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Abstract

Hypoxia has been associated with malignant progression, metastasis and resistance to therapy. Hence, we studied
expression of hypoxia—regulated genes in 100 prostate cancer (CaP) bulk tissues and 71 adjacent benign tissues.
We found 24 transcripts significantly overexpressed (p<0.02). Importantly, higher transcript levels of disc large
(drosophila) homolog-associated protein 5 (DLGAPS)/discs large homolog 7 (DLG7)/hepatoma up-regulated protein
(HURP), hyaluronan-mediated motility receptor (HMMR) and cyclin B1 (CCNB1) were associated with higher
Gleason score and more advanced systemic progression. Since the products of HMMR and CCNB1 have been
identified recently as molecular markers of CaP progression, we postulated that DLG7 has prognostic value too. To
test this hypothesis, we measured transcript levels for DLG7 in a 150-pair case-control cohort. The cases
(progression to systemic disease within six years of surgery) and controls (no progression within eight years) were
matched for clinical and pathologic prognostic variables, including grade, stage, and preoperative serum levels of
PSA. The overall prognostic ability of DLG7, as tested in receiver operating characteristic analysis was of 0.74 (95%
Cl, 0.68 to 0.8). Overall, our data indicate that expression of DLG7, a hypoxia-controlled gene, holds prognostic
potential in high-risk CaP; this also demonstrates that variation of oxygen tension may constitute a tool for
identification of novel biomarkers for CaP.
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Introduction

The role of oxygen tension (potentia oxygenii, pO,) in tumor
biology has been unappreciated for a long time; a reason for it
has been the relative oxygen-independence of tumors (“the
Warburg effect”; ref [1].) that led to the assumption of tumor
insensitivity to changes in oxygen tension. More recently,
tumor—associated hypoxia has been associated with malignant
progression, metastasis, resistance to therapy, and poor
clinical outcome [2,3]. In common with other solid tumors, pO,
in prostate cancer (CaP) fluctuates, giving rise to acute and
chronic hypoxia [4]. Some claim that low pO, is an independent
indicator of poor clinical outcome for CaP patients [5], but pO,
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values measured in the CaP nidus do not always correlate with
clinical outcome [4] suggesting the need for more relevant
hypoxia-associated biomarkers of aggressive CaP.

Currently used markers that predict outcome in men with
CaP include the Gleason score, TNM stage, surgical margin
status, and preoperative serum levels of prostate-specific
antigen (PSA) [6-8]. Whereas stratification by these variables
often effectively predicts the course of disease, tumors with
similar biochemical, histopathologic, and clinical conditions can
still behave very differently. Recently, transcriptome studies of
CaP identified several genes associated with disease outcome.
Among them, expression of hypoxia-regulated molecules [i.e.,
vascular endothelial growth factor (VEGF), hypoxia-inducible
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factor (HIF)-1, osteopontin, lysyl oxidase (LOX) and glucose
transporter-1 (GLUT-1)] correlated with pathological status and
patient features (reviewed in ref [4].). These studies show the
feasibility of identifying biomarkers linking CaP, hypoxia and
prognosis and establishing the contribution of hypoxia-
associated genes to CaP progression. Identification of hypoxia-
related biomarkers might help identify the patients who could
benefit from hypoxia-targeted therapies [4]. Here we report the
study of transcription of genes, previously found under hypoxia
control, in CaP patients. Our data demonstrate that hypoxia-
sensitive genes have a prognostic value in high-risk CaP and
that variation of oxygen tension may constitute a tool for further
identification of biomarkers for CaP.

Materials and Methods

Prostate cancer transcriptome

All studies in this report were approved by the Mayo Clinic
Institutional Review Board. In general, we followed our
previously described method [9]. Briefly, we used frozen tissue
to study the transcriptome in cancer cells isolated by laser-
capture microdissection (LCM) or without isolation (“bulk
tissue”). Samples were obtained from non-neoplastic prostate
tissue, primary prostate cancer, and prostate cancer
metastases. Details of frozen specimen collection,
preservation, sectioning, hematoxylin and eosin staining,
pathological assessment, LCM, analysis of RNA integrity, and
linear amplification have been published earlier [10]. We
obtained and analyzed the transcriptome of 102 LCM-isolated
prostate cancer cell samples; 19 samples of non-neoplastic
prostate epithelium adjacent to tumor; 10 samples of benign
prostatic hyperplasia (BPH); and five samples of high-grade
prostatic intraepithelial neoplasia (HGPIN). Tumor samples
included Gleason pattern (GP)3 cells from 28 Gleason score
(GS)(3+3) patients and three GS(3+4) patients; GP4 cells from
10 GS(4+4) patients, 4 GS(4+3) patients, and 6 GS(4+5)
patients; and GP5 cells from 5 GS(5+5) patients and 5
GS(5+4) patients. Tumor samples included also seven CaP
metastases from lymph nodes. Expression profiles of bulk
samples (n = 37) were obtained from high-risk patients with
GS7 and higher; these tumors were independent from those
subjected to cell isolation by LCM. The samples included
tumors from 18 patients whose disease progressed
systemically and who died in less than six years after surgery
(aggressive disease) and 19 patients who survived more than
eight years following surgery (non-aggressive disease).
Disease outcome was not revealed to researchers on this
study before the completion of experiments and conclusion of
all analysis.

Probe set expression values were obtained from the raw
microarray data (.cel files) using the gcrma package in the R
Project for Statistical Computing (http://www.r-project.org/). For
further analysis we selected the probes overexpressed twofold
or more in CaP above the mean expression levels in non-
neoplastic prostate tissues and BPH tissues, both in bulk and
in LCM—isolated cells.
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Table 1. Clinical parameter values in cases and controls.

controls Cases p-value t
Pathological Gleason score
(@) 0.77
GS5 4 2
GS6 5 4
GS7 61 82
GS8 23 17
GS9 37 38
GS10 1 2
TNM stage 0.46
T2aNO0 12 9
T2bNO 27 21
T3aNO0 20 33
T3b4NO 34 54
TxN+ 29 28
Margin status 0.54
0 45 55
1 86 90
Preoperative serum PSA 0.67
mean (range) ng/ml 19.0 (0.9-119) 20.1 (1.3 - 143)
GPSM 0.56

mean (range) 11.5(6.0-16.0) 11.7 (6.0 - 16.0)
t p-values refer to the comparison of cases and controls.

doi: 10.1371/journal.pone.0082833.t001

Case-control matching of men with high-risk prostate
cancer

One hundred fifty men whose CaP systemically progressed
(SP, documented by biopsy or radiographic proof of
metastases) or who died with metastatic CaP within six years
of prostatectomy were identified in the Mayo Clinic Radical
Prostatectomy database for years 1994 to 2004. Tissue
samples for those patients were archived; evidences on
biomarker discovery and validation projects for this study group
have been previously published by us [9,11,12]. A
computerized system [7] matched these patients with 150
control men whose disease did not progress and who did not
die for at least eight years of follow-up; matching criteria
included Gleason score, TNM stage, margin status,
preoperative PSA, and GPSM score (Table 1). Multivariate
analysis that included DLG7 and any of the clinical parameters
did not add to the accuracy of the model compared to a model
that included DLG7 alone. Specimens were blinded for clinical
status and reviewed by J.C.C., a board-certified pathologist. Of
the total of 300 samples, 141 SP samples and 117 control
samples were selected by pathology criteria and by the fact
that they provided sufficient tissue of the highest Gleason
pattern for experimental analysis. For SP patients the median
follow-up from radical prostatectomy to progression or last
follow-up was 2.4 years; for control patients the median follow-
up was 13.2 years.
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RNA extraction and real-time PCR for the case-control
study

Hematoxylin and eosin-stained tumor sections obtained from
formalin-fixed paraffin-embedded blocks were blinded with
regard to whether they belonged to SP samples or control
samples; the sections were reviewed by pathologists C.M.I.
and J.C.C. who assigned the primary and secondary, but not
tertiary Gleason patterns. The block assigned the highest score
for the primary or secondary Gleason pattern and containing
the most tumor tissue of that pattern was selected for further
analysis. Each block was sectioned into 10-um thick sections.
Tumor tissue was deparaffinized in xylene and scraped from
the slide under RNase-free conditions into a 1.5-mL tube
containing digestion buffer (RecoverAll kit, Ambion, Carlsbad,
CA). Details about RNA extraction from paraffin blocks and
quality control have been published earlier [9]. Total RNA was
isolated according to the RecoverAll procedure and treated
with DNase using Ambion Turbo DNA-free Kit according to the
manufacturer's instructions. RNA was quantified with the
Quant-iT RiboGreen kit (Invitrogen, Carlsbad, CA). Quantitative
PCR was used as reported earlier [11] to assess transcript
levels for the discs large homolog 7 (DLG7) [a.k.a. disc large
(drosophila) homolog-associated protein 5 or hepatoma up-
regulated protein], hyaluronan-mediated motility receptor
(HMMR) and cyclin B1 (CCNB1). We reversely transcribed 500
ng RNA in 40-pL reaction volume by the use of Superscript Ill
First Strand Synthesis System (Invitrogen). Primers for
quantitative PCR were designed by the use of Primer Express
software (Applied Biosciences, Carlsbad, CA) to amplify a 70-
bp to 85-bp fragment identical to the target sequence on the
Affymetrix microarray. Differences in cycle threshold, A(Ct),
were obtained by subtracting the Ct value of the normalizing
gene from the Ct value of the test gene of the same reverse
transcription reaction. The normalizing gene, 40S ribosomal
protein S28 (RPS28), was chosen previously as the most
stably expressed in all normal and CaP samples [12]. Levels of
DLG7 and RSP28 transcripts in 22 aggressive and 32 non-
aggressive tumors were not determined because of insufficient
RNA quality.

Statistical methods

We analyzed the data with the R package (http://www.r-
project.org/). Distributions of clinical and pathologic parameters
were compared by the x? and ¢ tests. Receiver operating
characteristic (ROC) curve areas were estimated for clinical
and pathologic parameters for all patients. Standard errors of
the mean for areas under the curves were computed by the
rank correlation for censored data (rcorr.cens) test.

Results

Hypoxia-controlled transcripts are associated with
disease stage and prognosis

Because CaP appears characterized by a hypoxic
transcriptome [13-15], we hypothesized that hypoxia-regulated
genes will provide additional insight into the mechanisms of
CaP progression. We tested this hypothesis by complementary
data mining [16]. We analyzed the 88 hitherto known
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transcripts regulated by hypoxia-inducible factor 1 (HIF-1) [17];
500 hypoxia-associated genes identified in cell lines [17]; 23
genes of the conserved core hypoxia signature [18]; twelve
HIF-1 targets tested in CaP [13]; and 708 genes in the
Ingenuity hypoxia signaling pathway [19]. Among all hypoxia-
regulated genes, in our samples we identified 24 genes
significantly overexpressed in CaP by at least twofold both in
bulk tissue and LCM-isolated cells (p<0.02; Table 2).
Importantly, transcript levels for DLG7, CCNB1, and HMMR
were higher in samples characterized by the higher Gleason
score and in patients with poorer prognosis (Figure 1). We
described the prognosis for the patients in this study earlier [9].

Figure 2 shows the transcript levels for CCNB1, DLGAPS,
and HMMR genes at different disease stages. Both in tumor
tissue and LCM-isolated cells, transcript levels were higher in
CaP than in normal tissue. Also, these transcripts were
expressed at significantly higher levels in the cells isolated from
CaP tissues at stages GP4 and GP5 than at GP3 stage,
suggesting an  association with tumor progression.
Furthermore, transcripts levels were higher in metastases from
patients who progressed to death, suggesting an association
with disease outcome (see Methods) (Figure 2).

The products of CCNB1 [20] and HMMR genes [16] have
been recently identified as molecular markers of CaP
progression. Therefore, we posited the potential utility of
hypoxia—associated genes as CaP biomarkers with prognostic
value. To scrutinize this idea, we correlated the DLG7
transcript levels with those of DNA topoisomerase 2a (TOP2A),
a gene whose transcripts are of prognostic importance in CaP
[21], particularly in the high-risk form [11]. We found a high
correlation between the levels of the two transcripts (Pearson
coefficient=0.816). The revealing of this association prompted
us to hypothesize that DLG7 transcripts could independently
predict disease outcome in men with high risk CaP.

DLG7 transcripts as potentially an independent
predictor of CaP outcome

We examined the association of DLG7 transcript with
systemic progression and death by CaP in a 150 pair case-
control cohort [11]. The cases and controls were closely similar
in clinical and pathologic features with the exception of DNA
ploidy [11]. By ROC analysis we found the area under the
curve (AUC) for DLG7 of 0.74 (95% Cl, 0.68 to 0.8); for HMMR
of 0.67 (95% Cl, 0.60 to 0.74); and for CCNB1of 0.64 (95% Cl,
0.57 to 0.71). ROC scores for DLG7 demonstrate the overall
separation of cases and controls (Figure 3). Thus, we conclude
that DLG?7 transcript levels predict disease outcome in men at
high risk from CaP. In addition, we found that transcript levels
of hypoxia-controlled genes CCNB1 and HMMR—previously
identified as molecular markers of CaP progression—were
associated with Gleason score and disease prognosis as well.

Discussion

Gene expression patterns have been used as a tool to
identify prognostic markers for CaP [22-26]. Earlier, we and
others have proven the prognostic value of selected transcripts
for men undergoing radical prostatectomy [9,11,12,27]. In this
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Table 2. Hypoxia-associated genes  significantly
overexpressed in CaP bulk tissue and samples isolated by
LCM.

Bulk tissue LCM
CaP/N CaP/N
loga loga
Symbol Name ratio pvalue ratio p value

acetyl-Coenzyme A

ACACA 1.5 0 1.2 0.002123
carboxylase alpha
cell division cycle-associated

CDCA3 . 1.7 0 1.5 0
protein 3

CEP55 centrosomal protein 55kDa 1.8 0 1.4 0

CCNB1 cyclin B1 1.8 0 1.3 0
cyclin-dependent kinases

CKS2 1.1 0.000043 1.2 0.000001
regulatory subunit 2

DLGAP5 discs large homolog 7 (DLG7) 1.8 0 13 0
high affinity cationic amino

SLC7A1 1.6 0 1.2 0.000023
acid transporter 1
hyaluronan-mediated motility

HMMR 21 0 1.7 0
receptor

HIG2 hypoxia-inducible protein 2 1.5 0 1.2 0.000001

LOX lysyl oxidase 11 0.000044 1.5 0

MMP10 matrix metalloproteinase-10 1.2 0.021521 14 0.000066
mucolipin 2 (cation channel

MCOLN2 i 1.1 0.000332 1.4 0
protein)
neurolysin (metallopeptidase

NLN 1.2 0 1.2 0.000012
M3 family)
PDZ and LIM domain 5

PDLIM5 . 11 0 1.2 0.000121
(Scaffold protein)
pleckstrin and Sec7 domain

PSD3 1.1 0.000001 1.2 0

containing 3
Ral GTPase-activating protein

C200rf74 1.3 0 1.2 0.000092
subunit alpha-2
ribosomal modification protein
FAM80A 1.7 0 1.2 0.000013
rimK-like family member A
sidekick homolog 1, cell
SDK1 1.5 0 1.5 0
adhesion molecule
STC2 stanniocalcin-2 (secreted) 1.2 0.009053 1.3 0.000059
SOX4 transcription factor SOX-4 1.2 0 1.2 0.000001
TMEM200A transmembrane protein 200A 1.3 0 1.3 0.000886
trefoil factor 3 (intestinal,
TFF3 1.2 0.001889 1.2 0.001276
stable secretory protein)
ubiquitin-conjugating enzyme
UBE2C ; Jugating enzy 1.4 0 1.2 0
E2C
ubiquitin-conjugating enzyme
UBE2E3 E2qEB Jugating enzy’ 1.8 0 1.3 0.000079

Abbreviations: CaP, prostate cancer; N, normal; LCM, laser capture
microdissection

doi: 10.1371/journal.pone.0082833.t002

communication we show that the transcripts of DLGAP5, a
hypoxia-associated gene [17], have a prognostic value in high-
risk CaP.

Although quantifying pO, in CaP tissue in situ is at a
preliminary stage [4,28], hypoxia has been an independent
indicator of poor outcome [5] associated with clinical and
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Figure 1
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Top 24 hypoxia genes
associated with CaP

Figure 1. Three hypoxia-controlled genes associated with
Gleason score and prognosis. Among the hypoxia-regulated
genes significantly overexpressed in CaP, cyclin B1 (CCNB1),
DLGAPS5 and hyaluronan-mediated motility receptor (HMMR)
were associated with Gleason score and disease outcome.

doi: 10.1371/journal.pone.0082833.g001

pathological variables [28]. Importantly, transcript levels of
hypoxia-responsive ~ molecules [i.e., VEGF, HIF-1aq,
osteopontin, LOX and GLUT-1] are positively correlated with
pathology and aggressiveness (reviewed by Stewart et al., ref
[4].). These studies demonstrate the feasibility of identifying
biomarkers linking hypoxia and prognosis in CaP and
establishing the contribution of hypoxia-associated genes to
CaP progression.

Because of the apparent association of the hypoxic
transcriptome and CaP [13-15], we assumed that hypoxia—
associated genes could provide additional insights into the
mechanisms of CaP progression. By data mining we identified
hypoxia—associated genes with expression significantly
modified in CaP, both in bulk tissue and CaP tissue isolated by
LCM. Of these genes, we found that transcript levels of
DLGAP5, CCNB1, and HMMR were associated with Gleason
score and systemic progression. Remarkably, the association
between transcription and disease outcome was not observed
for other hypoxia-controlled genes previously reported as
potential prognostic biomarkers (Lox, ref [13].; Table 1) thus
suggesting the potential of transcripts for DLG7, CCNB1 and
HMMR as hypoxia—regulated biomarkers specific for CaP.

Since the products of the CCNB1 and HMMR genes have
been previously associated with transformed cells and
proposed as markers of poor prognosis for numerous
malignancies [29-33] including CaP [16,20], we focused on
DLGAP5. The DLGAP5 gene encodes a cell-cycle-regulated,
microtubule-associated protein known as DLG7, DAP-5 or
HURP [34] that acts as a Ran GTPase effector involved in
stabilization of the mitotic kinetochore fiber [35]. In
hepatocellular carcinoma [36], meningioma [37] and
adrenocortical tumors [38] the levels of transcripts encoding
DLG7 increased with disease aggressiveness. These
transcripts were detected in liver and colon tumors, but not in
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Figure 2. Transcript levels for CCNB1, DLG7, and HMMR
measured in CaP and noncancerous prostate
tissue. Panels on the left compare transcript levels in CaP
bulk tissue (full symbols) with the levels measured in benign
prostate tissue (open symbols) from men free of CaP (BP) and
in benign prostate tissue (BPC) adjacent to CaP of combined
Gleason score 6 (gs6). Panels on the right display transcript
levels measured in non-neoplastic prostate epithelial cells
isolated by laser capture microdissection (LCM) in benign
tissues (open symbols): BP, benign prostatic hyperplasia
(BPH) and BPC adjacent to CaP of the indicated Gleason
score (gs). Full symbols in panels on the right denote transcript
levels measured in LCM-isolated CaP cells: high-grade
prostatic intraepithelial neoplasia (HGPIN), the cells isolated
from areas of combined Gleason scores 6 through 8 and cells
isolated from lymph node metastases (met). CCNB1, cyclin B1;
DLG?7, discs large homolog 7; HMMR, hyaluronan-mediated
motility receptor.

doi: 10.1371/journal.pone.0082833.g002

normal adjacent tissues suggesting an association of DLG7
and carcinogenesis [39,40]. However, information on DLG7 in
urological diseases and particularly in CaP is limited [34]. In
one study, transcripts for DLG7 were detected in nearly 90
percent of transitional cell carcinoma (TCC) of the bladder, but
not in benign urological diseases; a high level of transcripts for
DLG7 was found in recurrent TCC [41].

In the light of information suggesting DLG7 as a prognostic
marker, we explored its potential as outcome predictor in high-
risk CaP. Hence, we analyzed the correlation of transcript
levels for DLG7 and TOP2A because the prognostic value of
TOP2A in CaP has been well documented [21,26,42]. In
particular, we reported that TOP2A transcripts [11] and the
protein product [12] were prognostic of high-risk CaP. We
found that transcript levels for DLG7 and TOP2A were highly
correlated and suggest that DLGAP5S gene transcription should
be further studied for its potential as predictor of outcome in
high-risk CaP. Of note, overexpression of transcripts for
TOP2A and DLG7 has been recently identified in grade llI
meningioma in comparison to grade | meningioma [37]. This
information adds value to the notion that co-expression of
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Figure 3
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Figure 3. Receiver operating characteristic (ROC) analysis
for DLG7. The area under the curve was 0.74 (95% CI, 068—
0.80). Inset: Scatter plot of the normalized expression values
for cases (red) and controls (green).

doi: 10.1371/journal.pone.0082833.g003

TOP2A and DLG7 is relevant in tumorigenesis and should be
further explored in the search of biomarkers for advanced
disease.

To provide the possibility of testing the prognostic value of
DLG?7 in high-risk CaP within the context of other prognostic
transcripts, we investigated the patients we studied earlier
[9,11,12]. Men who did and did not systemically progress or die
of CaP were matched on Gleason score, TNM stage, margin
status, and preoperative serum PSA. The AUC for DLG7 was
0.74 (95% ClI, 0.68 to 0.8). Interestingly, the AUC for DLG7
was similar to the value reported for TOP2A alone (0.71; ref
[11].). ROC for HMMR [0.67 (95% CI, 0.60 to 0.74)] and
CCNB1 [0.64 (95% CI, 0.57 to 0.71)] revealed lower AUC
values for these genes than for DLG7Y. For this reason we did
not include HMMR and CCNB1 in a prognostic cancer model.
Nevertheless, when compared to HMMR and CCNB1, DLG7
exhibited a higher AUC suggesting a superior prognostic value
for high-risk CaP.

Biology of the DLGAP5 gene is compatible with the
involvement in cancer formation and progression and suggests
that the gene and its product may be potential therapeutic
targets. DLGAPS5 transcription rises during the S-phase and is
maintained at both G2-phase and M-phase of the cell cycle
[43]. DLG7 localizes at spindle poles during mitosis [34],
hyperstabilizes the mitotic spindle and activates the spindle
checkpoint, thus exerting control on spindle stability throughout
the cell cycle [44]. Recent data in ovarian cancer cells indicate
that DLGY is a direct downstream target of Notch 3 [45]. This
information adds the Notch pathway to the molecular signaling
networks controlling DLG7 expression and provides a novel
avenue worth pursuing when exploring the possibilities for
therapeutic targeting of DLG7. When overexpressed in 293T
cells, DLG7 enhanced cell growth at low serum levels and
enhanced colony formation [34]. Similar results were found in
NIH3T3 embryonic fibroblasts overexpressing DLG7 [46]. More
recently, it has been proposed that DLG7 is oncogenic by its
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effect of reducing the levels of tumor suppressor p53 protein
[47]. Overexpression of DLG7 in NIH3T3 cells enhanced the
susceptibility to deoxycytosine analogs [46]; therefore,
exploring the targeting of DLG7 (for example, by intervening
with the pathways controlling DLG?7, like those influenced by
aurora-A kinase or Notch) could enhance the efficacy of
chemotherapeutics in castration-resistant CaP. These
observations support the role of DLG7 in cancer progression
and propose it as a potential therapeutic target worthy of
further research.

Although the role of hypoxia in DLG7 expression has not
been demonstrated directly, it has been inferred by the finding
that DLG7 is a Notch 3 target in ovarian cancer cells [45]. It has
been shown that hypoxia controls transcription of Notch targets
in neuroendocrine differentiation of human CaP cells [48]; this
implies the possibility of Notch signaling in hypoxia-mediated
control of DLG7 expression in CaP and its role in the
manifestation of tumor aggressiveness. To look for the
potential mechanistic basis of DLG7 sensitivity to hypoxia, we
searched the promoter region of DLG7 for the binding sites of
the transcription factor HIF. Using the published information on
the minimal cis-regulatory elements required for HIF-
dependent transactivation [49,50] we found five putative HIF
binding sites located 1134, 2498, 2616, 3815, and 8310 nt
upstream of the DLG7 transcription start, respectively (CRG
and AEK, unpublished data). Most of these sites are located in
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