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Abstract

This research proposes new perspectives accounting for the uncertainty on 50% effective

rates (ER50) as interval input for species sensitivity distribution (SSD) analyses and evaluat-

ing how to include this uncertainty may influence the 5% Hazard Rate (HR5) estimation. We

explored various endpoints (survival, emergence, shoot-dry-weight) for non-target plants

from seven standard greenhouse studies that used different experimental approaches (veg-

etative vigour vs. seedling emergence) and applied seven herbicides at different growth

stages. Firstly, for each endpoint of each study, a three-parameter log-logistic model was fit-

ted to experimental toxicity test data for each species under a Bayesian framework to get a

posterior probability distribution for ER50. Then, in order to account for the uncertainty on the

ER50, we explored two censoring criteria to automatically censor ER50 taking the ER50 prob-

ability distribution and the range of tested rates into account. Secondly, based on dose-

response fitting results and censoring criteria, we considered input ER50 values for SSD

analyses in three ways (only point estimates chosen as ER50 medians, interval-censored

ER50 based on their 95% credible interval and censored ER50 according to one of the two

criteria), by fitting a log-normal distribution under a frequentist framework to get the three

corresponding HR5 estimates. We observed that SSD fitted reasonably well when there

were at least six distinct intervals for the ER50 values. By comparing the three SSD curves

and the three HR5 estimates, we shed new light on the fact that both propagating the uncer-

tainty from the ER50 estimates and including censored data into SSD analyses often leads

to smaller point estimates of HR5, which is more conservative in a risk assessment context.

In addition, we recommend not to focus solely on the point estimate of the HR5, but also to

look at the precision of this estimate as depicted by its 95% confidence interval.

Introduction

Today, Species Sensitivity Distributions (SSD) are established as a key tool for the environ-

mental risk assessment (ERA) of chemicals [1, 2]. They provide a reliable assessment of the

range of sensitivities within a plant or animal community of interest [3] and thereby allow to
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estimate indicators such as the 5% hazard concentration or rate (HC5 orHR5) that is the haz-

ardous concentration or rate prone to affect 5% of the species within the community. An esti-

mation of theHC5 orHR5 can be obtained from the fit of a probability distribution on a

collection of toxicity values, such as 50% effective concentrations or rates (ER50 or ER50), thus

requiring performing a statistically robust analysis. Toxicity values are usually derived from a

regression model fitted on toxicity test data observed at several treatment levels at a target time

point. This fit provides toxicity values as point estimates, but an uncertainty can also be associ-

ated to them, either through a confidence interval (under a frequentist framework) or a credi-

ble interval (under a Bayesian framework). Nevertheless, this uncertainty, as well as other

sources of uncertainty [4], is rarely accounted for inHC5 orHR5 estimates afterwards. This

motivated our study, supported by recent works that also recognise the usefulness of consider-

ing interval ecotoxicological data [5].

The SSD method is largely used in the field of non-target terrestrial plant (NTTP) studies

for the purpose of assessing the risk of plant protection products [6]. NTTP are defined as

non-crop plants located outside the treatment area according to the Guidance Document

(GD) on Terrestrial Ecotoxicology [6]. In the case of NTTP studies, treatment levels or expo-

sure concentrations are rather called tested rates, corresponding to application rates in

field. Subsequently, we will use the notations ER50 andHR5 hereafter.

For the SSD analyses, up to ten NTTP species are usually studied for the ERA of pesticides.

The used tested rates are selected prior to the experiments, sometimes being the same for some

of or all the chosen species. The highest tested rate usually corresponds to the highest autho-

rised application rate of the herbicide in the field, which ensures the realism of the ecotoxico-

logical evaluation towards agricultural practices. However, this highest tested rate might be too

low to elicit large toxic effects (i.e., close to 100% effect, as it is classically done when setting the

highest dose for a dose-response analysis for animals) especially for fungicides and insecti-

cides. This specific point will be discussed in our paper. Consequently, unbounded right-cen-

sored ER50 values (namely ER50 greater than the highest tested rate) can occur when the range

of tested rates does not really match the observed sensitivity of a plant species or when this spe-

cies is not affected at the highest tested rate intended according to good agricultural practices.

Note that such unbound ER50 values may have been produced using a validated standard

experimental procedure, so that there is no reason to question them. Additionally, the GD on

Terrestrial Ecotoxicology does not provide any advice on how to deal with unbound ER50 val-

ues or with the uncertainty associated with the ER50 estimates when performing SSD analyses

[6]. As a consequence, the common practice is first to ignore the uncertainty by considering

point estimates only (usually the mean estimate), and second, either to discard unbound ER50

values from the analysis or to substitute them with arbitrary values (e.g., the highest tested

rate), even if rarely done in practice. Nevertheless, performing in such a way is a clear loss of

valuable information with some drawbacks. Ignoring uncertainty prevents to account for low

(i.e., in the lower tail of their probability distribution) or high (i.e., in the upper tail of their

probability distribution) ER50 values that are statistically probable, thus leading to potentially

biasedHR5 estimates (i.e., either over- or under-estimated values). Discarding unbound ER50

values may derive in (i) a range of remaining ER50 values that may not cover the full range of

sensitivities as originally displayed in the set of the chosen species (the most sensitive or the

most tolerant species may for example be excluded, thus producing biasedHR5 estimates,

either over- or under-estimated); (ii) unbound ER50 values can occur for many species, so that,

after discarding them, the small sample size of the input data set might then not be sufficient

to allow an SSD analysis to be performed. This latter issue is of great concern for risk assess-

ment, since the SSD analysis is currently the only higher tier option prescribed by the GD on

Terrestrial Ecotoxicology and widely accepted by authorities. Thus, being unable to finalise an
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SSD analysis may prevent refining the risk assessment of some chemical substances. The GD

on Terrestrial Ecotoxicology indeed considers that the SSD analysis is more suitable than a

tier-1 approach (based on a single endpoint and a single species) to achieve the environmental

protection goal because it takes into account the available data on the sensitivity of several spe-

cies [6]. Moreover, substituting unbounded ER50 with arbitrary values would be a fairly arbi-

trary way that does not make much sense and leads to the possibility to produce biasedHR5

estimates subjectively.

Within this context, based on seven NTTP case studies, each including several data sets, we

aimed to revisit SSD analyses by accounting for both the uncertainty on ER50 values (referred

to as interval-censored values hereafter) together with the inclusion of censored values, in par-

ticular right-censored values (corresponding to unbounded ER50 values) what commonly hap-

pens with toxicity tests in practice for NTTP. Indeed, left-censored values are rare because the

tested rate range as imposed by the standard protocols is better adapted to assess effects for the

more sensitive species. We also tried to quantify how both types of censored values may influ-

ence the final estimate of theHR5.

Materials and methods

Materials

Laboratory experiment data sets on NTTP were available for seven case studies on products

with various herbicidal mode of action (Table 1). Each study provides data from two toxicity

tests: seedling emergence (SE) according to OECD guideline 208 [7] and vegetative vigour

(VV) according to OECD guideline 227 [8]. For each study, 10 species (thereafter named

using their EPPO code [9]; see S1 Table for common names of species) were exposed to a

range of five tested rates of a product plus a control (i.e., absence of product), which were

applied either to the soil surface (SE tests) or directly to the plants (VV tests). Besides, in study

4, extra experiments at lower tested rates were conducted for two of the species (CUMSA and

LYPES) in the VV test, and for study 7, extra experiments at lower tested rates for two of the

species (ALLCE and BEAVA) were carried out in the SE test.

Table 1. Brief description of the seven studies.

Study Product1 Tested species (EPPO code)2 Tested rate unit

study 1 product 1 ALLCE AVESA BEAVA BRSNW CUMSA

GLXMA HELAN LYPES TRZAW ZEAMA

ml product/ha

study 2 product 2 ALLCE AVESA BEAVA BRSNW CUMSA

GLXMA HELAN LOLPE LYPES ZEAMA

g a.s./ha

study 3 product 3 ALLCE BEAVA BRSNW CUMSA FAGES

GLXMA LOLPE LYPES TRZAW ZEAMA

ml product/ha

study 4 product 4 ALLCE AVESA BEAVA BRSNW CUMSA

GLXMA HELAN LYPES TRZAW ZEAMA

ml product/ha

study 5 product 5 ALLCE AVESA BEAVA BRSNW CUMSA

GLXMA HELAN LOLPE LYPES ZEAMA

g a.s./ha

study 6 product 6 ALLCE AVESA BEAVA BRSNW CUMSA

GLXMA HELAN LYPES TRZAW ZEAMA

g product/ha

study 7 product 7 ALLCE AVESA BEAVA BRSNW CUMSA

GLXMA HELAN LYPES TRZAW ZEAMA

g product/ha

1 See S2 Table for formulations of active substances of the seven products.
2 EPPO: European and mediterranean Plant Protection Organization; see S1 Table for corresponding species and

common names to the EPPO code.

https://doi.org/10.1371/journal.pone.0245071.t001

PLOS ONE Accounting for the uncertainty in species sensitivity distributions: An example in non-target plants

PLOS ONE | https://doi.org/10.1371/journal.pone.0245071 January 7, 2021 3 / 17

https://doi.org/10.1371/journal.pone.0245071.t001
https://doi.org/10.1371/journal.pone.0245071


During experiments, plants were observed for 21 days after day 0. Day 0 is defined as the

day at which 50% of the control seedlings have emerged for SE tests and as the day of applica-

tion for VV tests. During the 21-day observation period, seedling emergence, seedling survival

and visual injury in each replicate were followed weekly (at days 0, 7, 14 and 21) in SE tests,

while plant survival and visual injuries were followed weekly in VV tests, also in each replicate.

At the end of the experiments (in both SE and VV tests), shoots were cut-off and dried up,

then the shoot dry weight was measured in each replicate. For each study, five quantitative

endpoints at day 21 were thus available: emergence, survival and shoot dry weight for SE tests,

survival and shoot dry weight for VV tests.

Methods

To assess the effects of the studied herbicides on NTTP, we first analysed the effects of the

seven products on the five endpoints for each of the 10 species (that is a total of 7 × 5 × 10 data

sets) by fitting a dose-response model to experimental toxicity test data thus getting ER50 esti-

mates for each data set. The modelling process was carried out under a Bayesian framework,

which ensures to get a posterior probability distribution for the ER50 which can then be used

as a basis to quantify the uncertainty on the ER50. Then, these ER50 values, also considering

their uncertainty, were used as inputs for the SSD analyses leading to theHR5 estimates.

Dose-response model. For SE tests, observed data at day 21 for replicate i can be

described as (Ri, Ninit
i , Nemer

i , Nsurv
i ,Wi), where Ri is the tested rate, Ninit

i the number of sown

seeds, Nemer
i the number of emerged seedlings, Nsurv

i the number of surviving seedlings andWi

the shoot dry weight of surviving seedlings. For VV tests, observed data at day 21 for replicate i
can be described as (Ri, Ninit

i , Nsurv
i ,Wi), where Ri is the tested rate, Ninit

i the number of initial

plants, Nsurv
i the number of surviving plants andWi the shoot dry weight of surviving plants.

The number of emerged seedlings (SE test) and the number of surviving seedlings or plants

(SE and VV tests) follow a binomial distribution, with an emergence probability (resp. a sur-

vival probability) as a function of the tested rate (see Eqs (1), (2) and (3)):

Nemer
i � BðNinit

i ; f ðRiÞÞ ð1Þ

Nsurv
i � BðNemer

i ; f ðRiÞÞ ð2Þ

Nsurv
i � BðNinit

i ; f ðRiÞÞ ð3Þ

Assuming thatWi is normally distributed with mean μi and standard deviation σ, with μi
defined as a function of the tested rate, we get:

Wi � N ðf ðRiÞ; s2Þ ð4Þ

In Eqs (1) to (4), f was chosen as three-parameters log-logistic function:

f ðxÞ ¼
d

1þ x
e

� �b ð5Þ

Parameters b, d and e are positive. Parameter b is a shape parameter translating the intensity of

the effect, d corresponds to the endpoint in control data (i.e., in absence of product) and e cor-

responds to the ER50. Within the Bayesian framework, we have to specify a prior distribution

for model parameters b, d, e (and σ in case of modelling shoot dry weight data). The prior dis-

tributions are given in Table 2.

PLOS ONE Accounting for the uncertainty in species sensitivity distributions: An example in non-target plants

PLOS ONE | https://doi.org/10.1371/journal.pone.0245071 January 7, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0245071


Estimation of parameters. Model computations were performed in R [10] with JAGS using

Gibbs sampling via Markov Chain Monte Carlo (MCMC) simulations [11]. The R-package

morse [12] was used to analyse emergence and survival data. In package morse, if no inhibi-

tion of plant emergence (or if no survival) is observed in control groups, parameter d is auto-

matically set to 1 by default. Hence a two-parameters log-logistic model is fitted to the data.

Emergence and survival data can also be practically analysed with the MOSAIC platform [13].

Amodus operandi is provided in S1 Appendix. A specific R-code based on the R-package

rjags was built to fit shoot dry weight data. This code is made freely available through an R-

shiny web application (https://mosaic.univ-lyon1.fr/growth), for reproducibility of the results

for shoot dry weight data.

Three chains were run firstly for an initialisation phase of 3000 iterations and a burn-in

phase of 5000 iterations, then Ratery and Lewis’s Diagnostic was used to set the necessary thin-

ning and the number of iterations to reach a given level of precision in posterior samples.

These posterior samples allow to get a joint posterior probability distribution as well as mar-

ginal posterior probability distributions for all model parameters.

Censoring ER50 estimates to account for the uncertainty. The output of interest from

the previous dose-response analyses consists of the posterior probability distribution of the

ER50 (Fig 1A) allowing to quantify the uncertainty on the ER50 estimation summarised as a

95% credible interval (CI95), representing the range of values within which the ER50 has 95%

of chance to be found. Hence, we considered the use of CI95 of ER50 estimates as inputs of

SSD analyses, instead of point estimates (median or mean values), as a good way to account for

the uncertainty on the ER50 estimates into subsequent analyses. But the following questions

then arise: should we always consider the bounds of CI95 as the uncertainty limits of the ER50

Table 2. Specification of prior distributions for model parameters.

Emergence or survival Shoot dry weight

Parameter Prior distribution Parameter Prior distribution

log10 b Uð� 2; 2Þ log10 b Uð� 2; 2Þ

d Uð0; 1Þ d Uð0; dmaxÞ
1

log10 e N ðm; sÞ2 log10 e N ðm;sÞ2

σ Uð0; dmax=2Þ1

1 dmax equals twice the highest observed shoot dry weight for the species under consideration. The observation with the highest observed shoot dry weight is excluded

from the data set before running inference.

2 m ¼
log10ðmaxRÞþlog10ðminRÞ

2
and s ¼

log10ðmaxRÞ� log10ðminRÞ
4

, whereminR andmaxR are the lowest and the highest tested rates, respectively.

https://doi.org/10.1371/journal.pone.0245071.t002

Fig 1. Example of posterior probability distribution of ER50 (A) and calculation of both censoring criteria (B-C).

https://doi.org/10.1371/journal.pone.0245071.g001
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and use this interval as an ER50 input value for the SSD analysis? Is the ER50 estimate always

precise enough to be used as it is in the SSD compared to the range of tested rates? How to

account for the precision of the ER50 estimate regarding the range of tested rates? Is there any

situation for which the estimated ER50 should be considered as right-censored?

To ensure agronomic realism, the common practice in standard toxicity tests with NTTP is

to use the maximal field application rate as the maximum tested rate in the experimental

design. However, some species are not affected or only slightly affected at the highest intended

application rate: the application rates that would be needed to create high effects in the plants

are unknown, thus leading to unbounded values of ER50 estimates (greater than the highest

tested rate). Such ER50 estimates will usually be not precise (having a large CI95) which may

suggest to rather consider them as a right-censored value. That is why we carefully considered

the relevance of the ER50 estimates (quantified through their CI95) regarding the range of

tested rates, in particular the highest tested rate (max_rate). In order to decide on the most

appropriate mathematical option for automatically right-censoring the ER50, we propose two

criteria based on overlapping ratios between [LCI95;max_rate] and [LCI95;UCI95] intervals,

where LCI95 and UCI95 are the lower and upper bounds of the CI95, respectively:

1. A first criterion based on a ratio of probabilities (denoted C1, Eq (6)) defined as the ratio of

the probability that the ER50 lies within [LCI95;max_rate] over the probability that the ER50

lies within [LCI95;UCI95]; as illustrated on Fig 1B, criterion C1 is calculated as the ratio of

the orange surface divided by the (orange + grey) surface.

C1 ¼
PðLCI95 � ER50 � max rateÞ
PðLCI95 � ER50 � UCI95Þ

ð6Þ

2. A second criterion based on a ratio of distances (denoted C2, Eq (7)) defined as the ratio of

the distancemax_rateminus LCI95 (ifmax_rate< LCI95, then the distance is set to 0) over

the extend of the CI95; as illustrated on Fig 1C, criterion C2 is calculated as the ratio of the

orange segment divided by the (orange + grey) segment.

C2 ¼
max rate � LCI95

UCI95 � LCI95
ð7Þ

Decision. Once the criterion is calculated, we need a decision threshold (denoted T) to

right-censor or not the ER50. If the ratio is greater than T, we keep an interval-censored ER50

corresponding to the whole CI95; otherwise, we consider a right-censored ER50 with a lower

bound being the minimum between LCI95 andmax_rate (Eq (8)):

censoredER50 ¼
½LCI95;UCI95� if ratio > T

½minðLCI95;max rateÞ;þ1Þ if ratio � T

(

ð8Þ

SSD analyses. Our final objective is to explore the influence of considering the uncer-

tainty on ER50 in SSD analyses and specifically its impact onHR5 estimates. Given the way we

have taken the uncertainty on ER50 into account (see above), this means studying how interval-

and/or right-censored ER50 input values impact the SSD analysis and theHR5 estimation.

Thus, SSD analyses were carried out based on ER50 values coming from the seven studied

firstly analysed with a dose-response model as previously described. For each case study and
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each endpoint, based on dose-response fitting results, we considered input ER50 values for an

SSD analysis in the different following ways:

i. only point estimates (chosen as the medians of the probability distributions of the ER50

estimates);

ii. interval-censored ER50 based on their CI95, and we used these intervals as such in a mathe-

matically sound way;

iii. censored ER50 according to criterion 1 with a decision threshold T = 0.5 (denoted C1T0.5),

and we used these censored ER50 as such in a mathematically sound way.

SSD analyses were run by fitting a log-normal probability distribution to ER50 input values

under a frequentist framework based on the R-package fitdistrplus [14]. This R-package

allows the user to deal with censored data in a mathematically sound way. An alternative way

is to use the web platform MOSAIC and its SSD module https://mosaic.univ-lyon1.fr/ssd [15].

Results

Dose-response analyses

All results on dose-response analyses are displayed in files report_xxx.pdf in S1 Archive

for each case study, each species and each endpoint (five files per case study). Under a Bayesian

framework, whatever the data set, the species and the endpoint, we always succeeded in fitting

a dose-response curve and getting a posterior probability distribution on the ER50. For certain

endpoints in certain studies, we got a well-shaped sigmoidal dose-response curve with a

median estimate of the ER50 within the range of tested rates. Nevertheless, in cases where the

herbicides did not elicit a strong effect on the chosen species, we got a flat dose-response curve

with a high median estimate of the ER50, in particular for the survival endpoint of the VV tests.

Fig 2 illustrates an example of a dose-response curve along with some goodness-of-fit crite-

ria. The data we used for this example is the shoot dry weight of the VV test from case study 1

for species BEAVA. The median fitted dose-response curve in Fig 2A is represented by a solid

orange line associated with its CI95 as a grey band; it describes the shoot dry weight of the

sugar beet as a function of the product tested rate. The goodness-of-fit for the fitted model can

be checked using posterior predictive check (PPC) plot illustrated in Fig 2B. The PPC plot

shows the observed shoot dry weight values against their corresponding shoot dry weight pre-

dictions (black dots), along with their CI95 (vertical segments, green if the CI95 contains the

observed value and red otherwise). The model is considered to be well fitted if around 95% of

black dots are within CI95. Please note that for the emergence and survival datasets, the previ-

ous statement is not necessarily expected because observations are pooled per tested rate. The

precision of the model parameter estimates can be visualised in Fig 2C by comparing the pos-

terior distribution (orange surface) to the prior one (grey surface) for each parameter; in Fig

2D, we can check for correlations between parameters. A narrower posterior distribution com-

pared to the prior one for each parameter and low correlations between parameters are

expected to ensure the goodness-of-fit of the model; that is the case in this example.

Censoring on ER50 estimates

The censoring decision for an ER50 depends on both the criterion (C1 or C2) and the decision

threshold T. To study the influence of the criterion and the decision threshold on censoring

decisions, we tried seven T values: 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0, with each criterion. Fig 3 pro-

vides an example of censored ER50 values obtained according to both criteria and the seven

PLOS ONE Accounting for the uncertainty in species sensitivity distributions: An example in non-target plants

PLOS ONE | https://doi.org/10.1371/journal.pone.0245071 January 7, 2021 7 / 17

https://mosaic.univ-lyon1.fr/ssd
https://doi.org/10.1371/journal.pone.0245071


Fig 2. Example of a dose-response curve (A), posterior predictive check (B), prior and posterior distributions of

parameters (C) and correlations between parameters (D).

https://doi.org/10.1371/journal.pone.0245071.g002

Fig 3. Censored ER50 according to both criteria and the seven decision thresholds for the shoot dry weight endpoint of the VV test from case

study 1—species ALLCE. The two orange triangles stand for the lowest and the highest tested rates. Vertical segments of three different colours (black,

blue, red) represent the CI95 of ER50, the censored ER50 according to C1 and the censored ER50 according to C2, respectively; solid vertical segments are

for bounded intervals while dotted vertical segments stand for right-unbounded intervals; the black horizontal line represents the median of the ER50

estimate.

https://doi.org/10.1371/journal.pone.0245071.g003
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decision thresholds. The data we used for this example is the shoot dry weight of the VV test

from case study 1 for species ALLCE.

In this example, the ER50 is either interval-censored or right-censored depending on the cri-

terion and the T value. Moreover, censored ER50 values vary slightly according to the criterion

and the decision threshold. Most of the time, criteria C1 and C2 lead to the same censoring

decision for our seven case studies, thus criterion C1 (based on the whole probability distribu-

tion of the ER50) was finally preferred. See files ER50_censoring.pdf in S1 Archive

(seven files in total) for results on other species and other endpoints. Regarding the decision

threshold T, in the following cases, the seven decision thresholds led to the same censoring

decision:

• case 1: when the CI95 of the ER50 is utterly within the range of tested rates, an ER50 interval-

censored by its CI95 is always obtained;

• case 2: when the CI95 of the ER50 is utterly out of the range of tested rates, a right-censored

ER50 [max_rate, +1] is always obtained.

Consequently, the decision threshold influences the censoring decision when there is an

overlap between the CI95 of the ER50 and the range of tested rates. In this case, the higher T is,

the more often we will decide to right-censor the ER50. Hence, in certain cases, a too high T

value may generate a lot of right-censored ER50 values and lead to consider some ER50 esti-

mates right-censored while we would have rather preferred to use their CI95 to quantify their

uncertainty. On the other hand, a too low T value may almost always lead to decide to use an

interval-censored ER50 with its CI95, even in cases where most of the possible values for the

ER50 estimate within the support of its posterior probability distribution are greater than the

highest tested rate; so, in such a case, we would have rather considered to right-censor it

regarding the range of the tested rates. Therefore, we have a preference for T = 0.5, as a neutral

value. Hence, for the subsequent SSD analyses, we considered only censored ER50 values

according to C1 and T = 0.5 (C1T0.5).

SSD and HR5

Three ways of handling ER50 values in SSD analyses were studied and compared for the seven

case studies. For each case study, all results on SSD andHR5 are displayed in files SSD_ana-
lyses.pdf in S1 Archive (seven files in total). In total, we did SSD analyses on 105 data sets

(7 studies × 5 endpoints × 3 types of ER50). We had almost no convergence problem for

parameter estimation, except for the survival and shoot dry weight endpoints of the VV test

for case studies 2 and 5. In case study 2, for the survival endpoint, fitting a log-normal distribu-

tion to the data set with censored ER50 values according to C1T0.5 failed because the 10 cen-

sored ER50 values were in fact equal to the same interval [max_rate, +1]. In other cases,

convergence failed because all censored ER50 values were too close from each other.

Fig 4 illustrates an example of three SSD analyses based only on medians of ER50 (A), ER50

interval-censored by their CI95 (B) and ER50 censored according to C1T0.5 (C). The obtained

HR5 estimates are denoted byHR5,1,HR5,2 andHR5,3, respectively. The data for this example is

the shoot dry weight of the VV test from case study 1. In this example, the three SSD curves fit-

ted well to ER50 values. The SSD curve in Fig 4C has a larger 95% confidence interval (CoI95)

than the ones in Fig 4A and 4B. EstimatedHR5,3 was smaller thanHR5,1 andHR5,2 with a larger

CoI95.

Summary from the seven case studies. Results onHR5 based on the three ways of han-

dling ER50 values for the seven data sets are given in Table 3 and corresponding SSD curves

are given in files SSD_analyses.pdf in S1 Archive.
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According to SSD curves, SSD were poorly fitted when there were less than six distinct

intervals for the ER50 values among the 10 input intervals, most of which being right-censored

(e.g., the emergence endpoint for case studies 1, 2, 3, 6 and 7; the survival endpoint of the SE

test for case studies 2 and 3; the survival endpoint of the VV test for case studies 1, 3 and 5; the

shoot dry weight endpoint of the VV test for case study 5). In such cases, we often found that

HR5 estimates were imprecise with a large CoI95. TheHR5,3 estimates taking the right-censor-

ing into account were often greater than theHR5,1 andHR5,2 estimates based on only medians

of ER50 or based on interval-censored ER50 by their CI95. Please note that we performed these

SSD analyses anyway to obtain HR5 estimates and to illustrate thatHR5 values obtained for

data sets where less than six species show clear adverse effects are not precise. Therefore, it

would make no sense to fit an SSD in such cases for routine analyses.

According to SSD curves, SSD fitted reasonably well when there were at least six distinct

intervals for ER50 values as inputs, only some of which being right-censored (e.g., the emer-

gence endpoint for case study 5; the survival endpoint of the SE test for case studies 1, 4, 5, 6

and 7; the shoot dry weight endpoint of the SE test for the seven case studies; the survival end-

point of the VV test for case studies 4, 6 and 7; the shoot dry weight endpoint of the VV test

for case studies 1, 3, 4, 6 and 7). We almost always observed that theHR5,3 were lower than the

HR5,1 andHR5,2, except for the survival endpoint of the SE test for case study 4, where we had

aHR5,3 twice greater than theHR5,1 and HR5,2; for the three endpoints of the SE test for case

study 5,HR5,1,HR5,2 andHR5,3 were very close and for the shoot dry weight endpoint of the

VV test for case study 7, theHR5,3 was a little greater than theHR5,1 but less thanHR5,2.

Concerning the influence of including right-censored data or not on theHR5 estimate,

based on SSD curves for our seven case studies, we found that for cases with anHR5,3 lower

than theHR5,1 andHR5,2 estimates, the right-censored ER50 values were rather obtained for

less sensitive species (i.e., species having higher median ER50 values). This result was found fre-

quently among the seven case studies and most of the time in case studies for which there were

few right-censored ER50 values for measured endpoints; this reflects that such a situation will

occur in most of the cases encountered when analysing SSD data for NTTP. This comes from

the fact that the tested rate range (as imposed by the standard protocols) is better adapted to

assess effects on the more sensitive species. On the other hand, we found that for certain cases

Fig 4. Example of three SSD analyses based respectively on ER50 medians, CI95 of ER50 and censored ER50 according to C1T0.5 for the shoot dry

weight endpoint of the VV test from case study 1. Blue points represent fractions of affected species (EPPO code) ordered by the median of their ER50.

Solid blue horizontal segments stand for interval-censored ER50 by their CI95 and dotted ones stand for right-censored ER50. Solid red curves represent

fitted SSD curves and dotted ones represent 95% confidence interval (CoI95) of the fitted SSD curves. Meaning of legends: Nb. ER50 (RC) stands for the

number of ER50 (the number of right-censored ER50); Nb. distinct ER50 (RC) stands for the number of distinct ER50 (the number of distinct right-

censored ER50);HR5[CoI95] stands for the estimatedHR5 with its CoI95.

https://doi.org/10.1371/journal.pone.0245071.g004
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where theHR5,3 was greater than theHR5,1 andHR5,2 estimates, the right-censored ER50 values

were not only obtained for less sensitive species but also for highly sensitive species (i.e., species

having lower median ER50 values). This happened often in case studies for which there were

lots of right-censored ER50 values, as the application rates were not adapted for most of the

Table 3. Comparison of results on HR5 based on different handling criteria for input ER50 values.

Study Endpoint Median CI95 C1T0.5

Nb.(RC)1 HR5,1 CoI95]2 Nb.(RC)1 HR5,2 CoI95]2 Nb.(RC)1 HR5,3 CoI95]2 CV3

1 Emergence (SE) 10 (0) 832.1 [694.6; 1165] 10 (0) 1581 [1245; 2211] 5 (4) 2260 [NA; NA] NA

1 Survival (SE) 10 (0) 177.7 [98.08; 460.6] 10 (0) 172.2 [93; 465.5] 8 (2) 146.4 [78.27; 412.6] 0.6200

1 Shoot dry weight (SE) 10 (0) 126.4 [84.87; 257.1] 10 (0) 125.6 [84.2; 259.5] 9 (1) 120.5 [80.6; 253.8] 0.3216

1 Survival (VV) 10 (0) 787 [703.1; 1069] 10 (0) 1184 [922.6; 2458] 3 (3) 8697 [NA; NA] NA

1 Shoot dry weight (VV) 10 (0) 146.6 [79.96; 375.9] 10 (0) 142.5 [76.49; 415.4] 9 (3) 130.9 [70.93; 349.3] 0.5326

2 Emergence (SE) 10 (0) 41.82 [20.37; 151.6] 10 (0) 68.16 [32.16; 436.9] 3 (3) 721.9 [NA; NA] NA

2 Survival (SE) 10 (0) 18.25 [6.061; 165] 10 (0) 18.89 [5.698; 115] 5 (3) 9.66 [2.666; 53700] 2.8780

2 Shoot dry weight (SE) 10 (0) 16.77 [5.313; 76.45] 10 (0) 17.62 [5.376; 90.29] 8 (5) 12.17 [2.489; 6972] 5.2380

2 Survival (VV) 10 (0) 169.5 [169; 271.5] 10 (0) 486.1 [NA; NA] 1 (1) NA [NA; NA] NA

2 Shoot dry weight (VV) 10 (0) 193.3 [159.3; 259.4] 10 (0) 198.7 [173.5; 501.6] 2 (1) NA [NA; NA] NA

3 Emergence (SE) 10 (0) 1495 [1343; 2199] 10 (0) 3049 [NA; NA] 2 (2) 6172 [NA; NA] NA

3 Survival (SE) 10 (0) 985.2 [712; 1773] 10 (0) 937.6 [718.9; 2487] 4 (1) 902.4 [707.7; 60040] 3.6700

3 Shoot dry weight (SE) 10 (0) 278.5 [135; 936.6] 10 (0) 257 [129.6; 858.5] 7 (1) 220.8 [105.5; 899.9] 0.6879

3 Survival (VV) 10 (0) 998.9 [745.5; 1848] 10 (0) 973.2 [756.5; 2929] 4 (1) 970.3 [752.5; 3160] 0.4557

3 Shoot dry weight (VV) 10 (0) 156.5 [88.91; 410.6] 10 (0) 158.4 [90.34; 419] 10 (3) 135 [71.15; 360.8] 0.4794

4 Emergence (SE) 10 (0) 40.25 [5.791; 402.3] 10 (0) 50.42 [7.072; 644.8] 6 (6) 304600 [NA; NA] NA

4 Survival (SE) 10 (0) 23.15 [4.837; 180.5] 10 (0) 25.9 [5.794; 199.2] 10 (6) 48.58 [26.2; 238.3] 5.4630

4 Shoot dry weight (SE) 10 (0) 12.3 [4.498; 41.74] 10 (0) 12.95 [3.311; 44.09] 10 (1) 25.25 [16.96; 53.34] 0.3277

4 Survival (VV) 10 (0) 71.47 [38.53; 188.6] 10 (0) 70 [35.79; 213.8] 9 (4) 57.05 [26.1; 243.4] 3.2630

4 Shoot dry weight (VV) 10 (0) 3.91 [2.018; 12.52] 10 (0) 3.944 [2.062; 12.3] 10 (1) 3.799 [1.681; 11.74] 0.5550

5 Emergence (SE) 10 (0) 0.3523 [0.1793; 1.282] 10 (0) 0.3731 [0.1895; 1.332] 9 (3) 0.3297 [0.1527; 1.594] 70.6900

5 Survival (SE) 10 (0) 0.3586 [0.1488; 1.138] 10 (0) 0.3836 [0.1551; 1.343] 10 (3) 0.3415 [0.1174; 1.317] 0.6793

5 Shoot dry weight (SE) 10 (0) 0.3437 [0.1509; 1.207] 10 (0) 0.3655 [0.1665; 1.297] 10 (1) 0.3405 [0.1427; 1.241] 0.6585

5 Survival (VV) 10 (0) 17.91 [13.86; 24.83] 10 (0) NA [NA; NA] 3 (2) 21.06 [21.06; 28.58] 0.1296

5 Shoot dry weight (VV) 10 (0) 12.24 [7.933; 21.78] 10 (0) 15.22 [10.38; 49.8] 4 (2) NA [NA; NA] NA

6 Emergence (SE) 10 (0) 115.2 [54.57; 327.4] 10 (0) 113.2 [53.84; 574.3] 3 (2) 86.47 [47.41; 3535] 1.2790

6 Survival (SE) 10 (0) 29.9 [13; 121.2] 10 (0) 29.99 [12.3; 135.9] 6 (2) 21.32 [8.864; 133.9] 2.1450

6 Shoot dry weight (SE) 10 (0) 7.416 [4.924; 16.11] 10 (0) 7.47 [5.008; 16.77] 10 (2) 6.499 [3.96; 14.16] 0.3548

6 Survival (VV) 10 (0) 22.5 [14.43; 43.68] 10 (0) 22.53 [13.19; 50.85] 6 (2) 16.88 [9.297; 55.46] 0.5118

6 Shoot dry weight (VV) 10 (0) 3.525 [2.454; 7.914] 10 (0) 3.553 [2.449; 8.065] 10 (1) 3.487 [2.414; 8.764] 0.4082

7 Emergence (SE) 10 (0) 73.88 [61.31; 103.6] 10 (0) 151.7 [131.5; 235.4] 3 (3) 302.4 [NA; NA] NA

7 Survival (SE) 10 (0) 7.758 [1.734; 67.84] 10 (0) 7.658 [1.659; 76.36] 7 (2) 5.275 [0.9925; 80.1] 1.7270

7 Shoot dry weight (SE) 10 (0) 1.062 [0.2098; 6.958] 10 (0) 1.553 [0.3054; 6.965] 10 (1) 1.401 [0.2398; 6.885] 0.8095

7 Survival (VV) 10 (0) 6.341 [3.258; 22.57] 10 (0) 6.516 [3.28; 25.68] 7 (3) 5.612 [2.314; 35.4] 4.6280

7 Shoot dry weight (VV) 10 (0) 1.448 [0.7201; 4.423] 10 (0) 1.402 [0.7252; 4.51] 10 (2) 1.152 [0.496; 3.481] 0.5719

NA stands for Not Available; it may appear either when there is a problem of convergence, or when the proximity or the equality of ER50 values leads to always

bootstrapping the same set of ER50 values thus providing equal lower and upper bounds of the CoI95. Lines coloured in gray stand for HR5,3 poorly estimated or not-

estimated based on less than six distinct intervals for ER50 inputs, or for only right-censored ER50 as inputs for SSD analyses.
1 Number of distinct ER50 (number of distinct right-censored ER50);
2 Estimated HR5 [95% confidence interval];
3 Coefficient of variation for HR5.

https://doi.org/10.1371/journal.pone.0245071.t003
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chosen species for the measured endpoints. In a risk assessment context, this situation should

typically lead to new experiments with higher tested rates.

Discussion

Dose-response modelling

Model choice. There are a vast variety of models in common use to describe a dose-

response relationship for ecotoxicity test data, such as probit, log-logistic, Weibull, etc. [16–

18]. The log-logistic models have been widely used in weed science and they have been rec-

ommended as a standard herbicide dose-response [19]. The log-logistic models are by far the

most commonly used model for describing toxicity test data [20]. The log-logistic models can

be used to properly analyse not only continuous data but also quantal data. Hence, for our

NTTP data, we always used log-logistic models with the same deterministic part to analyse

emergence, survival and shoot dry weight data, thus facilitating comparisons. Hence a three-

parameters log-logistic model was chosen to analyse not only emergence and survival data,

but also for shoot dry weight data. Although a four-parameters log-logistic model could have

been tested and may be chosen for shoot dry weight data, we preferred to use the three-

parameters one, since it is reasonable to fix the lower asymptote (parameter c) at 0 consider-

ing that, at really high application rates all plants can die, even though the actual data are not

fully supporting this assumption for few rare cases [20]. Morever, for any of our data sets, the

addition of one extra parameter did not significantly improve the model fitting (results not

shown).

Choice of priors. A quasi-non-informative uniform prior distribution was chosen for the

logarithm of parameter b within the interval [−2, 2], in order to cover a wide variety of dose-

response shapes. In certain cases, we had an extremely flat dose-response curve (no effect at

any of the tested rates was observed on the endpoint) so that the posterior of parameter b was

as wide as the prior, even if we enlarged the support prior interval. In addition, in these cases,

the imprecise estimation of parameter b did not influence our conclusions on the ER50 esti-

mates, since the ER50 values were considered as right-censored with their lower bound being

the highest tested rate.

For parameter e, we used the same prior as the one used in the R-package morse [12, 21]:

a normal distribution was chosen for the logarithm of parameter e, with specific mean and

standard deviation (presented in section method) computed from the experimental design.

This choice implies that parameter e has a probability slightly greater than 95% to lie within

the range of tested rates.

A uniform prior distribution was chosen for parameter d within the interval [0, dmax]. For

the emergence and survival data sets, dmax equals 1 representing a 100% probability of emer-

gence or a 100% probability of survival. For the shoot dry weight data sets, dmax should ideally

be chosen according to expert knowledge and equal to the highest expected shoot dry weight

regarding the species and environmental conditions (in the experiment) under consideration.

Nevertheless, for pratical convience, dmax was chosen as twice the highest observed shoot dry

weight for the species under consideration, and then the observation with the highest observed

value was discarded from the dose-response analyses.

Concerning prior distributions for the variance parameter of the Gaussian distribution

(shoot dry weight data only), there are commonly used prior specifications (e.g., an inverse

gamma, an inverse chi-square distribution on variance parameter, a uniform distribution on

standard deviation parameter). We finally assigned a uniform prior distribution to standard

deviation parameter σ within the interval 0;
dmax

2

� �
.
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Censoring of ER50 estimates

We chose to use criterion C1 based on the ratio of probabilities and a T value equal to 0.5 to

automatically censor ER50 estimates. Indeed, criteria C1 and C2 led to very close censoring

decisions for ER50 estimates, but criterion C1 was preferred since it is based on the whole prob-

ability distribution of the ER50. However, if criterion C2 had been chosen for censoring ER50

estimates, there would be very few changes for SSD analyses and HR5 estimates. Regarding

decision threshold T, there is no rule set in stone for its choice. We have a preference for

T = 0.5, as a neutral value. This medium value may avoid considering very imprecise ER50 esti-

mates as interval-censored by their CI95 and may also avoid considering enough precise ER50

estimates as right-censored. Based on the 350 data sets we analysed, the same results and con-

clusions are almost always reached for a choice of a T value between 0.4 and 0.6. We propose

to always use the intermediate value of 0.5 for the sake of simplicity and comparability. We rec-

ommend to avoid using T values below 0.4 or above 0.6, for the reasons mentioned above.

Uncertainty on the ER50 estimates. There are some limitations in the way we considered

the uncertainty on the ER50 estimate. Indeed, the uncertainty was simply summarised by either

an interval-censored ER50 with its CI95 or by a right-censored ER50 accounting for the range

of tested rates. This method does not use all the available information on ER50 (i.e., the full pos-

terior distribution). It is conceivable that the uncertainty on the ER50 estimates could be con-

sidered in other better ways, allowing to account for the full posterior distribution of ER50

within subsequent SSD analyses. Further research would be needed to explore this possibility.

SSD analyses

Compared to the traditional deterministic approach that relies on the most sensitive individual

toxicity data, the probabilistic SSD method has numerous advantages [2, 22]. As always in sta-

tistics, SSD can be built with either parametric or non-parametric methods. Some parametric

distributions have already been proposed for SSD, such as log-logistic [23], log-normal [3, 24–

28], Burr Type III [29], Weibull distributions, etc. The common use of the parametric

approach for SSD is due to its mathematical simplicity and because it requires less data points

compared to non-parametric approaches. Log-normal and log-logistic distributions are the

most commonly used for SSD [3, 26, 27]. The present paper used a log-normal distribution to

fit ER50 values without testing the normality of the logarithm of tested rates, since it is not our

purpose to find the best fit to toxicity values, but rather to study the influence of accounting

for the uncertainty of ER50 inputs onHR5 estimates.

Concerning minimum data requirements for fitting an SSD, a minimum of five to ten spe-

cies is deemed acceptable for regulatory purposes in aquatic ecotoxicity [2] and, in the context

of environmental risk assessment, a minimum of six species is required, ten being usually rec-

ommended [6]. Indeed, small size of input samples may lead to high uncertainty in fitted SSD

[26]. Ten data points were also suggested by Wheeler et al. [30] to generate reliable estimate

upon which regulatory decisions may be based. In the present paper, ten NTTP species were

therefore tested for the seven case studies, allowing to collect ten ER50 values (generally dis-

tinct) for SSD analyses. However, for certain endpoints of certain case studies, when taking

into account right-censored ER50 values in SSD analyses, the number of distinct ER50 values

for SSD diminished, since some of the right-censored values were in fact equal to the same

interval [max_rate, +1], withmax_rate equal for all the species. Consequently, we had some

cases where SSD were poorly fitted with less than six distinct intervals for ER50 values, some of

which being right-censored. When this happens, it is better not to consider SSD results and

their corresponding estimated HR5 values, and if possible to add new experiments with higher

application rates. Based on our seven cases studies, at least six distinct intervals (whatever the
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ER50 point values) appears as the minimum requirement to reasonably fit an SSD and obtain a

relevant 95% confidence interval on the finalHR5 estimate.

Influence of right-censored data on HR5 estimates. For endpoints for which the SSD

was fitted on at least six distinct intervals for ER50 inputs, most of the time,HR5 estimates tak-

ing the right-censoring into account were lower thanHR5 estimates based on medians of ER50

or interval-censored ER50 by their CI95. The results were consistent with a simulation study

conducted by Green et al. [16], which demonstrated that the mathematically sound way of

using censored data tends to underestimateHR5 compared to theHR5 resulting from a data

set without censored values, with greater underestimation associated with greater percentage

of censoring. In addition, we found that, when right-censored ER50 values were obtained for

the less sensitive species, which is the most common case in practice, theHR5 values obtained

by including the right-censoring were most of the time smaller than those obtained by han-

dling censored data as non-censored data.

On a general point of view, based on our seven case studies for the five endpoints we ana-

lysed, the influence of including right-censored data on theHR5 estimate depends on the

right-censored ER50 values being obtained rather on more sensitive species or on less sensitive

species. In addition, we can say that, if right-censored data spread in a random way among the

chosen species, theHR5 obtained by considering right-censored ER50 values can be both

greater or smaller than theHR5 obtained by handling censored data as non-censored ones.

Sensitivity of endpoints. In the result section, we have not mentioned the sensitivity of

endpoints. However from Table 3, we found that the shoot dry weight endpoint from SE or

VV tests appeared almost always as the most sensitive endpoint with the lowest estimated HR5

value, except for case study 5 for whichHR5 results for three endpoints (emergence, survival

and shoot dry weight of the SE test) were very close. The shoot dry weight from the VV test

appeared more often as the most sensitive one (four times out of the seven case studies) than

the one from the SE test. In addition, for the shoot dry weight endpoint, we had rarely right-

censored ER50 values according to C1T0.5. Therefore, it would be recommended to always col-

lect and analyse shoot dry weight data in order to assess risk of herbicide on NTTP by using

SSD analyses based on censored ER50 inputs.

Experimental design. In certain studies, the tested rates were not specifically adapted to

the sensitivity of some species. Hence, some species were not affected or slightly affected at the

highest intended application rate, leading to right-censored ER50 values. These right-censored

values may affect the estimation ofHR5, for example making the estimate less precise. If the

precision of theHR5 is not considered as sufficient (i.e., with a high value of the CV), then con-

ducting new experiments with higher application rates may help to refine the final estimation

of theHR5.

Conclusion

All our results confirm the usefulness of our integrated approach going from raw toxicity test

data until theHR5 (orHC5) estimation, considering uncertainty propagation all along the data

analysis process. Accounting for ER50 (or EC50) estimates as intervals clearly avoid to discard

any inputs for SSD analyses, or to arbitrarily convert them to point values. This also avoid to

increase uncertainty in the apical estimate of theHR5 (orHC5) by keeping as much ER50 (or

EC50) inputs as possible whatever their associated type of interval (bounded or not). Addition-

ally, the method we proposed in our paper is applicable to any taxon in ecotoxicology. The

results we presented are based on a total 350 data sets consisting of seven case studies, each

with five endpoints (survival, emergence, shoot dry weight) for 10 non-target terrestrial plants

from standard greenhouse experiments that used different experimental designs (vegetative
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vigour vs. seedling emergence) and applied herbicides at different growth stages. The Bayesian

framework allowed estimating ER50 values and 95% credibility intervals for all data sets, even

when the dose-response curve did not reach a strong effect at the highest tested rate. Com-

bined with a statistically sound approach for inclusion of censored ER50 estimates in SSD com-

puting, we maximised the use of existing species data when building SSD, thus avoiding

discarding right and/or left-censored data that may be obtained from lab studies for less or

more sensitive species. Our overarching study confirmed that at least six distinct intervals

(whatever the ER50 point values) are required as input to the SSD analysis to ensure obtaining

a reliable estimate of theHR5.

Our paper finally proposes a statistically sound method for propagating the uncertainty of

the ER50 (or EC50) estimates considered as interval-censored values towards theHR5 (orHC5)

estimates. This method delivers both point estimates and bootstrap 95% confidence intervals

ofHR5 (orHC5). It illustrates that both propagating the uncertainty from ER50 (or EC50) esti-

mates and including interval-censored data as inputs for SSD analyses may change both the

point estimate and the 95% confidence interval on theHR5 (orHC5). The extend of the change

depends on the characteristics of the ER50 (or EC50) input values (e.g., whether censored data

were obtained for less or more sensitive species or were randomly spread among the tested

species) and on the chosen criteria for handling the uncertainty of ER50 (or EC50) values. Con-

sequently, when comparing and interpreting the final results, we recommend not to focus

solely on the point estimate of theHR5 (orHC5), but also to look at the precision of this esti-

mate as depicted by its 95% confidence interval. A small confidence interval stands for a pre-

cise estimate of theHR5 (orHC5), and thus a low uncertainty. This information integrates

both the differences in sensitivity and the uncertainty of the ER50 (or EC50) inputs across a

range of species all the way down to theHR5 (orHC5) estimation: therefore, it is particularly

valuable for an informed use of theHR5 (orHC5) value in the context of environmental risk

assessment.
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