreased

toward basal values at 30 min. Concomitant with an increase in nuclear phospho-CREB, ACTH

injection induced nuclear accumulation of TORC2, with maximal levels at 5 min and a return to

basal values by 30 min. The decline of nuclear TORC2 was paralleled by increases in SIK1 hnRNA

and mRNA 15 and 30 min after injection, respectively. The early rises in plasma corticosterone

preceding StAR and P450scc gene transcription suggest that post-transcriptional and post-

translational changes in StAR protein mediate the early steroidogenic responses. Furthermore,

the direct temporal relationship between nuclear accumulation of TORC2 and the increase in

transcription of steroidogenic proteins, implicates TORC2 in the physiological regulation of ste-

roidogenesis in the adrenal cortex. The delayed induction of SIK1 suggests a role for SIK1 in the

declining phase of steroidogenesis.
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A (PKA). Activation of PKA results in phosphorylation of cAMP-

response element-binding protein (CREB), which binds to cAMP

response elements (CRE) and induces gene transcription and syn-

thesis of steroidogenic proteins.

Two proteins are of crucial importance in the acute induction of

steroidogenesis from the precursor, cholesterol: (i) steroidogenic

acute regulatory protein (StAR), which regulates the mobilisation of

cholesterol and its transfer from the outer to the inner mitochon-

drial membrane (1, 2), and (ii) cholesterol side-chain cleavage cyto-

chrome P450 (P450scc), which catalyses the cleavage of the

cholesterol side chain to produce pregnenolone in the inner mito-

chondrial membrane (3). In contrast to peptide hormones, which, in

basal conditions, are stored within the cytoplasm and released upon

activation, glucocorticoids are synthesised de novo following ACTH-

mediated stimulation of the adrenal. As glucocorticoids are released

in a pulsatile manner with an hourly rhythm (4), glucocorticoid

synthesis must be rapid and highly dynamic. Although it is clear

that this pulsatility is important for glucocorticoid signalling (5, 6),

surprisingly little is known about the mechanism underlying the

pulsatile synthesis of glucocorticoids.

Transcriptional regulation of several CREB-inducible genes

requires the activation by dephosphorylation and nuclear transloca-

tion of the CREB co-activator transducer of regulated CREB activity

(TORC, also known as CRTC) (7–10). In basal conditions, transducer

of regulated CREB activity 2 (TORC2) is sequestered in the cyto-

plasm in an inactive phosphorylated state by salt-inducible kinase 1

(SIK1) and other AMP-activated protein kinases (10, 11). It has been

shown that inactivation of SIK1 by PKA allows dephosphorylation

and nuclear translocation of TORC and consequent CREB dependent

transcriptional activation. The TORC ⁄ SIK system has been implicated

in adrenal regulation (12). SIK1 is present in the adrenals and stud-

ies in cell lines have shown that its inhibition by the protein kinase

inhibitor staurosporin induces StAR and steroidogenic enzymes (13).

The finding that SIK1 is responsible for TORC phosphorylation sug-

gests that TORC is involved in the transcriptional regulation of the

steroidogenic proteins (13).

In the present study, we have investigated the dynamics of glu-

cocorticoid synthesis induced by a pulse of ACTH in vivo by mea-

suring the time-dependent changes in transcription of StAR and

P450 genes. Furthermore, in light of the importance of TORC2 and

SIK1 in the regulation of steroidogenesis, the effect of ACTH was

investigated on nuclear accumulation of TORC2 and on the tran-

scription of the SIK1 gene.

Materials and methods

Animals

All experiments were conducted on adult male Sprague-Dawley rats (Harlan,

Oxon, UK) weighing 250–300 g at the time of surgery. Animals were

grouped housed four in each cage and allowed to acclimatise to the hous-

ing facility for a minimum of 1 week before the start of the experiment.

Rats were maintained under standard environmental conditions (21 � 1 �C)

under a 14 : 10 h light ⁄ dark cycle (lights on 05.15 h) and food and water

were provided ad lib. throughout the experiment. All animal procedures were

approved by the University of Bristol Ethical Review Group and were con-

ducted in accordance with Home Office guidelines and the UK Animals (Sci-

entific Procedures) Act, 1986.

Surgery

Animals were anaesthetised with a combination of Hypnorm (0.32 mg ⁄ kg

fentanyl citrate and 10 mg ⁄ kg fluanisone, i.m.; Janssen Pharmaceuticals,

Oxford, UK) and diazepam (2.6 mg ⁄ kg i.p.; Phoenix Pharmaceuticals,

Gloucester, UK). Intravenous cannulation of the jugular vein was performed

as previously described (14). The right jugular vein was exposed and a silas-

tic-tipped (Merck Whitehouse, NJ, USA) polythene cannula (Portex, Hythe,

UK), pre-filled with pyrogen-free heparinised (10 IU ⁄ ml) isotonic saline, was

inserted into the vessel for ACTH administration. The free end of the can-

nula was exteriorised through a scalp incision and then tunnelled through a

protective spring that was anchored to the parietal bones using two stain-

less steel screws and self-curing dental acrylic. The end of the protective

spring was attached to a mechanical swivel that rotated through 360� in a

horizontal plane and 180� through a vertical plane, allowing the rats to

maximise freedom of movement. Following recovery from the anaesthesia,

animals were housed in individual cages and left to recover for 5 days

before starting the experiments. The cannula was flushed daily with the

heparinised saline to maintain patency.

Experimental procedures

Experiments started on day 5 after surgery at 14.00 h. To suppress endoge-

nous ACTH secretion, rats were treated with the synthetic glucocorticoid

methylprednisolone sodium succinate (250 mg, i.v., Solu-Medrone; Pharma-

cia, Sandwich, UK). This dose has been shown to inhibit corticosterone

secretion within 30 min from injection and its effects last for over 5 h (15).

Two hours after methylprednisolone injection, rats were treated with syn-

thetic ACTH (Synacthen, [ACTH-(1–24)] fragment, 4 ng ⁄ 0.1 ml, i.v.; Alliance

Pharmaceutical, Chippenham, UK). Rats were overdosed with 0.5 ml of

sodium pentobarbital (Euthatal, 200 mg ⁄ ml; Merial, Harlow, UK) before

ACTH injection (t0) or 5, 15, 30 and 60 min (t5–t60) after ACTH administration.

Trunk blood was collected on ice into tubes containing 50 ll of ethylen-

ediaminetetraacetic acid (0.5 M; pH 7.4) and 50 ll of Aprotinin

(500 000 KIU ⁄ ml, Trasylol; Bayer, EDTA, Newbury, UK). Plasma was separated

by centrifugation and then stored at )80 �C until processed for corticoste-

rone and ACTH measurements. Adrenal glands were collected and quickly dis-

sected free of fat and decapsulated to separate the outer capsule containing

the zona glomerulosa and the inner zones comprising the zona fasciculata

and zona reticularis of the cortex and the medulla. Individual inner zones

were immediately frozen in dry ice until processing for isolation of RNA for a

reverse transcription quantitative polymerase chain reaction (RT-qPCR) (left

adrenal) and protein extraction for western blotting (right adrenal).

Hormone measurements

Total plasma corticosterone was measured by radioimmunoassay (RIA) using

a citrate buffer (pH 3.0) to denature the binding globulin as previously

described. Antisera was kindly supplied by Professor Gabor Makara (Institute

of Experimental Medicine, Budapest, Hungary) and [125I] corticosterone was

purchased from Izotop (Budapest, Hungary). The intra- and inter-assay coef-

ficients of variation of the corticosterone assay were 14.1% and 15.3%,

respectively.

ACTH in plasma was measured using 100 ll of plasma and RIA kit

reagents (DiaSorin, Stillwater, MN, USA) in accordance with the manufac-

turer’s instructions. This assay was chosen for its ability to equally recognise

ACTH 1–24 and 1–39. The intra- and inter-assay coefficients of variation of

the ACTH assay were 2.2% and 7.8%, respectively.
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Analysis of adrenal glands

RNA isolation and RT-qPCR

Total RNA was extracted from the inner zone of individual adrenals using

TRIzol reagent (Invitrogen, Hopkinton, MA, USA), followed by purification

using RNeasy mini kit reagents and column DNase digestion (Qiagen, Valen-

cia, CA, USA) to remove genomic DNA contamination. Complementary DNA

was reverse transcribed from 0.7 to 1 lg of total RNA as previously

described (16). Primary transcript and mRNA accumulation of StAR, P450scc

and SIK1 genes were evaluated using primer sequences designed to amplify

nascent RNA (hnRNA) and mature RNA (mRNA) respectively, as shown in

Table 1. Power SYBR green PCR mix (Applied Biosystems, Foster City, CA,

USA) was used for the amplification mixture with each primer at a final

concentration of 200 nM and 1.5 ll of cDNA for a total reaction volume of

12.5 ll. PCR reactions were performed on spectrofluorometric thermal

cycler7900 HT Fast Real-Time PCR System; Applied Biosystems) as described

previously (16). Samples were amplified by an initial denaturation at 50 �C

for 2 min, 95 �C for 10 min and then cycled (45 times) using 95 �C for

15 s and 60 �C for 1 min. StAR, P450scc and SIK1 hnRNA and mRNA levels

were normalised to glyceraldehyde 3-phosphate dehydrogenase mRNA as

determined in a separate real-time PCR reaction. The absence of RNA detec-

tion when the reverse transcription step was omitted indicated the lack of

genomic DNA contamination in the RNA samples.

Western blotting

Nuclear extracts from the inner zone of individual adrenals were prepared

using NE-PER nuclear and cytoplasmic Extraction Reagent (Pierce, Rockford,

IL, USA) in accordance with the manufacturer’s instructions. Protein concen-

tration was quantified by spectrophotometry using the BCA protein assay

(Pierce). For western blot analysis of TORC2, 15 lg of nuclear or cytoplasmic

proteins were loaded and separated in a 6% Tris-glycine gel (Invitrogen) and

gels were run until the 50 kDa marker (Prestained protein ladder; Fermentas,

Inc., Glen Burnie, MD, USA) ran off the gel. A 10% gel was used for protein

separation for phospho-CREB. Proteins were transferred to a polyvinyl diflu-

oride membrane (GE Amersham Biosciences, Piscataway, NJ, USA), incubated

with 5% nonfat milk in 1 · Tris-buffered saline plus 0.05% Tween 20 (TBST)

for 1 h and incubated overnight at 4 �C with anti-TORC2 (Calbiochem ⁄ EDM

Chemicals, Gibbstown, NJ, USA), at a dilution of 1 : 6000, or anti-phospho-

CREB (Ser133) (clone 10E9; Millipore, Billerica, MA, USA), at a dilution of

0.5 lg ⁄ ml. After washing with TBST, the membranes were incubated with a

horseradish peroxidase-conjugated donkey antirabbit IgG at a dilution of

1 : 10 000. Immunorective bands were visualised using ECL Plus TM

reagents (GE Amersham Biosciences) followed by exposure to BioMax MR

film (Eastman Kodak; Rochester, NY, USA). After film exposure, blots were

stripped and assayed for histone deacetylase 1 (HDAC1) and b-actin as a

loading control. The intensity of the phosho-CREB (43 kDa), TORC2 (85 kDa),

P-TORC2 (100 kDa), HDAC1 (62 kD) and b-actin (42 kDa) bands integrated

with the area was quantified using a computer image analysis system,

Image J (developed at the National Institutes of Health and freely available

at: http://rsb.info.nih.gov). Data points for each gene were then normalised

relative to the HDAC1 band in the respective sample. For each blot, samples

from rats treated with ACTH (time points 5–60 min) were analysed as fold-

inductions relative to time 0.

Statistical analysis

Statistical significance of the differences between groups was calculated by

one-way ANOVA followed by Fisher protected least significant difference post-

hoc test when appropriate. P £ 0.05 was considered statistically significant.

Data are represented as the mean � SEM fold induction relative to t0 from

the values in the number of observations indicated as appropriate.

Results

Effect of ACTH injection on plasma levels of ACTH and
corticosterone

The time-course of effect of a single injection of ACTH (4 ng) on

plasma ACTH and corticosterone is shown in Fig. 1. ACTH and corti-

costerone levels in rats treated with methylprednisolone were low

before ACTH injection. A small, but not significant, effect of the

ACTH treatment on plasma levels of ACTH was found

(F4,20 = 2.327; P = 0.101; Fig. 1A). By contrast, ACTH injection

induced an increase in corticosterone levels (F4,20 = 5.024;

P = 0.008; Fig. 1B) and this effect was significant 5 min (P = 0.005)

and 15 min (P = 0.01) after injection.

Effect of acute ACTH on StAR and P450scc gene
transcription and mRNA accumulation

The time-course of the effect of a single ACTH injection (4 ng) on

the levels of primary transcript (hnRNA) and mRNA levels of the

rate limiting steroidogenic proteins StAR and P450scc is shown in

Fig. 2. A single injection of ACTH (4 ng) increased the levels of StAR

hnRNA (F4,21 = 3.007; P = 0.048) and this effect was significant

15 min after ACTH injection (P = 0.016). This small dose of ACTH

had no significant effect on the accumulation of StAR mRNA dur-

ing the time period studied (F4,21 = 0.263; P = 0.898).

There was also an increase in P450scc hnRNA levels

(F4,21 = 8.656; P = 0.00053) and this effect was significant 15 min

after injection (P = 0.00027). Moreover, there was a trend towards

significance 30 min after ACTH injection (P = 0.055). As observed

for StAR protein, ACTH had no effect on the accumulation of

P450scc mRNA (F4,21 = 0.874; P = 0.5).

Table 1. Primers Sequence.

RNA Target Primer Sequence (5¢ to 3¢)

hnRNA StAR Forward GCAGCAGCAACTGCAGCACTAC

Reverse GTGCCCCCGGAGACTCACCT

P450scc Forward TGTGTGTGTGACCCCAGGAGAC

Reverse CCCAGGTCCTGCTTGAGAGGCT

SIK1 Forward TGTCAAGGAATGAGCGAGTG

Reverse TGAACTCCGACATGATCACC

mRNA StAR Forward CTGGCAGGCATGGCCACACA

Reverse GGCAGCCACCCCTTGAGGTC

P450scc Forward TGCGAGGGTCCTAACCCGGA

Reverse ACCTTCCAGCAGGGGCACGA

SIK1 Forward CCTCAGCAGTCTGGAGGTTC

Reverse TAAGGGCTGAAGCGAACTGT

GAPDH Forward CCATCACTGCCACCCAGAAGA

Reverse GACACATTGGGGGTAGGAACA

StAR, steroidogenic acute regulatory protein; P450scc, cytochrome P450

side-chain cleavage; SIK1, salt-inducible kinase 1; GAPDH, glyceraldehyde

3-phosphate dehydrogenase.
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Effect of acute ACTH on nuclear phospho-CREB and TORC2

The ability of a small ACTH dose to induce phosphorylation of CREB

and activation of the CREB co-activator, TORC 2, in the rat adrenals

was investigated using western blotting (Fig. 3). The time-course of

effect of ACTH injection on nuclear P-CREB is shown in Fig. 3(A, B).

There was a significant effect of ACTH treatment on nuclear levels

of P-CREB (F4,16 = 6.571; P = 0.0048). This effect was transient,

with a marked increase in nuclear P-CREB 5 min after ACTH injec-

tion (P = 0.001), and returned to levels not significantly different

from basal by 15 min.

The time course of the effect of ACTH on nuclear accumulation

of TORC2 in the rat adrenals is shown in Fig. 3(A, C). Western blot

analysis of TORC2 in adrenal nuclear and cytoplasmic proteins

revealed bands from approximately 85 to 100 kDa corresponding to

the molecular size of dephosphorylated and phosphorylated forms

of TORC2, respectively (Fig. 3A). In the cytoplasm, there was a

predominant band of approximately 100 kDa (Fig. 3A). In the

nucleus, the 100-kDa band was very low, although there was an

increase of lower molecular size bands of approximately 85 and

95 kDa. Semiquantitative analysis of the 85-kDa band (nonphosph-

orylated TORC 2) revealed a time dependent increase (F4,16 = 3.315;

P = 0.048; Fig. 3C). This increase of nuclear TORC 2 was statistically

significant 5 min after ACTH injection (P = 0.02) and returned to

levels not significantly different from basal by 15 min. By contrast,

analysis of the 100-kDa band (phosphorylated TORC2) revealed no

significant effect of ACTH treatment on cytoplasmic P-TORC2

(F4,16 = 0.342; P = 0.844).

Effect of ACTH on SIK1 gene transcription and mRNA
accumulation

The time-course of effect of ACTH injection on the TORC2 suppres-

sor kinase, SIK1 hnRNA levels is shown in Fig. 4. ACTH treatment
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Fig. 2. Time course of the effect of adrenocorticotrophic hormone (ACTH) on steroidogenic acute regulatory protein (StAR) and side-chain cleavage cyto-

chrome P450 (P450scc) hnRNA and mRNA levels in the rat adrenal. Data points are the mean � SEM of the values obtained from three or four rats per group

expressed as the fold-change compared to values before ACTH injection (t0). Primary transcript (hnRNA) of StAR (A) and P450scc (B) was elevated 15 min after
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increased the levels of SIK1 primary transcript (hnRNA)

(F4,21 = 3.945; P = 0.019) and this effect was significant 15 min

after ACTH treatment (P = 0.004). There was also an effect on

mature SIK1 RNA (mRNA) (F4,21 = 3.735; P = 0.023) and this effect

was significant 30 min after ACTH injection (P = 0.005).

Discussion

Glucocorticoid secretion in rats exhibits an ultradian rhythm char-

acterised by release of pulses of corticosterone from the adrenal

gland at a rate of one pulse per hour. Although increasing evidence

emphasise the importance of glucocorticoid pulsatility for HPA

responsiveness to stress (17) and for glucocorticoid receptor

(GR)-mediated gene transcription (5, 6), the dynamics of pulsatile

synthesis and secretion of corticosterone have not been studied.

The present study aimed to investigate the rapid effects (5–60 min)

of low doses of ACTH, mimicking ultradian pulses on adrenocortical

function. Furthermore, the use of intronic qRT-PCR to determine

changes in primary transcript allowed us to estimate rapid changes

in the transcriptional activity of genes involved in steroidogenesis.

The data obtaned clearly show that minor increases in plasma ACTH

induced rapid and transient increases of plasma corticosterone

resembling an ultradian pulse. This was paralleled by sequential

phosphorylation of CREB and nuclear translocation of TORC2,

increases of StAR and P450scc transcription, and an increase of
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transcription and mRNA accumulation of the TORC2 regulatory

kinase, SIK1.

Previous investigations in vivo examining the long-term effects

of high ACTH doses have demonstrated the ability of ACTH to

induce the steroidogenic proteins StAR and P450scc (18, 19). In the

present study, the injection of a very small ACTH dose was suffi-

cient to induce rapid increases in plasma corticosterone with char-

acteristics both of amplitude and duration comparable to an

endogenous corticosterone pulse (14). This effect of ACTH was evi-

dent despite the barely detectable increases in plasma ACTH.

Although it is possible that plasma levels reached higher levels

before the first time point measured (5 min), the data indicate that

adrenal fasciculata cells are distinctively sensitive to small eleva-

tions in circulating ACTH.

The rapidity of this response is consistent with in vitro studies

demonstrating that ACTH can initiate corticosterone synthesis

within approximately 3 min (20–22). The time course of ACTH

induced changes in corticosterone levels and in transcription of

the steroidogenic enzymes was quite remarkable. Although corti-

costerone rapidly reached peak levels by 5 min, StAR and P450scc

hnRNA had not changed by this time and only peaked at 15 min.

By contrast to the lack of change in StAR or P450scc mRNA

within 60 min of injection of 4 ng ACTH in the present study, a

previous report by LeHoux et al. (18) described a delayed increase

in StAR mRNA after 30 min of a larger dose of ACTH. Thus, it is

likely that smaller increases in mRNA synthesis in the present

study were masked by rapid mRNA turnover as a result of trans-

lation of pre-existing mRNA. On the other hand, the measurement

of hnRNA in the present study revealed increases in StAR and

P450scc transcription after these minor increases in circulating

ACTH. Although rapid, it is also clear that transcriptional activa-

tion does not precede corticosterone synthesis and secretion.

What is evident from both studies is that newly synthesised and

released corticosterone following ACTH injection must depend

upon ACTH-induced post-transcriptional (likely translational and

post-translational) changes of steroidogenic proteins rather than

the transcriptional response. Thus, newly transcribed hnRNA would

serve to restore steady-state mRNA pools. In this regard, ACTH

has been shown to modulate post-translational modification of

StAR protein via proteolytic processing (23) and phosphorylation

(24).

Another remarkable finding was that nuclear levels of phospho

CREB and its co-activator, TORC2, increased within 5 min of the

injection of ACTH, well before the change in StAR and P450scc

transcription, and was already declining by 15 min. The impor-

tance of TORC2 translocation to the nucleus in steroidogenesis

has been previously suggested by in vitro studies in cell lines

demonstrating that the kinase inhibitor, staurosporin (known

to inhibit SIK1 and induce TORC2 translocation to the nucleus)

up-regulates the expression of steroidogenic proteins (13). The

present study provides the first demonstration that minor rises in

circulating ACTH, capable of mediating ultradian pulses of gluco-

corticoids, cause rapid increases in the 85-kDa band corresponding

to dephosphorylated TORC2 in the nucleus, which precedes tran-

scriptional activation of StAR and P450scc. Although the western

blot clearly shows the more rapid migration of the nuclear bands

compared with the highly phosphorylated cytoplasmic bands

(Fig. 3A), slower migration bands were also present in the nuclear

fractions. The 100-kDa band, which was very weak and did no

change after ACTH, may correspond to cytoplasmic protein con-

tamination in the nuclear fractions. The identity of the 95-kDa

band is less clear and it is likely to correspond to partially phos-

phorylated forms. In this regard, it was recently reported that, in

addition to Ser 171, SIK1 phosphorylates TORC2 also at Ser 307,

and phosphorylation at this site inhibits nuclear localisation of

TORC2 (25). Therefore, it is possible that the p-TORC2 band

observed in the present study represents phospho-Ser171 ⁄ dephos-

pho-Ser307-nuclear-TORC2.

Nuclear translocation of TORC2 is initiated by PKA-dependent

phosphorylation of SIK1 at Ser577, leading to its inactivation (26).

SIK1 is responsible for maintaining the TORC2 phosphorylation at

Ser171 and Ser275. In its phosphorylated form, TORC2 is transcrip-

tionally inactive and remains in the cytoplasm bound to the scaf-

folding protein 14-3-3. Thus, ACTH-mediated activation of PKA

would initiate StAR and P450scc transcription through CREB phos-

phorylation and simultaneous inactivation of SIK1, inhibiting

TORC2 phosphorylation and allowing its translocation to the

nucleus.

Interestingly, consistent with studies demonstrating the rapid

induction of SIK1 by cAMP in the steroidogenic cell line Y1 (27)

and rat pinealocytes (28), ACTH also induced SIK1 transcription and

mRNA. Although mRNA levels do not directly relate with the levels

of SIK1 protein or its inactive ⁄ active state by phosphoryla-

tion ⁄ dephosphorylation, the dynamic changes in expression induced

by the ACTH injection supports the proposal that SIK1 plays an

important role in the control of steroidogenesis.

The evidence suggesting that ACTH is able to both inactivate (via

cAMP-PKA mediated phosphorylation) and induce SIK1 raises the

exciting possibility that ACTH mediated inactivation and activation

of SIK1 could be part of an intracellular feedback mechanism

responsible for pulse generation in the adrenal cortex.

In summary, the data obtained in the present study clearly dem-

onstrate that small elevations of circulating ACTH by a single i.v.

injection in methylprednisolone-suppressed rats induce a pulse of

corticosterone of amplitude and duration similar to physiological

ultradian peaks. The parallel changes in StAR and P450scc tran-

scription suggest that pulsatility involves the dynamic regulation of

steroidogenic proteins. Although the signalling pathways leading to

SIK1 activation and the role of SIK1 on the termination of tran-

scription are currently under investigation, it is tempting to specu-

late that, concomitant with phosphorylating CREB, ACTH-mediated

PKA activation will initially inhibit SIK1 by phosphorylation and then

induce it, resulting in a biphasic change in SIK1 activity. This pro-

cess would result in a pulse of CREB-activated gene transcription

of both StAR and P450scc hnRNA.
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