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Background: Many techniques and methods have been used clinically to relieve pain from

cartilage repair, but the long-term effect is still unsatisfactory.

Purpose: The objective of this study was to form an artificial chondroid tissue gene

enhanced tissue engineering system to repair cartilage defects via nanosized liposomes.

Methods: Cationic nanosized liposomes were prepared and characterized using transmission

electron microscope (TEM) and dynamic laser light scattering (DLS). The rat mesenchymal

stem cells (rMSCs) were isolated, cultivated, and induced by SRY (Sex-Determining Region

Y)-Box 9 (Sox9) via cationic nanosized liposomes. The induced rMSCs were mixed with

a thermo-sensitive chitosan hydrogel and subcutaneously injected into the nude mice.

Finally, the newly-formed chondroid tissue obtained in the injection parts, and the transpar-

ent parts were detected by HE, collagen II, and safranin O.

Results: It was found that the presently prepared cationic nanosized liposomes had the

diameter of 85.76±3.48 nm and the zeta potential of 15.76±2.1 mV. The isolated rMSCs

proliferation was fibroblast-like, with a cultivated confluence of 90% confluence in 5–8 days,

and stained positive for CD29 and CD44 while negative for CD34 and CD45. After

transfection with cationic nanosized liposomes, we observed changes of cellular morphology

and a higher expression of SOX9 compared with control groups, which indicated that rMSCs

could differentiate into chondrocyte in vitro. By mixing transfected rMSCs with the thermo-

sensitive hydrogel of chitosan in nude mice, chondroid tissue was successfully obtained,

demonstrating that rMSCs can differentiate into chondrogenic cells in vivo.

Conclusion: This study explored new ways to improve the quality of tissue engineered

cartilage, thus accelerating clinical transformation and reducing patient pain.
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Introduction
Cartilage injury, a common clinical problem, can be caused by trauma,1 osteoarthritis,2

rheumatoid arthritis,3 and exfoliative chondritis.4 Articular cartilage is a non-vascular

tissue, whose regeneration ability is extremely limited.5,6 Most believe that the damage

of mature articular cartilage is partial or superficial, and cartilage cannot regenerate

itself.7–12 When the lesion is associated with the opening of the subchondral bone,

cartilage repair can be completed because of the cells derived from bone marrow and

blood vessels of subchondral bone.13–15 Even so, the repair cartilage has not been found

to be the same as normal cartilage structure and mechanical properties, except embryo-

nic stem cells.16,17 To date, no satisfactory method resulted in damaged cartilage
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repairing clinically, except when using autologous or xeno-

genous engrafting.18,19 While autologous cartilage presents

as feasible to graft, it is hard to obtain adequate matches.20–22

Furthermore, all these techniques are subject to the donor site

availability.23,24 Obtaining hyaline cartilage bio-tissue is

a pivotal and serious way for cartilage repair in clinical

therapy.

As a natural polysaccharide polymer, chitosan has

a homogeneous structure with glucosamine, which is one of

the main components of the cartilage matrix, and is increas-

ingly used in cartilage tissue engineering research.25,26 For

the hydrogel to carry seeded, chitosan has been receiving

even more attention.27,28 The chitosan hydrogel can be pre-

pared via the interaction of ions or glutaraldehyde

crosslinking,29 and its azide derivatives could also be cross-

linked under UV irradiation to fabricate hydrogel.30–34

Therein, ions are often reacted in hydrogels.

Thermo-sensitive hydrogels made of chitosan own sev-

eral attractive properties, including mild preparation condi-

tions, a phase transition temperature and body temperature

closed to or even lower than the body’s temperature, and

good biocompatibility and biodegradability.35–37 Thus, chit-

osan has great application potential for tissue engineering

and drug controlled-release carrier applications. Based on

the physical and chemical as well as biological properties,

chitosan can satisfy cell growth, proliferation, and differen-

tiation, to be used as an injectable tissue engineering scaf-

fold material.38–40

Tissue engineering technology, which can grow

a mature tissue in vitro, is now extensively used in

medicine.41,42 A cartilage defect area repaired with tissue

engineering technology has achieved a certain effect

in vivo and promotes cartilage growth.43,44 Meanwhile,

engineered repair can provide the appropriate growth

space for repair cells, quickly fill the cartilage defect

area, prevent unwanted fiber tissue growth,45 and provide

certain biomechanical support for the early repair.46,47

Chondrocytes and bone marrow stromal stem cells are

commonly used to construct the cartilage.

However, tissue engineering technology also has its lim-

itations, such as limited cell sources, and it is easy to cause the

defects on such materials. In contrast, gene-enhanced tissue

engineering technology has significantly more hope for carti-

lage repair.48,49 To solve these problems, this study explored

a new therapeutic approach for the treatment of cartilage

defects using bone marrow stromal stem cells. Compared to

the viral vectors, non-viral systems haveattracted significant

attention to the cost-effectiveness and less induction of the

immune system in gene delivery. A lot of nano non-viral gene

vectors have been reported, which include polymer

(PAMAM,50,51 PEI52), protein,53 liposomes,54,55 and so on,

due to their low toxicity, antigenicity, high entrapment effi-

ciency, and good stability.56,57

The Sox gene family is a newly-discovered gene

family whose main feature is a conservative base sequence

HMG-box, which can be combined with DNA sequence

specificity.58 The gene family plays an important role in

embryonic development, gender differentiation, nervous

system, repair, and skeletal system development. Sox9

protein is considered to have an important effect on ske-

letal system development.59 Animal experiments showed

that the Sox9 had a high expression, and control of type II

collagen synthesis in both embryonic cartilage germinal

parts, thus, strongly inffecting the formation of cartilage.

Liposomes have been well established as an effective drug

delivery system, due to their preparation simplicity and unique

characteristics.60 In this article, we fabricated cationic lipo-

somes of uniformmorphology. Then, rat bonemarrow stromal

stem cells (rMSCs) were cultivated and proliferated in vitro.

The rMSCs were transfected with Sox9 gene via cationic

liposomes, combined with thermal-sensitive injectable chito-

san composite scaffolds for tissue engineering cartilage in vitro

and implanted into nude mice to build chondroid tissue.

Materials and methods
Materials
All experimental protocols were approved by the First

Affiliated Hospital of Nanjing Medical University and fol-

lowed the principles of laboratory and animal care of the

university. (2,3-Dioleoyloxy-propyl)-trimethylammonium

(DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphocholine

(DOPC) were purchased from A.V.T. (Shanghai)

Pharmaceutical Co., Ltd. Hoechst 33342 and 3-[4,

5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide

(MTT) were purchased from Sigma-Aldrich (Cambridge,

MA, USA). Sox9 plasmid was purchased from Bioworld

Technology, Inc., China (PPL00081-2b) a, and the species

of the Sox9 plasmid is Homo sapiens (human) with vector

backbone of pcDNA3 (Figure S1). Dulbecco’s modified

Eagle’s medium (DMEM) and fetal bovine serum (FBS)

were bought from Gibco BRL (Thermo Fisher, USA).

Additionally, Penicillin-streptomycin, 0.25% trypsin-

EDTA, and non-essential amino acid were obtained from
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Invitrogen (Thermo Fisher), anti-Collagen II (ab34712) and

anti-collagen IX (ab134568) were bought from Abcam

(USA), Streptavidin-Biotin Complex (SABC) kit was pur-

chased fromBoster (SA1025, USA). Other chemicals used in

this work were all of the analytical pure grades andwere used

as received.

The fabrication and characterization of

cationic liposomes
The thin membrane method was employed to prepare

cationic liposomes.61,62 Briefly, DOTAP (350 mg) was

dissolved in chloroform (1 mL) and mixed with DOPC

of 370 mg. The mixture was diluted to 1.0 mL in total

using chloroform and vortexed for 10 minutes. The solvent

was evaporated in rotary evaporator (Buchi R) at 50°C,

and a thin film of dry lipid on the flask was obtained.

Evaporation was continued for 1 hour after drying to

remove the residue solvent. The lipid film was ground

into a powder and dissolved in 4 mL water under vigorous

stirring to form cationic liposomes. The formulation was

further characterized by transmission elector microscopy

(TEM, JEOL) and dynamic laser scattering (DLS,

Malvern). The results were represented by the averages

of sixmeasurements per sample with 20 seconds spent on

each measurement. All measurements were performed at

25°C.

The separation, culture, and generation of

MSCs in rats
Rat bone marrow was extracted from the 5–6 weeks old

Sprague Dawley (SD) rat hind legs, diluted with D-Hanks

for thorough incorporation, and centrifuged at 800 rpm for 5

minutes. The supernatant was abandoned, and DMEM was

used to gently scatter cells into single cells suspension. The

suspension was slowly added to lymphocyte density separa-

tion medium (ρ=1.077 g cm−3) and centrifuged at 3,000 rpm

for 20 minutes. The mononuclear cell layer was taken and

washed by D-Hanks twice, and DMEM containing 20%

FBS was added to the cells in the flask for further cultiva-

tion. A growth curve of rMSCs was detected by a trypan

blue experiment. The flask was incubated at 37°C and 5%

CO2 in the incubator. The medium was replaced after 48

hours, and the unattached cells were abandoned. The cells

were observed daily under an inverted phase contrast micro-

scope. After being confluent, the cells were digested with

trypsin and passaged. The third generation was identified by

flow cytometry with CD34, CD45, CD29, and CD44.

The liposomes mediate Sox9 gene

transfection with targeted chondrogenic

differentiation
The transfection followed previous reports,63 where briefly

the recombinant Sox9 plasmid was diluted and mixed with

cationic liposomes without FBS for 20 minutes at room

temperature. The mixture was added directly to rMSCs in

a petri dish and cultivated at 37°C, 95% humidity, and 5%

CO2 training. The medium was replaced with the full med-

ium after 4 hours and continued to develop after 36 hours to

detect the transfection efficiency. Cell transfection was

divided into threegroups: 1) the experimental group: cationic

liposomes were used to carry out the recombinant plasmid

transfection of Sox9; 2) the control group: transfection of

empty plasmid; 3) a blank control group: only the equivalent

cationic liposomes were added; and 4) Lipofectamine 2000

was used as a positive control for the Sox9 plasmid transfec-

tion. After 7 days of culture, ELISAwas used to characterize

the tissue engineering materials cultured in the cells. At the 7

days transfection, confluence at 80~90% of the third gen-

eration of rMSCs was taken and Sox9 determined by ELISA

for five parallel specimens from each sample. To optimize

the transfection of cationic nanosized liposomes, a serial

concentration of DNA plasmid (10, 50, 100, 200 ng) was

used to transfect in different cell numbers for transfection

(1×104, 2×104, 4×104, 8×104 cells per well). The transfected

cells were collected, and the protein was extracted to detect

the Sox9 protein expression via ELISA. Statistical analysis

was performed on the computer, with SPSS statistical soft-

ware. �X ± S was used to indicate that P=0.05.

Preparation of thermos-sensitive chitosan

gel
A thermo-sensitive gel was prepared as previously

described.64 Briefly, chitosan was added into 0.1 mol L−1

hydrochloric acid solution to make the final concentration

2% (w/v), which formed solution A. β-sodium glyceropho-

sphate were prepared in water at 56% (w/v), which formed

solution B. Then two solutions were combined and mixed at

different ratios (v/v) to form a thermosensitive hydrogel. The

various ratios of the prepared hydrogels were kept at 4°C and

tested at 37°C for temperature sensitive properties.

Chondrogenesis in vivo
The rMSCs were transfected and cultivated for 2 weeks,

blended with thermo-sensitive chitosan hydrogel (0.2 mL),

and subcutaneously injected into the back of nude mice. The
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in vivo experiments with nude mice were divided into two

groups: untransfected rMSCs with chitosan hydrogel

(group A) and transfected rMSCs with chitosan hydrogel

(group B). After 4 weeks of feeding, the subcutaneous injec-

tions were observed for the formation of cartilage in nude

mice, including hematoxylin-eosin (HE) and safranin

O staining. The immunohistochemistry (IHC) of collagen II

and collagen IX of different groups were stained and labeled

with SABC kit. Western blot (WB) of Sox9, collagen II and

collagen IX were processed to quantify the chondrogenic of

different groups.

Statistical analysis
Data of each group is represented by �X±s. SPSS Statistical

software was used for statistical analysis. One-way

ANOVA was used for multi-group data. A two samplet--

test was used between the two groups of data. P<0.05 and

P<0.01 were statistically significant.

Results
Characterization of cationic liposomes
The mean particle size of the cationic liposomes was 85.76

±3.48 nm (Figure 1A) with a PDI value of 0.22 and a zeta

potential of 15.76±2.1 mV (Figure 1B), which indicated the

monodispersed nature of the nanoparticles. TEM of cationic

liposomes had the same results as that of DLS, with an

expected small size less than 100 nm with nearly spherical

and uniform shape (Figure 1C).

Cells morphological observation of

rMSCs
After inoculation, rMSCs were distributed at the bottom of

the culture flask, and they were round with a bright cyto-

plasm and good refraction. The individual nucleus in the cells

began to adhere to the wall (Figure 2A, 24 h) at 24 hours;

increased spreading and the cytoplasm extending outward,

similar to fibroblasts (Figure 2A, 48 h) at 48 hours, and the

morphology of the adherent cells was fusiform, triangular,

fan-shaped, and circular, and, after 5~8 days, the cells gra-

dually formed a scattered colony, which is called a fibroblast

colony (Figure 2A, 5–8 d). Flow cytometry was used to

observe the expression of CD29 (95.34%) and D44

(85.12%), while CD34 (4.69%) and CD45 (5.12%) were

negative (Figure 2B). A cell proliferation growth curve was

drawn according to the determination by MTT (Figure 2C).

Cells morphological observation of

chondrogenic differentiation of rMSCs

after gene transfection
After rMSCs were transfected with Sox9 for 7 days, cells

protrusion became longer, the body of the cell became

wider, and the refractive index increased (Figure 3A).

The growth curve is shown using the MTT method, and

the proliferation rate of transfected cells increased (Figure

3B). The expression of Sox9 of rMSCs was detected by

ELISA at different concentrations of cells (Figure 3C),

which showed that the level of Sox9 expression in the

experimental group was significantly higher than the

other groups (P<0.05, Figure 3D).

Thermosensitive gel preparation
The various chitosan hydrogels kept at 4°C were incubated

at 37°C for 1–5 minutes to observe the hydrogel formation

process. Compared with the different gelation times of the

ratio of chitosan and β-sodium glycerophosphate, we

found that the gelation time65 rapidly decreased from 15

minutes to 3 minutes with an increase of β-sodium glycer-

ophosphate (Table 1).
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Chondrogenesis in vivo
The transfected rMSCs and thermos-sensitive gel compound

were cultured and injected into nude mice to observe chon-

drogenesis (Figure 4). The naked mice were sacrificed, and

injection areas were anatomized after feeding for 4 weeks.

We only found mass like structures in group A (untransfected

rMSCs with chitosan hydrogel) and group B (transfected

rMSCs with chitosan hydrogel), while no structures in

group C (rMSCs) and group D (chitosan hydrogel) were

observed. The mass like structures in group A and B were

examined by HE, safranin O, and immunohistochemical

staining of collagen II. Compared to group A, the formation

of chondroid cells at the surface of tissue was observed, and

the cytoplasm was brown after being dewaxed, while the

nucleus was vacuolar in group B. HE staining of tissue-

engineered cartilage blocks showed the aggregation of cells

at the surface tissue, similar to chondrocyte expression

(Figure 5). The results of immunohistochemical stain of

collagen II and IX showed the significant difference between

two groups. Furthermore, the WB of different groups

illustrated the different protein expression of Sox9, collagen

II, and collagen IX.

Discussion
The nude mice were injected with induced rMSCs and

chitosan hydrogel, with the chitosan hydrogel alone dis-

appearing under the skin while chondrocyte formation was

found (Figure 4). In recent years, many have shown that

rMSCs are the best choice for the seed cells of cartilage

tissue engineering,66–69 but the amount of rMSCs is extre-

mely low for this purpose, limiting its application in tissue

engineering. Proliferation rMSCs in vitro has been exam-

ined and potentially developed,70 leading to mature proto-

cols for isolation culture and amplification. In order to

improve the quality of tissue engineering cartilage, it has

become necessary to induce the differentiation of the seed

cells into the chondrocytes before inserting the seed cells

into the carrier materials. For the application of cells in

tissue engineering technology in our study, we prepared

cationic liposomes, extracted the bone marrow tissue from
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rats, isolated rMSCs, increaded rMSCs culture cell number

in vitro, and transfected them with Sox9 to differentiate

into cartilage producing cells. The results showed that

rMSCs were able to maintain the stem cell characteristics

after proliferation and differentiation in vitro (Figure 2).

The fusogenic property of DOPC plays a crucial role in

macropinocytic transfer of formulation through the bilayer,

resulting in enhanced cellular uptake.71,72 However, it

remains to be explored whether a specific phenotype of

rMSCs can be expressed after long periods after such

proliferation and permanent biochemical and directional

differentiation.

Although rMSCs studies demonstrate the prospect of

new cartilage repair, rMSCs should be combined with
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Table 1 Different ratio of chitosan and β-glycerophosphate on GT

Chitosan (2%): β-glycerophosphate
(50%) (V:V)

GT
(minutes)

5 3

7 15

10 50

Abbreviation: GT, gelation time.

Figure 4 Sketch of Sox9 gene enhanced tissue engineering in chondrogenesis.
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recombinant growth factors or organic combination with

gene therapy if healing is to be complete. Sox9 has an

effect on promoting cell proliferation effect and effectively

maintains the phenotype of cartilage cells;73–77 it also has to

have biological activities at low concentrations. The direct

application of Sox9 still has certain limitations, while

genetic recombination and transfer technology will be avail-

able with the insertion of exogenous genes into eukaryotic

cells. The expression of Sox9 can promote bone damage

repair and the cartilage cell proliferation. Methods of trans-

fection of eukaryotic cells include cationic liposome mem-

brane fusion, electrophoresis, microinjection, calcium

phosphate precipitation, etc. The present cationic liposome

method is the most convenient and most commonly used

method for transfection, which is suitable for transfection of

multiple cells and is the only non-viral vector method

approved by the FDA for clinical treatment.78–80 In this

report, we fabricated nanosized cationic liposomes, and

the zeta potential reduced while combined with negative

plasmids (Figure 1B). We transfected rMSCs and obtained

the chondroid phenotype. With the liposome transfection

technique, the expression of Sox9 was detected with

ELISA method (Figure 3C). All the results showed that

Sox9 can be stably expressed after induction into the chon-

droid phenotype from the MSCs. Meanwhile, collagen II

was detected by immunocytochemistry stained collagen

type II. This indicates that the rMSCs stabilized the expres-

sion of Sox9 and induced the chondrogenic phenotype. The

immunohistochemical staining of tissue engineering carti-

lage was observed (Figure 5), and the staining of tissue-

engineered cartilage blocks showed the aggregation of cells

in the surface tissue, similar to chondrocyte expression in

group B. All the results demonstrated that chondroid tissue

formed in group B (the transfected rMSCs combined with

chitosan hydrogel), which could offer a new hope for car-

tilage repair.

The contributions of this study are the unique combi-

nation of tissue engineering with genetic engineering to

develop an effective and convenient therapeutic approach

for the repair of cartilage defects. Sox9 gene transfected
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with rMSCs selected in this study can continuously secrete

Sox9 in rMSCs and avoid the need of Sox9 systemic or

direct injection doses which can lead to unwanted side-

effects. In addition, the carrier materials selected in this

study can be injected with a chitosan gel and high biosaf-

ety. Furthermore, we obtained chondroid tissue in the

naked mice model showing that the cartilage can be

formed instead of a mixture of scaffolds and cells, which

could bring a qualitative leap of clinic cartilage repair.

Conclusion
In summary, this study effectually differentiated rMSCs into

chondrocytes in vivo for cartilage repair in vivo yields con-

sistently satisfactory results. This method provides a valuable

source of large numbers of MSC, which can be used for

cartilage repair in vivo, with the role of Sox9 in chondrogenic

differentiation via cationic liposomes. The isolation of

rMSCs developed here may be useful in future investigations

of stem cells for cartilage repair instead of the limited number

of chondrocytes available for cartilage repair. Most impor-

tantly, this study showed that, compared with untransfected

rMSCs, transfected rMSCs mixed with thermo-sensitive

hydrogel could significantly increase chondroid tissue synth-

esis. All in all, the present gene enhanced tissue engineered

artificial cartilage via cationic liposomes was successfully

formed under the skin of nude mice, which should be further

studied for improved clinic cartilage repair.
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Figure S1 Homo sapiens (human) with vector backbone of pcDNA3
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