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Cooperative Switching in 
Nanofibers of Azobenzene 
Oligomers
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Next-generation molecular devices and machines demand the integration of molecular switches 
into hierarchical assemblies to amplify the response of the system from the molecular level to 
the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble 
to form robust supramolecular nanofibers in which they can be switched repeatedly between 
the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible 
photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions 
and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the 
photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene 
in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich 
fibers. This demonstrates the great potential of coupling individual photochromic units for increasing 
their quantum efficiency in the solid state with potential relevance for actuation and sensing.

Synthetic photoresponsive molecules can be used as building blocks for a large variety of emerging applications 
ranging from molecular sensors1, energy2 and information3 storage devices to nano-optomechanical devices such 
as molecular motors4–10, artificial muscles11,12 and photoactuators13,14. For enabling these applications it is impor-
tant to convert molecular nanoscale events into measurable effects at meso- and macro-scales by integrating 
molecular switches into well-defined hierarchical assemblies15–17. This can be achieved by both covalent bonding 
of monomeric switching units to form photoresponsive oligomers or polymers as well as their supramolecular 
assembly.

Within these densely packed supramolecular systems, it is important to control and, ideally, leverage the 
intra- and intermolecular interaction between switching units, because steric interaction, as well as excitonic 
and electronic coupling between adjacent molecular switches, alter the switching process18. Too strong coupling 
can completely suppress the photoresponse, both via simple steric hindrance or via excitonic coupling leading to 
delocalization of the excitation before the energy can be transferred to the nuclear coordinates19,20. However, cou-
pling within a supramolecular assembly can also lead to positive cooperativity, that is, the chromophores do not 
switch independently from each other but exhibit emergent behavior, e.g., by supporting switching cascades21–23. 
In biological systems, such cooperativity is commonly used to accelerate specific processes and to increase or 
amplify the outcome of reactions24.

In synthetic photoresponsive systems, it is an interesting question, if cooperative interaction between molecu-
lar switches could be used to amplify the impact of individual photoisomerization events. Ultimately, an array of 
cooperatively coupled molecular switches could act as a molecular amplifier that magnifies the power of an input 
signal at the nanoscale, such as absorption of a single photon, or a molecular recognition event into an output 
signal at the macroscopic scale, e.g., by releasing stored internal energy corresponding to the energetic difference 
between two switching states. Possible applications include sensing devices, where cooperativity could be used to 
amplify single-molecule events at the nanoscale to readily measurable effects involving many molecules and thus 
to increase the sensitivity25,26.

However, there are only very few reports of artificial systems exhibiting cooperative switching, yet27–29. One 
problem is to design molecular systems in which the intermolecular coupling is not so strong as to impede 
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reversible switching but strong enough to make the isomerization dependent on neighboring molecules. 
Azobenzene derivatives in particular are promising building blocks for cooperatively switching multicom-
ponent molecular systems. This is because the isomerization from the stretched out E-isomer to the compact 
Z-isomer is accompanied by significant changes of geometry and dipole moment, which enables neighboring 
chromophores to interact during isomerization through steric or electronic coupling. Azobenzene polymers 
incorporating multiple covalently bonded azobenzenes in their main chain exhibit contractile motion upon 
UV-irradiation30,31. Recently, we developed a rigid rod polymer (P1) that incorporates more than 30 azobenzene 
units in its poly(p-phenylene)s (PPP) backbone32–34. The introduction of large dihedral angles in the P1 backbone 
makes sure that the azobenzenes along the polymeric chain are electronically decoupled and photoisomerize with 
high efficiency35.

In this work, we show that azobenzene oligomers of type P1 self-assemble into well-defined nanofibers and 
quantitatively analyze the switching kinetics of these linear, supramolecular assemblies. We find that the Z →  E 
photoisomerization of azobenzenes in P1 nanofibers is significantly slower at elevated temperatures, in contrast 
to isolated azobenzene oligomers where both thermal and optical Z →  E isomerizations are faster at elevated tem-
peratures. Further, we find that in the nanofibers the effective Z →  E photoisomerization rate is increased by up to 
a factor of 4, depending on the fraction of azobenzenes in the Z-configuration. We attribute this to an increased 
photoisomerization efficiency due to cooperativity among individual switching units36.

Results and Discussion
Figure 1a displays an AFM image of a sample of azobenzene oligomers after deposition onto an oxidized silicon 
wafer via spin coating from a toluene solution. The SiO2 surface is covered by a fibrillar network. Single nanofib-
ers exhibit a characteristic length in the range of 1–2 μ m, a height of about 4 nm, and an apparent width of about 
20 nm, which, due to the finite radius of the AFM tip (<10 nm)37, corresponds to a real width on the same order as 
the measured height. The typical spacing between the nanofibers is several 10 nm. Since the length of an isolated 
oligomer in the thermally stable E-configuration is only around 8 nm, the nanofibers are attributed to supramo-
lecular aggregates consisting of many oligomers. Interestingly, only very few of the nanofibers on the SiO2 surface 
have a loose end, which indicates the formation of higher order aggregates such as in multiple helices38,39.

For the side-chain alignment we recently demonstrated that, in thin films, P1 polymers can form coherently 
ordered nanodomains of interdigitating alkyl side-chains. X-ray diffraction measurements performed on a P1 
oligomer nanofiber sample, albeit at a higher nominal thickness, show one of the three Bragg reflections of P1 
polymers (see the Supplementary Information, Figure S2), indicating some coherent ordering in the nanofibers.

The nanofibers persist even after many switching cycles as we checked with AFM (see the Supplementary 
Information, Figures S2 and S3). Furthermore, samples measured almost two years after preparation of the film 
show the same fibrillar structures. These findings underline the robustness of the nanofibers when stored under 
ambient conditions. Differential reflectance spectroscopy (DRS)40 provides an easy and efficient way to monitor 
in real-time the conversion of E-azobenzene to Z-azobenzene and vice versa in P1 thin films. DRS measurements 
demonstrate that the azobenzene chromophores in the thin film can be switched reversibly back and forth with 
UV light and visible light, respectively. Figure 2a shows a 3D plot of the differential reflectance spectra Δ R/R, that 
is the change in reflectance divided by the initial reflectance, over time. When the UV LED is switched on for the 
first time at t =  30 s, the reflectance is increased in the energy range between 3.2 eV and 4.2 eV and is decreased 
in the energy range between 2.5 eV and 3.2 eV (see Fig. 2b). The increase of the reflectivity, that is positive Δ R/R, 
around 3.6 eV during E →  Z photoisomerization can be rationalized with decreasing absorption in the π  −  π * 

Figure 1.  Sample morphology and molecular structure of P1. (a) AFM image showing a 5 ×  5 μ m2 region of 
a spin coated sample of P1 oligomers with a height profile. (b) Chemical structure of P1.
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absorption band of the E isomer. Conversely, in the region around 2.7 eV, the reflectivity is decreased as the n −  π * 
band of the Z-isomer starts to absorb upon E →  Z photoisomerization. Besides these large changes due to the 
changing fraction of E and Z populations with their respective absorption bands, only a small gradual blue-shift 
of the individual E-state π  −  π * and Z-state n −  π * bands is observed with DRS, amounting to a total shift of 
about 10 meV (see SI).After the UV LED is switched off at t =  60 s, the reflectance returns to its initial value before 
the first UV-irradiation due to the white probe light. Figure 2c shows a cross section through Fig. 2a along the 
temporal axis at an energy of 3.5 eV.

The photoisomerization kinetics of the azobenzene chromophores can be extracted from the temporal evo-
lution of the differential reflectance. To find the relation between the DRS signal and the photoisomerization 
kinetics, we simulated the DRS signal of a P1 film on silicon covered with native oxide using the transfer matrix 
method (see the Supplementary Information, Figure S4)41. Our simulations show that the DRS signal Δ R/R 
close to the π  −  π * absorption at 3.5 eV depends linearly on the fraction of Z-azobenzene, that is, the ensemble 
switching kinetics can be directly inferred from the DRS measurement. A significant amount of roughly 70% of 
the azobenzenes isomerizes after UV-irradiation with a power density of 110 mW/cm2, according to simulations 
of the DRS signal using realistic values of the geometry, packing densities and the optical constants of azobenzene 
in P1 nanofibers (see SI).

The conversion process from Z-azobenzene to E-azobenzene can be described by the following rate equation

= ⋅ − ⋅
d Z
dt

k E k Z[ ] [ ] [ ] (1)EZ ZE

Here, [E] and [Z] denote the fraction of E- and Z-azobenzene, kEZ denotes the rate constant of the E →  Z pho-
toisomerization having contributions from both the UV-part of the Xe-lamp spectrum and the UV LED, and 
= +k k kZE ZE

therm
ZE
light denotes the Z →  E isomerization rate constant of azobenzenes having both thermal contri-

butions and contributions from the Xe-lamp. The thermal contribution to the Z →  E isomerization is, however, 
negligible in comparison with the optical contribution since pure thermal back-switching of azobenzenes typi-
cally takes several hours whereas the isomerization process we observe occurs within seconds.

The solution of eq. (1) is a monoexponential function with the apparent (effective) isomerization rate 
= +k k keff

EZ ZE. The effective isomerization rate keff can be determined experimentally from the real-time DRS 
data via

=
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where d Z
dt
[ ]  and [Z] are the velocity of the Z →  E conversion and the fraction of Z-azobenzene at a certain time and 

Δ [Z] denotes the absolute difference between the high and low asymptotical level of Z-azobenzene fraction. In 

Figure 2.  Differential reflectance spectroscopy (DRS) of P1-nanofibers during photoisomerization.  
(a) Reversible switching of an azobenzene nanofiber sample is apparent from a 3D graph of the optical 
differential reflectance during three switching cycles. Cross sections at fixed time as a function of the energy 
yield DRS spectra (b) and cross sections at 3.5 eV as a function of time allow for determination of the rate of 
Z →  E isomerization (c).
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the following, we discuss the temperature and light-intensity dependence of the Z →  E isomerization rate, that is, 
the initial decay of the time-dependent Z-azobenzene fraction.

Upon analyzing the kinetics of the Z →  E photoisomerization, we find that the azobenzene chromophores in 
the nanofibers do not switch independently but exhibit cooperativity and a non-Arrhenius-type thermal switch-
ing behavior. The first indication is shown in Fig. 3a, where the temperature dependence of the measured effective 
isomerization rate keff is plotted (see eq. 2). We find that the effective Z →  E photoisomerization rate starting from 
the same fraction of Z-azobenzene decreases with increasing temperature. This behavior is diametrically opposed 
to the behavior of independently switching azobenzenes in solution, for which the thermal back-reaction across 
an energetic barrier on the order of 1 eV leads to an increasing keff at higher temperatures42. The dotted line in 
Fig. 3a shows the typical Arrhenius behavior for a purely thermal process.

In addition to real-time measurements at different temperatures, we also measured the rate of the Z →  E pho-
toisomerization as a function of the starting fraction of Z-azobenzene in the nanofibers at three different temper-
atures (Fig. 3b). At room temperature, where the effect is the strongest, the effective photoisomerization rate can 
differ by more than a factor of 4 for different starting fractions of Z-azobenzene. This dependency of the ensem-
ble switching kinetics of the azobenzene units on the isomeric state of the environment directly shows that the 
azobenzenes in the nanofibers do not switch independently but cooperatively. It is important to note that P1-type 
multi-azobenzene compounds, which are dissolved in cyclohexane at rather low concentration (≈ 10−5 mol/L) in 
order to avoid aggregation, do not switch cooperatively, that is, the individual azobenzene units within a single 
isolated macromolecule switch independently35.

For a quantitative understanding of the cooperativity, we use an intentionally simple model to fit the 
isomerization kinetics. The real-time kinetics of back-switching from different fractions of Z-azobenzene and 
the extracted Z-dependent keff that have been used for the fitting are shown in Fig. 4a,b, respectively. Plotted 
in Fig. 4a is the fraction of Z-azobenzene corresponding to the differential reflectance during several cycles of 
UV-irradiation at room temperature with varying intensities. In addition, the sample is exposed to white probe 
light all the time. When the dark sample gets exposed to white probe light of the Xe-lamp, the Z-fraction increases 
and reaches a steady state. Additional UV-light from the LED (intensity I =  110, 40, 17, 7 and 1.7 mW/cm2 in the 
range 360 nm–370 nm) further increases the Z-fraction. With a higher LED UV-light intensity, a larger fraction 
of the azobenzenes is switched from E to Z. After the UV LED is switched off, the Z-fraction returns back to the 
level corresponding to exclusive irradiation with Xe-light.

For independent azobenzene chromophores, the effective rate of the Z →  E back-isomerization kZE
eff  only 

depends on the spectrum of the Xe-lamp and the temperature and thus would be the same for all switching cycles 
shown in Fig. 4a. However, our real-time measurements show that the effective Z →  E isomerization rate kZE

eff  is 
significantly faster in switching cycles where a higher optical output power of the UV LED was used to induce 
E →  Z isomerization. For example, the Z →  E isomerization rate after UV irradiation with 110 mW/cm2 is about 
50% faster than the Z →  E isomerization rate after UV irradiation with 1.7 mW/cm2. The dependency of the 
back-switching rate on the Z-fraction cannot be described with the simple rate equation for isolated azobenzene 
moieties (1) because its solution is a monoexponential function with the time- and Z-independent rate 
= +k k keff

EZ ZE. A simple modification to the rate equation (1) is to include a linear Z-dependency of the rates. 
In a first approximation, this introduces a dependency on the isomeric state of the microenvironment. We find 
that a modification of the E →  Z isomerization rate alone cannot explain the observed switching behavior; 

Figure 3.  Apparent ensemble photoisomerization rates of P1-oligomers for different temperatures.  
(a) Arrhenius plot of the rate of the Z →  E photoisomerization reaction measured at three different 
temperatures starting from the same level of Z-azobenzene fraction (≈ 0.15). The thermal behavior we find is 
in clear contradiction to the Arrhenius-type behavior of isolated azobenzenes (blue dotted line) that switch 
faster at higher temperatures. (b) Dependency of the Z →  E photoisomerization rate keff on the fraction of Z-
azobenzene in the film, plotted for three different temperatures (dotted lines to guide the eye), showing that the 
isomerization rate also depends on the fraction of Z-azobenzene.
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however, both the kinetics and the photostationary levels of the real-time data can be fitted when modifying the 
back-switching rate as follows

= ⋅k Z c Z( ) [ ] (3)ZE

where c denotes a constant.
Inserting eq. (3) into eq. (1) the rate equation model includes cooperative behavior, that is, the Z →  E isomer-

ization is faster when there is a higher Z-azobenzene fraction in the film (see Fig. 4b). Note that we did not intro-
duce additional model parameters, even though a refined model could include, e.g., a constant offset to achieve 
a finite rate at [Z] =  0. According to the modified rate equation, also the E →  Z isomerization is faster for higher 
fractions of Z-azobenzene. However, the deviation from the monoexponential process is significantly smaller 
for E →  Z photoisomerization than in the case of the Z →  E photoisomerization, since the contribution of the 
UV-LED to kEZ dominates eq. (1). In summary, we only need three parameters for the fits to our real-time data: 
kEZ, c, and a scaling parameter that scales [Z] to the DRS signal ([Z]/(Δ R/R) ≈  4.1). The red line in Fig. 4b results 
from a fit of the solution of our modified rate equation to the experimental real-time data in E →  Z switching 
direction for five different UV-intensities and for five corresponding Z →  E back-switching processes. The good 
agreement of our simulation with the measured cooperative kinetics indicates that the linear Z-dependence of the 
Z →  E isomerization rate, indeed, is a good approximation.

Based on the findings of a Z-dependent Z →  E isomerization rate in nanofibers, we now discuss the origin of 
cooperativity, in particular, inter- and intramolecular interactions of the azobenzene chromophores. In principle, 
intramolecular interactions between azobenzene units can lead to cooperative switching behavior, and other 
isolated multi-azobenzene derivatives have been shown to exhibit cooperative switching in solution due to π  
stacking or electronic coupling between azobenzene moieties28. However, in the case of the rigid rod polymer P1 
the azobenzene chromophores within a single isolated molecule are electronically decoupled. In an earlier study 
no signs of cooperative switching have been found for isolated P1-type molecules in extremely diluted cyclohex-
ane solution (≈ 10−5 mol/L), where no supramolecular aggregates are formed35. For comparison, our nanofiber 
samples were prepared from a solution with a much higher concentration of about 5 · 10−2 mol/L, whose high 
absorbance made spectroscopic measurements in solution difficult. In this earlier study, the isolated P1-type 
molecules exhibited Arrhenius-type thermal behavior and their switching kinetics followed a monoexponential 
function and thus did not depend on the fraction of Z-azobenzene. This clearly demonstrates that the cooperative 
behavior of P1-oligomers emerges due to their aggregation into nanofibers.

Intermolecular coupling of P1 azobenzenes in nanofibers is possible, either via mechanical strain, changing 
free volume or dipole-dipole interactions. In the Z-configuration, azobenzene has a static dipole moment of about 
3 Debye while azobenzene in the E-configuration has a dipole moment near zero43. Therefore static dipole-dipole 
coupling in a sample with a large fraction of Z-azobenzene could influence the back-switching kinetics of 
Z-azobenzene in the nanofibers. However, the interaction between molecular dipoles of Z-azobenzenes is prob-
ably not a dominating effect, because the enhancement starts even at the stages where the Z-azobenzene fraction 
is very low and the reacting Z-form is most likely to be surrounded by the E-form.

Another possible explanation for the observed enhancement of the effective Z →  E photoisomerization rate 
at higher Z-azobenzene fraction could be an increased number of structural defects in the nanofibers when there 
are more azobenzenes in the bulky Z-configuration. A greater amount of free volume available to the switching 
units in the vicinity of defects could lead to a relative acceleration of the photoisomerization rate for a higher 
Z-azobenzene concentration and thus for a higher defect concentration. However, this theory cannot explain the 
finding of accelerated Z →  E photoisomerization rates at lower temperatures. At higher temperatures beyond the 
melting temperature of the alkyl side-chain the number of gauge defects and other structural defects among the 
side-chain should be higher leading to an increased free volume per azobenzene unit. Thus, also the apparent 

Figure 4.  Photoisomerization kinetics for different UV-LED intensities. (a) Differential reflectance at 3.5 eV 
during several cycles of alternating irradiation with white light +  UV light of varying intensities and white light. 
(b) Experimentally determined Z →  E isomerization rates at different photostationary levels together with a 
simulation including cooperativity (red curve).
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photoisomerization rate should be larger at higher temperatures, which contradicts our experimental observa-
tions (see Fig. 3b).

Apart from electrostatic influences and structural defects, it is well known that mechanical strain can influ-
ence the isomerization kinetics of azobenzene44. The observed small shifts (Δ  ≈  10 meV) of the Z-form n −  π* 
band around 2.7 eV and the E-from π −  π* band around 3.6 eV can be attributed to strain, which varies with the 
amount of Z-isomer in the surrounding. The strain influence on the spectra is in agreement with the literature for 
other organic molecular systems45,46.

Tamaoki et al. demonstrated that for bridged bis-azobenzenes the Z →  E isomerization is accelerated by orders 
of magnitude if the Z-isomer is strained47. Turanský et al. performed simulations of the photoinduced Z →  E 
isomerization of stretched azobenzene and found that mechanical stretching can induce Z →  E isomerization in 
the ground state and also favors the photoinduced Z →  E isomerization via excited states48,49. These theoretical 
simulations performed for single azobenzenes can qualitatively explain our experimental findings for azobenzene 
oligomers in nanofibers. The E →  Z isomerization induces steric strain in the nanofibers due to the non-planar 
geometry of the Z-isomer. Also, the E →  Z isomerization of an azobenzene chromophore results in a more twisted, 
shorter oligomer, which in turn exerts pull along the backbone against forces from interlocked side-chain. Thus, 
an increase in Z-fraction leads to more strain and a greater mechanical stretching of the switched azobenzenes 
and therefore can explain the faster, Z-dependent photoinduced back-switching according to the simulations for 
single azobenzene molecules.

Our second observation of slower back-switching at higher temperatures also can be explained by the tem-
perature dependence of strain. At temperatures above 120–150 °C, roughly corresponding to the melting tem-
perature of polyethylene, ordered alkyl side-chain domains involve more gauche-defects50, thereby decreasing 
the intermolecular interaction strength of azobenzene chromophores within different oligomers. This weaker 
coupling reduces the strain and thereby slows down isomerization rates to non-cooperative single molecule levels. 
An important implication of our findings is that intermolecular cooperativity can be used to increase the quan-
tum yield of photoisomerization (see Fig. 5). According to our kinetic experiments and applying our modified 
rate equation model, the quantum yield for the Z →  E photoisomerization of azobenzenes in the nanofibers can 
be increased by a factor of 8 (see Supplementary Information). A detailed comparison of the absolute values 
for quantum yield of P1-oligomers in nanofibers on a surface vs. the quantum yield of isolated P1-oligomers in 
solution is difficult because of the different experimental techniques and the comparatively large error bars of 
the optical constants of P1-oligomers in the nanofibers. Our estimate of a Z →  E photoisomerization quantum 
yield Φ ZE =  0.16 for high Z-content in the nanofiber indicates that even with positive cooperativity, switching in 
the nanofibers is slower than for azobenzene in solution, where a Z →  E quantum yield (via n −  π * excitation) of 
typically 0.4–0.6 is found51.

Theoretically, in multi-component molecular systems that utilize cooperativity it might be possible to raise 
the quantum yield of Z →  E photoisomerization beyond unity, that is, to switch more than one azo-benzene unit 
with a single photon. While strain accelerates the Z →  E photoisomerization, the strain thereby is also released 
and the cooperativity reduced in our system. Further tuning of the coupling between the chromophores, e.g., by 
introducing external mechanical strain or by using different coupling mechanisms would be needed to enable a 
switching cascade. This would be an important step towards a molecular amplifier, that is, a synthetic molecular 
device that converts input signals corresponding to single-molecule events at the nanoscale into a measurable 
signal involving many molecules at the macroscopic scale, e.g., by leveraging internal energy, stored in the meta-
stable Z-configuration of azobenzenes.

Conclusions
In this work, we have shown that azobenzene oligomers form nanofibers with well-defined dimensions and 
shapes, having lengths of 1–2 μ m, a height of 4 nm and a typical width on the same order. Whereas in diluted solu-
tion, isolated P1-type molecules switch independently, P1 exhibits positive cooperativity when self-assembled 
into nanofibers. The Z →  E isomerization rate depends approximately linearly on the fraction of Z-azobenzene 
within the film. In contrast to the common Arrhenius-type behavior of isolated molecular switches, the isomer-
ization rate of azobenzenes in the nanofibers is faster at lower temperatures. We attribute this to the temperature 
dependency of the intermolecular coupling strength of the azobenzene chromophores via side-chain mediated 
strain. Moreover, we have shown that cooperativity of mechanically interlocked molecular switches can be utilized 

Figure 5.  Illustration of the proposed switching mechanism. A higher Z-azobenzene concentration in the 
nanofibers corresponding to increased strain leads to an 8-fold increase of the quantum yield of 
photoisomerization ΦZE

0 .
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to increase the efficiency of the Z →  E photoisomerization. Our findings are important for next-generation 
optomechanical devices and highly sensitive molecular sensors based on arrays of molecular switches.

Methods
Materials.  The rigid-rod polymer P1 incorporates azobenzene chromophores in a poly(p-phenylene) back-
bone and has two dodecyl side-chain per monomer (see Fig. 1). A crucial aspect of the design is the presence of 
ortho-methyl groups and therefore the introduction of large dihedral angles between the azobenzene units in 
order to decouple these units and break the electronic conjugation. This configuration makes it possible to attain 
a Z-rich photostationary state (PSS) upon irradiation with UV light. The polymers were synthesized as previously 
reported. The number average molecular weight Mn was 2900 g mol-1 (corresponding to five repeat units) and the 
sample had a polydispersity index of 1.45 as determined by GPC vs. polystyrene standards. The azobenzene oli-
gomers can be switched from a thermodynamically stable linear and elongated conformation where the azoben-
zenes are in the E-configuration to a compact and kinked conformation with azobenzenes in the Z-configuration. 
Thin films of P1 oligomers were cast from 25 mg/mL solution in toluene onto silicon wafers covered with native 
silicon oxide. The rotation speed of the bare substrate was set to 1500 rpm before the solution was dispensed.

Measurements and Characterization.  AFM measurements were carried out with a NanoWizard III 
microscope (JPK Instruments AG, Germany). The AFM was operated in air at room temperature in tapping 
mode with silicon cantilevers (AC240TS, Olympus Corporation, Japan, spring constant 2 N/m). For UV/Vis 
spectroscopy, we used a setup consisting of a 75 W Xenon Lamp (LOT-QuantumDesign, GmbH, Germany), 
a fiber with a reflectance probe (LOT-QuantumDesign GmbH, Germany), and a spectrometer consisting of a 
spectrograph (Acton Series, Princeton Instruments) and a cooled CCD (Andor). All UV/Vis spectroscopy meas-
urements presented in this paper have been performed under atmospheric pressure. E →  Z isomerization of P1 
was induced with a 365 nm high power UV LED (Thorlabs) with variable optical output and a FWHM of 12 nm. 
The light-intensity on the sample surface was measured with a thermal power sensor (Thorlabs).
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