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Abstract: Several studies in the last two decades have demonstrated that metalloporphyrins coated
quartz microbalances can be fruitfully used in many diverse applications, spanning from medical
diagnosis to environmental control. This large versatility is due to the combination of the flexibility of
metalloporphyrins molecular design with the independence of the quartz microbalance signal from
the interaction mechanisms. The nature of the metal atom in the metalloporphyrins is often indicated
as one of the most effective tools to design differently selective sensors. However, the properties of
sensors are also strongly affected by the characteristics of the transducer. In this paper, the role of
the metal atom is investigated studying the response, to various volatile compounds, of six quartz
microbalance sensors that are based on the same porphyrin but with different metals. Results show
that, since quartz microbalances (QMB) transducers can sense all the interactions between porphyrin
and volatile compounds, the metal ion does not completely determine the sensor behaviour. Rather,
the sensors based on the same molecular ring but with different metal ions show a non negligible
common behaviour. However, even if limited, the different metals still confer peculiar properties to
the sensors and might drive the sensor array identification of the pool of tested volatile compounds.

Keywords: electronic nose; metalloporphyrins; quartz microbalance

1. Introduction

Porphyrins chemistry offers excellent opportunities for gas sensors development [1]. The porphyrin
macrocycle may harbor a number of interaction sites ruled by different interaction mechanisms.
The macrocycle itself, the peripheral compounds, and the metal atom complexed at the core of the
macrocycle drive the overall sensing characteristics.
The main stream in sensors development is directed towards the preparation of selective sensors;
typically, stronger interactions tend to be more selective. Considering porphyrins, this approach
privileges the coordination interactions between analytes and the metal ion of the metalloporphyrin
complex. However to make a sensor, the sensitive material has to be complemented by a device
that actually measure the physical quantity affected by the interaction. Then, for a selective sensor,
the basic device only has to measure the consequences of the selective interaction. Excellent examples
of selective porphyrins sensors are provided by oxygen sensors coupled with an optical read-out
measuring the fluorescence changes [2] .
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On the other hand, a different approach to sensors development considers the whole range of
interactions and the sensors as elements of arrays. In this approach, the selectivity is a property of
the array, and it is achieved by the combined effort of all the sensors. A similar situation occurs in
olfaction where a limited number of receptors (about 300 in humans) can detect a huge number of
different mixtures of volatile compounds [3] . Since olfactory receptors are partially selective, it is the
pattern of responses that gives rise to the so-called combinatorial selectivity [4].

Mass sensors are a natural choice for such a sensor array. Indeed, regardless of the strength
and the nature of the interaction, each bounded molecule contributes to an increase in the mass of
the sensing layer. Several mass sensors are currently available. Usually, they are resonant structures
made from piezoelectric crystals or micro-cantilevers. The first option is the most used, and different
resonators can be fabricated with piezoelectric materials; these range from quartz microbalances to
surface acoustic wave devices [5]. A fundamental parameter that defines the sensitivity of the device is
the frequency of the oscillations, which spans a wide range from the few MHz of quartz microbalances
up to GHz of devices made in GaN or AlN [6]. High frequency devices provide a great sensitivity, but
at the same time they require more complex electronic circuits that also result in more noisy signals.

Quartz microbalances (QMBs) are the most basic mass sensors [7]. They are the same quartz
crystals that are extensively used in electronics to drive accurate and stable clock signals. The frequency
of the fundamental resonance mode of QMBs does not exceed a few tens of MHz. QMBs have
been used for chemical sensors and biosensors for decades [8], and they have been frequently
functionalized with porphyrins [9,10]. The capabilities of sensor arrays based on porphyrins have been
demonstrated in very different applications, such as lung cancer detection from breath analysis [11,12]
the contamination of foods [13], and the air quality control in spacecrafts [14].

In this paper, we investigated the role of metal ion in metalloporphyrins based QMB gas sensors.
A homologous series of Tetraphenylporphyrins functionalized with six different metals have been
exposed to a pool of volatile organic compounds (VOCs) representative of different chemical families.
Results show that the behaviour of the sensors is characterized by a common mode, that is over
impressed, and within which the peculiar property of each metalloporphyrins is found. This common
mode is supposed to originate from all those molecular interactions that are not affected by the metal
ion. Proper data treatment allows for the complete identification of the compounds regardless of the
concentration. Each sensor contributes to the array, and peculiar association between sensors and
VOCs can be observed. These results shed light on the positive results achieved by porphyrins based
QMB arrays and also provide a methodology for sensor array design.

2. Experimental Section

Metal complexes of 5,10,15,20-Tetraphenylporphyrin (TPP) with copper (CuTPP), cobalt(II)
(CoTPP), zinc (ZnTPP), manganese chloride (MnTPPCl), Iron chloride (FeTPPCl), and tin dichloride
(SnTPPCl2) have been prepared following methods in the literature [15].

QMBs had a fundamental resonance frequency of 20 MHz, corresponding to a mass resolution
in the order of a few nanograms. Thin films of sensing materials were deposited by a spray-coating
on both sides of the quartz disks, from 10−3 M solution of porphyrins in CHCl3. For each sensor, the
total coating resulted in a frequency shift of about 60 KHz. The sensors were housed in a stainless
steel measurement chamber that had a volume of 10 mL. Sensors were connected to oscillator
circuits. Frequencies were measured by means of an integrated frequency counter and then stored
on a computer. The difference of the sensors signals in reference nitrogen gas and in VOCs enriched
nitrogen gas was considered as the sensor response.

Sensors were calibrated measuring their response to a series of compounds representative
of different chemical families, such as propanoic acid, ethanol, triethylamine, hexane, toluene,
and dimethysulfide.

Vapors were generated by bubbling an N2 stream into a liquid sample of the compounds and
diluted with nitrogen gas. The dilution rate was controlled by a computer-driven 4 channels mass-flow
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controller (MKS). The concentration of VOCs was calculated by Antoine’s law using the parameters
listed in the NIST database [16].

3. Results and Discussion

The sensing properties of porphyrins functionalized QMBs have been characterized exposing the
sensors to increasing concentrations of six VOCs. Each of these compounds can interact with different
Van der Waals forces and hydrogen bonds. The intensity of the interactions that these VOCs can
establish can be modelled by the Linear Sorption-Energy Relationship (LSER) [17]. The interactions
considered in LSER are: polarizability (R), dipolarity (π), hydrogen bond acidity (αH) and basicity
(βH), and finally the solubility term (LogL16), related to dispersion interactions.

Except for triethylamine and toluene, which lack the hydrogen bond acceptor and the hydrogen
bond donor terms respectively, and hexane, for which only dispersion interactions can occur, all the
other VOCs interact with all of the five mechanisms but with different relative strengths. The LSER
coefficients of the tested VOCs are shown in Table 1.

Table 1. Linear Sorption-Energy Relationship (LSER) parameters of the tested volatile organic
compounds (VOCs), R is the polarizability, π > the dipolarity, αH and βH the hydrogen bond acidity
and basicity, and LogL16 is the solubility term [17].

VOC R π αH βH LogL16

ethanol 0.246 0.420 0.370 0.480 1.485
toluene 0.601 0.520 0.000 0.140 3.325
hexane 0.000 0.000 0.000 0.000 2.668

triethylamine 0.101 0.150 0.000 0.790 3.040
dimethysulfide 0.404 0.380 0.000 0.290 2.238
propanoic acid 0.233 0.650 0.600 0.450 2.290

All sensors show a reversible interaction with the VOCs and a signal proportional to the
concentration. Figure 1 shows the typical sensor signal during one exposure; the sensor response was
evaluated as the frequency shift between the resonance frequency measured immediately before the
exposure and at the end of the exposure.
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Figure 1. Time progression of the frequency shift of the sensor functionalized with CoTPP. The sensor is
constantly kept in a nitrogen flow, from t = 130 s to t = 230 s 2865 ppm of toluene are added to nitrogen
flow. After removal of the toluene, the sensor signal recovers the baseline. The line with two arrows
indicates the sensor response used in the successive analysis.
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Figure 2 shows the response curve of each sensor towards the six compounds. In order to
accommodate the different concentration ranges, the concentration axis is represented in a logarithmic
scale. All sensor responses are characterized by a similar behaviour but with important differences.
These differences appear subtle when response curves are compared, but, as it will be seen later,
they become of great importance when the sensors are gathered into an array.

Figure 2. Response curves of each sensor vs. the concentration of test VOCs: (a) CuTPP; (b) CoTPP,
(c) ZnTPP; (d) MnTPPCl; (e) FeTPPCl; (f) SnTPPCl2. In order to accommodate the wide range
of concentration, the x axis is plotted in logarithmic scale. Linear fits, drawn as a continuous line,
appears curved.
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To better appraise the different behaviour of the sensors, the sensitivity has been evaluated.
The sensitivity of the sensor is defined as the derivative of the sensor response with respect to
the concentration [18], then in case of a linear relationship the sensitivity is independent from the
concentration. In Figure 1, the linear fits of sensor response towards concentration are also plotted.

The sensors sensitivities are shown in Figure 3. The comparison between the sensitivities confirms
that sensors are characterized by a common mode evidenced by the fact that the sensitivity to the
VOCs proceeds in the same order for all sensors.
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Figure 3. Sensors sensitivity respect to each VOC.

The individual character of the sensors emerges in the subtle differences that are imposed on the
common mode. For instance, all sensors are more sensitive to triethylamine except MnTPPCl for which
the largest sensitivity is towards toluene. The largest sensitivity towards ethanol and propanoic acid is
achieved by MnTPPCl while ZnTPP is more sensitive to the largest electron donor (triethylamine).

The individual behaviour of sensors shows the intrinsic non selectivity of porphyrins coated
QMBs. This character has to be ascribed to both the porphyrins and the QMBs. Indeed, the rich
chemistry of porphyrins endow them with a number of different binding sites enabled by the different
mechanisms. In this paper we study a homologous series of tetraphenylporphyrin which differs only
by the metal ion complexed at the centre of the macrocycle. Then it is rather obvious to expect that
a large part of chemistry is shared by these molecules. On the other hand, the metal ion strongly
influences several porphyrin characteristics such as the solid-state arrangement. Eventually, the metal
itself is a site for coordination binding of volatile compounds.

It is also worth noting that, in some of these porphyrins, the metal ion is complemented by chloride
ions. The chloride ions are the counterions needed to balance the charge of the coordinated metal in
order to keep the electroneutrality of the final complex. These ions can have different influences in the
binding mechanism of the metalloporphyrins: for the axial coordination of the target VOC, in some
cases, they should be displaced (such as, for example, in the case of SnTPPCl2). In addition, they could
also influence the structure of the solid film of the metalloporphyrin, since they can form an obstacle
for the π − π packing of the macrocycles, resulting in a more porous film.

On the other hand, QMB is a non selective transducer. Namely, all the adsorptions occurring
between the sensing layer and the VOCs contribute to change the mass kept in movement by the
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piezoelectric crystal. It is interesting to observe that the situation may be very different when other
transduction mechanisms are considered. For instance, Bohner et al. [19] showed that the sensitivity of
phthalocyanine based chemoresistors is almost totally driven by the Lewis acid-bases interactions with
a noteworthy exception of trimethylamine. Indeed, as seen in Table 1, triethylamine, besides being
a strong donor, is also endowed with a large dispersion coefficient. Then the response of a QMB to
triethylamine might be due to the combination of these two interactions. Furthermore, coordination
dominates the sensitivity of the optical changes of porphyrins measured with spectrophotometers [20]
or digital colorimeters [21].

QMB sensors are fully exploited when they are used as elements of sensor arrays and when
multivariate data analysis is used to process the sensors data. For this scope, the data shown in
Figure 2 are rearranged in a matrix where the rows are the measured samples and the columns are the
sensors.

It is straightforward to understand that the common behaviour of sensors evidenced in Figures 2
and 3 means that sensors data are correlated. Figure 4 shows the map of the linear correlation of the
sensors. Correlation coefficients are greater than 0.65, and MnTPPCl is the sensor less correlated with
the others.

Correlation coefficients
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Figure 4. Map of linear correlations of sensors data. The magnitude of correlation is given in
a color scale.

The geometrical meaning of the above introduced data matrix is that each data point is a vector
in a multidimensional space where the coordinates are defined by the sensors. In practice, given six
sensors, the array data are points in a 6-dimensional space, where each sensor is a base vector of
the space.

The simplest visualization of multivariate data sets is offered by the Principal Component Analysis
(PCA) [22]. PCA aims at representing the data points in an orthogonal basis of uncorrelated variables
(the principal components) that are obtained as a linear combination of the original base vectors
(the sensors). In this way, the total variance of the data set is simply the sum of the variance carried
by each principal component. As a consequence, a hierarchy among the principal components is
established, and the representation can be limited to the components carrying most of the total
variance. Furthermore, in PCA the components with large variance express the common modes of the
sensor array.
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Figure 5. Results of the PCA of the sensors data. (a) Scores of the first four principal components;
(b) Loadings of the first four principal components.

Figure 5 shows the scores (coordinates of the data points in the new base) and the loadings
(contributions of each sensor to the principal components) of the sensors dataset. The matrix has been
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autoscaled. In other words, each column of the data matrix (each sensor) has been scaled to zero
mean and unitary variance. It is important to remember that this normalization removes any influence
due to different ranges of sensor responses. It has to be noted, that, in the case of functionalized
QMBs, the sensor response is to a first approximation proportional to the amount of deposited
sensing material. Then, such a normalization also reduces the influence of a non homogenous sensors
deposition. Results are limited to the first four principal components for a total of more than 99% of
total variance.

The first principal component carries 85% of the total variance. The scores of the different VOCs
(Figure 5a) are not separated but they progress according to the concentration. In practice, PC1 captures
most of the quantitative information (the amount of concentration) of each measure but little of the
qualitative information (the nature of the VOC). This can also be understood considering that all the
sensors equally contribute the loadings of the first principal component (Figure 5b).

A different situation is found in the other principal components. In PC2 (8% of total variance)
a separation between triethylamine (positive score) and ethanol and toluene (negative scores) is
observed. In terms of loadings, this separation is due to MnTPPCl and SnTPPCl2 in the negative
portion and CuTPP, ZnTPP and FeTPPCl in the positive direction. Along PC3 (about 4% of total
variance), the separation of propanoic acid in the negative direction of the scores is found. This is
related to CoTPP, which is the only sensor contributing to the negative side of the principal component.
Finally, in PC4 (only 1% of total variance) toluene (negative part) and hexane (positive part) are
separated from each other. The negative portion of the principal component is due to SnTPPCl2 while
the positive portion is contributed by CuTPP, MnTPPCl, and FeTPPCl. In any case, all the scores show
a dependence with the concentration which does not allow the full identification of VOCs.

The separation of the qualitative from the quantitative information has been a well known problem
since the beginning of the studies on sensor arrays, when a simple method, totally effective in the case
of linear sensors, was introduced [23]. This method consists of a normalization of each sensor signal
simply dividing the signal of each sensor by the sum of all the others. In the case of an array of N linear
sensors the response of the i-th sensor (∆ fij) to the j-th compound at concentration c (cj) is given by:

∆ fij = Sij · cj (1)

where Sij is the sensitivty of the i-th sensor to the j-th compound. The normalization is achieved by the
following operation:

∆ f ∗ij =
∆ fij

∑k ∆ fkj
=

Sijcj

∑k Skjcj
=

Sij

∑k Skj
(2)

In practice, the signal of the i-th sensor corresponds to its weighted sensitivity.
Obviously, the above equation holds only in case of a linear relationship between the sensor

and the concentration. As shown in Figure 2, the response curves are well fitted by a linear function;
however, fluctuations, mainly due to imperfections in the measurement setup, exist, so the above
introduced normalization typically mitigates the influence of the concentration.

Figure 6 shows the results of the PCA applied to the normalized data. Here, the scores (Figure 6a)
show a substantial independence on the concentration and the loadings are well distributed among the
scores. Furthermore, each principal component evidences the separation among some of the studied
VOCs. PC1 (60% of total variance) are separated between propanoic acid, ethanol (positive direction)
and hexane and triethylamine (negative direction). The sensors contributing to the positive score
are MnTPPCl and SnTPPCl2, while CuTPP, ZnTPP, and FeTPPCl contributes to the negative part.
It is interesting to note that the first principal component of the normalized data is analogue to the
second principal component of the non normalized data, which is obtained after the removal of most
of the common mode. PC2 (22% of total variance) separates ethanol and dimethylsulfide (negative
portion) and propanoic acid (positive portion) and the difference may be attributed to CoTPP and
SnTPPCl2, respectively.
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Similar considerations can be done for PC3 (11% of total variance) and PC4 (5% of total variance)
where the relationship between dimethylsulfide and CuTPP and CoTPP and triethylamine and ZnTPP
can be observed.
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Figure 6. Results of the PCA of the linearly normalized sensors data. (a) Scores of the first four principal
components; (b) Loadings of the first four principal components.
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However, besides analysing the individual principal components, PCA results are typically
represented plotting the scores and loadings in planes identified by two principal components. Figure 7
shows the projections of scores and loadings in the plane of the first two principal components. In this
plot, the separation among the VOCs is obtained and it is possible to study the correlation between
each sensor and scores. In particular, this plot evidences the relationship between propanoic acid and
SnTPPCl2, ethanol and MnTPPCl, triethylamine with ZnTPP and FeTPPCl, and finally dimethylsulfide
and CoTPP, features that can be confidently correlated to the Pearson theory [24] characteristics of both
porphyrin coordinated metal and donor ligand.
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Figure 7. Biplot of the first two principal components of the linearly normalized sensors data.

4. Conclusions

Quartz microbalances are optimal sensors to transduce the whole set of interactions occurring
in solid state sensing layer deposited on the sensor surface. In case of metalloporphyrins, the set
of interactions spans from the weak Van der Waals forces to hydrogen bond, to π − π interactions
and finally to the coordination to the central metal ion. As evidenced by previous studies, all these
interactions may contemporaneously be present and cooperate in the total guest molecule binding [25].

In this paper we have investigated the properties of QMBs coated with a homologous series of
metalloporphyrins based on the same macrocycle and differing only for the metal atom. Sensors have
been tested exposing the devices to different concentrations of six VOCs representative of different
chemical families. Results show that all sensors share a common trend, which is largely due to the
influence of the macrocycle and the peripheral compounds. On the other hand, superimposed on the
common trend, a peculiar behaviour dependent on the metal is clearly evident.

The application of PCA to the sensor array shows that the common modes are mostly captured
by the first principal component which accounts for about 60% of the total variance. It is important to
consider that, besides the common features of the different metalloporphyrins, an important source
of common behaviour is due to the growing concentration of VOCs. Indeed, the response of each
sensor is due to the contemporaneous action of the sensitivity, which depends on the nature of the
VOC, and the concentration. As a consequence, since each measure of a VOC is taken at different
concentration, the identification of VOCs is practically impossible. Most of the common modes might
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be partially removed by a linear normalization of the sensor array data. It is worth mentioning that
the identification of odours regardless of their intensity is a noteworthy property of natural olfaction.
The mechanisms of separation of quantitative and qualitative information in olfaction are still largely
unknown. This capacity to exclude concentration information does not preclude the olfactory system
from estimating concentration itself [26,27].

Results show that PCA applied to normalized data achieves a perfect identification of the VOCs.
Furthermore, PCA allows us to study the sensors-VOCs relationship. This relationship fits, in most
cases, with a comparison of the sensitivity. As an example, MnTPPCl is the sensor most sensitive to
ethanol and it drives the identification of this compound. The interplay of sensors in the array enhances
the cooperation among sensors, so even if MnTPPCl shows the largest sensitivity to propanoic acid,
this VOCs is actually identified with the cooperation of SnTPPCl2.

These results demonstrate the role of the metal atom in metalloporphyrins based QMB arrays and
provide a background for the explanation of the successful applications of these arrays to several real
world applications.
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