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Objectives. Xuefu Zhuyu decoction (XFZYD), a traditional Chinesemedicine (TCM) formula, has been demonstrated to be effective
for the treatment of traumatic brain injury (TBI).However, the underlying pharmacologicalmechanisms remain unclear.This study
aims to explore the potential action mechanisms of XFZYD in the treatment of TBI and to elucidate the combination principle of
this herbal formula. Methods. A network pharmacology approach including ADME (absorption, distribution, metabolism, and
excretion) evaluation, target prediction, known therapeutic targets collection, network construction, and molecule docking was
used in this study. Results. A total of 119 bioactive ingredients from XFZYD were predicted to act on 47 TBI associated specific
proteins which intervened in several crucial pathological processes including apoptosis, inflammation, antioxidant, and axon
genesis. Almost each of the bioactive ingredients targeted more than one protein. The molecular docking simulation showed
that 91 pairs of chemical components and candidate targets had strong binding efficiencies. The “Jun”, “Chen”, and “Zuo-Shi”
herbs from XFZYD triggered their specific targets regulation, respectively. Conclusion. Our work successfully illuminates the
“multicompounds, multitargets” therapeutic action of XFZYD in the treatment of TBI by network pharmacology with molecule
docking method.The present workmay provide valuable evidence for further clinical application of XFZYD as therapeutic strategy
for TBI treatment.

1. Introduction

Traumatic brain injury (TBI) is a major cause of death
and disability [1]. At least 10 million severe TBIs result in
death or hospitalization annually worldwide [2]. Approx-
imately 1.7 million Americans sustain a TBI each year,
leading to over 1.4 million emergency department visits,
275 000 hospital admissions, and 50 000 deaths that con-
tribute to one-third of all injury-related deaths [3]. In the
European Union alone, an estimated 1.5 million hospital
admissions and 57,000 deaths annually attribute to TBI
[4]. In China, TBI-related mortality remains a high level,
ranging from 12.99 to 17.06 per population of 100 000

persons [5].Thus, TBI has afforded huge social and economic
burden.

TBI is a diverse group of sterile injuries induced by
primary and secondary mechanisms that give rise to cell
death, inflammation, and neurologic dysfunction in patients
of all demographics [6, 7].The primary injury is caused by the
mechanical stress or shear force on tissues with no therapeu-
tic agents [8]. The secondary injury includes a wide variety
of processes like activation of inflammatory and immune
response [9, 10], calciumoverload [11], glutamate toxicity [12],
and mitochondrial dysfunction [13], among others. Current
guidelines for the management of the secondary injury are
primarily supportive, including the emphasis on surveillance
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(i.e., intracranial pressure) and the preventive measures to
reduce morbidity and mortality [14]. Despite the fact that
detailed medicines contain free-radical scavengers, antago-
nists of N-methyl-D-aspartate, and calcium channel blockers
[15], the results of the controlled clinical trials of these drugs
are disappointing [16]. Neuroscientists and doctors tend to
search for potential novel drugs from traditional Chinese
medicine (TCM) library to treat TBI [17].

TCM is a comprehensive medicinal system that has been
used in clinical practice for thousands of years and plays
an important role in the health maintenance for people all
over the world [18, 19]. The validated curative effects of TCM
make it a feasible alternative therapeutic agent for disease
treatment. Xuefu Zhuyu decoction (XFZYD), a representa-
tive TCM formula, was first recorded in Correction of Errors
in Medical Works by Qing-ren Wang. XFZYD consists of
11 crude herbs: Persicae Semen (Tao ren), Carthami Flos
(Hong hua) Radix Paeoniae Rubra (Chi shao), Chuanxiong
Rhizoma (Chuan xiong), Achyranthis Bidentatae Radix (Niu
xi), Angelicae Sinensis Radix (Dang gui), Rehmannia glutinosa
Libosch (Sheng di huang), Platycodon Grandiforus (Jie geng),
Aurantii Fructus (zhi qiao), Radix Bupleuri (chai hu), and
licorice (Gan cao).Themain chemicals from XFZYD include
flavonoids, organic acids, terpenoids, and steroidal saponins
[20–22]. The formula has been proven reliable and effective
for curing various diseases including unstable angina pectoris
[23, 24], coronary artery disease [25], thromboembolic stroke
[26], ischemic stroke [27], and TBI. The therapeutic agent of
XFZYD is to promote blood circulation and remove blood
stasis according to the TCM theory. Several randomized
controlled clinical trials and animal experiments have showed
definite therapeutic effects of XFZYD for the treatment of
TBI [28–31]. Recent researches demonstrate that XFZYD
provides neuroprotection via anti-inflammatory pathway and
cognitive improvement through synaptic regulation [32, 33].
However, merely these evidences to explain the multiple
therapeutic mechanisms of TCM for TBI treatment are
unavailable. Because the effects of TCM are always contro-
versial in terms of their abstract theory, unclear basis, com-
plex interactions between various ingredients, and complex
interactive biological systems [25], it is essential to develop
an advanced technique to deeply uncover the synthesized
pharmacological effects of XFZYD in the treatment of TBI.

With the development of TCM modernization, network
pharmacology has become a novel method to elucidate the
multi-druggable targets effects of TCM [34]. TCM network
pharmacology, first proposed by Shao Li [35], makes it
feasible to understand the effective constituents and targets
of the herbs from TCM formula. This analytical method
integrates bioinformatics, systems biology, and polypharma-
cology and further utilizes network analysis to imply the
multiple actions of drugs across multiple scales ranging from
molecular/cellular to tissue/organism levels [36, 37]. Coin-
ciding with the holistic and systemic characteristics of TCM,
network pharmacology is expected to bridge the gap between
TCM and modern medicine [25]. Previous researches have
clarified the scientific basis and systematic features of herbal
medicine to treat diseases through network pharmacology
such asQing-Luo-Yin andMa-HuangDecoction etc. [38, 39].

In the present work, we explored the pharmacological
mechanisms of XFZYD acting on TBI via a network pharma-
cology approach. Network analyses and molecular docking
method were used to reveal candidate drug targets related
to TBI. Target analysis suggested that XFZYD regulated
several key biological processes of TBI development such
as apoptosis, inflammation, blood coagulation, and axon
genesis. These processes contributed to the clarifying of the
molecular mechanisms of XFZYD for TBI treatment. This
will help to improve the effectiveness and specificity of TCM
clinical usage (Figure 1 depicts a flowchart of the entire
research procedure).

2. Methods

2.1. Database Construction. The chemical ingredients of
11 herbs in XFZYD were screened from Traditional Chi-
nese Medicine Systems Pharmacology database (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php) [40]. As a chemically ori-
ented herbal encyclopedia, TCMSP can provide comprehen-
sive information about herb ingredients including chemical
structural data, oral bioavailability, drug targets, and their
relationships with diseases, as well as the biological or physio-
logical consequences of drug actions involving drug-likeness,
intestinal epithelial permeability, and aqueous solubility [40].
The structures of these compoundswere saved asmol2 format
for further analysis. Discovery studio 2.5 was employed to
optimize these molecules with a Merck molecular force field
(MMFF). All detailed information about these ingredients is
provided in Table S1.

2.2. Pharmacokinetic Prediction. Due to the disadvantages
of biological experiments as being time-consuming and of
high cost, identification of ADME (absorption, distribution,
metabolism, and excretion) properties by in silico tools
has now become a necessary paradigm in pharmaceutical
research. In this study, 2 ADME-related models, including
the evaluation of oral bioavailability (OB) and drug-likeness
(DL), were employed to identify the potential bioactive
compounds of XFZYD.

Oral bioavailability (OB), one of the most important
pharmacokinetic parameters, represents the speed of a drug
of becoming available to the body and the eventually
absorbed extent of the oral dose [41], which is particularly sig-
nificant in drug discovery of TCM formost oral Chinese herb
formulas. Poor OB is indeed the main reason responsible for
the unsuccessful development of compounds into therapeutic
drugs in drug screening cascades. Here, a reliable in silico
model OBioavail 1.1 [42] which integrates the metabolism
(P450 3A4) and transport (P-glycoprotein) information was
employed to calculate the OB values of herbal ingredients.
In this study, OB≥30% (a suggested criterion by TCMSP
database) was regarded as one threshold for screening pos-
sible candidate drugs presently, while 2 compounds with
OB ≤ 30% were also taken into consideration due to their
therapeutic effects according to literatures, such as amygdalin
and hydroxysafflor yellow A [43, 44].

Drug-likeness (DL) is a qualitative profile used in drug
design to evaluate whether a compound is chemically suitable

http://lsp.nwu.edu.cn/tcmsp.php
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Figure 1: A schematic diagram of the network pharmacology-based strategies for determining the pharmacological mechanisms of the herbal
formula XFZYD on TBI.

for drug, and how drug-like a molecule is with respect to
parameters affecting its pharmacodynamic and pharmacoki-
netic profiles which ultimately impacts its ADME properties
[45]. In this study, the drug-likeness (DL) index (see (1))
using the Tanimoto coefficient [46] was computed for each
compound in XFZYD:

𝑇 (𝑋,𝑌) =
𝑋 ⋅ 𝑌

‖𝑋‖2 + ‖𝑌‖2 − 𝑋 ⋅ 𝑌
(1)

where X represents the molecular descriptors of herb com-
pounds and Y is the average molecular properties of all com-
pounds in Drugbank database (http://www.drugbank.ca/).
Compounds with DL ≥0.18 (average value for Drugbank)
were selected as bioactive compounds in XFZYD.

In summary, compounds with OB ≥30% and DL≥0.18
were selected for subsequent research and others were
excluded. The criteria used here were mainly for (1) extract-
ing information from the herbs as much as possible with the
least number of components and (2) explaining the obtained
model by the reported pharmacological data.

2.3. Target Prediction. To obtain the molecular targets of
these active ingredients, an in-house developedmodel SysDT
based on Random Forest (RF) and Support Vector Machine
(SVM) methods [47] was proposed, which efficiently inte-
grated large-scale information on chemistry, genomics, and
pharmacology. This approach shows impressive performance
of prediction for drug-target interactions, with a concordance
of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%,

respectively [40]. UniProtKB (http://www.uniprot.org/) was
employed to obtain the standard name of the predicted target
proteins.

2.4. TBI-Specific Protein Collecting. The known therapeutic
target proteins of TBI were screened fromTherapeutic Target
Database (TTD, available http://bidd.nus.edu.sg/group/cjttd/).
TTD is a publicly accessible database which provides com-
prehensive information about the known therapeutic protein
and nucleic acid targets described in the literature, the
targeted disease conditions, the pathway information, and the
corresponding drugs/ligands directed at each of these targets
[48]. We also searched for Online Mendelian Inheritance
in Man database (OMIM, available: http://omim.org/) to
get proteins related to TBI. OMIM catalogues all known
diseases with a genetic component and then possibly links
them to the relevant genes in the human genome and
provides references for further research and tools for genomic
analysis of a catalogued gene [49]. Then, the proteins
acquired from both databases were used as hub proteins
and submitted to Human protein Reference Database [50]
(HPRD, available http://www.hprd.org/) and STRING [51]
(https://string-db.org/) to generate the proteins interacting
with these hub proteins. HPRD is a database containing
curated proteomic information pertaining to human pro-
teins. The human protein-protein interaction (PPI) data on
HPRD (Release 9) consists of 39,240 interactions among 9617
genes.The STRINGdatabase provides both experimental and
predicted interaction information, providing a probabilistic
association confidence score.

http://www.drugbank.ca/
http://www.uniprot.org/
http://bidd.nus.edu.sg/group/cjttd/
http://omim.org/
http://www.hprd.org/
https://string-db.org/
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2.5. Molecule Docking. The LibDock algorithm based on the
CHARMm Force Field in Discovery Studio (DS) 2.5 was
used in this study to evaluate the potential molecular binding
mode between bioactive compounds and putative targets.The
crystal structure of the target proteins of XFZYD for treating
TBI was downloaded from the RCSB Protein Data Bank
(www.rcsb.org). The 3D chemical structures of bioactive
compounds were downloaded from PubMed Compound
database or TCMSP database and subjected to minimize the
energy by using molecular mechanics-2 (MM2) force field.
The protein preparation protocol was used before docking
such as inserting missing atoms in incomplete residues,
removing water, and protonating titratable residues. The lig-
and preparation protocol was employed before docking such
as removing duplicates, enumerating isomers, and generating
3D conformations. The protein-ligand docking active site
was defined by the location of the original ligand. All other
docking and consequent scoring parameters were kept at
their default settings. The compound was considered to be a
potentially active ingredient if the LibDock score was higher
than the original ligand.

2.6. Network Construction and Analysis. Network construc-
tion was performed as follows:

(1) The herbs, candidate compounds, and candidate tar-
gets of XFZYD were used to construct an herb-
candidate compound-candidate target (HB-cC-cT)
network.

(2) The PPI data obtained above was used to establish the
TBI-specific protein interaction network.

(3) Herbs, potential compounds, and putative targets
from XFZYD for treating TBI were used to build
a herb-potential compounds-potential targets (HB-
pC-pT) network.

(4) Potential targets and the biology process they partici-
pate in were used to construct the pT-F network.

(5) Compounds and targets through molecule docking
validating were used to build a compound-target (C-
T) network.

All networks were generated and analyzed by Cytoscape 3.4.0
[52], an open source of bioinformatic package for biological
network analysis and visualization. Two topological param-
eters including degree and betweenness were calculated for
the obtained networks which disclose the significance of
a node.

2.7. Gene Ontology (GO) and Pathway Enrichment Analy-
sis. The functional enrichment tool DAVID [53] (DAVID,
https://david.ncifcrf.gov/), ver. 6.8) was used to calculate
both the KEGG pathway and GO biological processes (BP)
enrichment.

2.8. Statistical Analysis. All data were expressed as mean ±
standard deviation (SD). The molecule descriptors data were
analyzed by one-way ANOVA. The criterion for statistical
significance was p < 0.05. Statistical analyses were conducted
using the SPSS 24.0.

3. Results

TCM, an experience-based medicine, has been widely used
for thousands of years. It has accumulated abundant clinical
experience, forming a comprehensive and unique medical
system [35]. The complexity of the phytochemical compo-
nents makes it extremely difficult to illustrate the action
mechanisms of XFZYD from a molecule or system level.
As a chief mean of treating diseases clinically; generally
TCM doctors prescribe formula based on the principle of
“Jun-Chen-Zuo-Shi”: “Jun” (monarch) treats the main cause
or primary symptoms of the disease. “Chen” (minister)
enhances the actions of “Jun” or treats the accompanying
symptoms. “Zuo” (adjuvant) not only reduces or eliminates
the possible toxic effects of the Jun or Chen, but also treats
the accompanying symptoms. “Shi” (guide) helps to deliver
or guide the other herbs to the target organs [18]. According
to the unique feature of TCM, ourwork tried to perform “Jun-
Chen-Zuo-Shi” based system study to clarify the multiple
mechanisms of XFZYD in the treatment of TBI.

3.1. Herbal Ingredient Comparison and Target Prediction
of XFZYD. We obtained 162 components originated from
XFZYD. Of these compounds, 160 chemicals that were in
accord with standard requirements were searched from the
TCMSP database. The other 2 components, amygdalin and
hydroxysafflor yellow A, were taken into consideration for
their obvious pharmacological action as well. The detailed
information of these compounds is showed in Table S1.
Persicae Semen (Tao ren) and Carthami Flos (Hong hua),
the Jun (monarch) herbs of XFZYD, contained 36 bioactive
components which accounted for 22% of the 162 chemicals.
Radix Paeoniae Rubra (Chi shao), Chuanxiong Rhizoma
(Chuan xiong), andAchyranthis Bidentatae Radix (Niu xi), the
Chen (minister) herbs, contained 31 bioactive components
which accounted for 19% of the 162 chemicals. Angelicae
Sinensis Radix (Dang gui), Rehmannia glutinosa Libosch
(Sheng di huang), Platycodon Grandiforus (Jie geng), Aurantii
Fructus (zhi ke), Radix Bupleuri (chai hu), and licorice (Gan
cao), the Zuo-Shi (adjuvant and guide) herbs of XFZYD,
contained 109 bioactive components which accounted for
67% of the 162 chemicals. Ingredients from these herbs
were compared based on the 6 important drug-associated
descriptors, including molecular weight (MW), number of
hydrogen-bond donors (nHdon), number of hydrogen-bond
acceptors (nHacc), partition coefficient between octanol and
water (AlogP), oral bioavailability (OB), and drug-likeness
(DL).The distributions of the 6 descriptors of the ingredients
from the three groups are shown in Table 1 and Figure 2. We
foundno significant differences in the values ofMW(p=0.16),
nHdon (p=0.32), nHacc (p=0.61), and AlogP (p=0.82) among
the 3 groups. However, the average OB value of compounds
from the march herbs is 55.59±23.91, which was significantly
different from the Chen herbs (OB=45.64±13.27, P=0.004)
and the Zuo-Shi herbs (OB=48.77±15.05, P=0.021). The
following 2 groups had no significant difference in OB
value (P=0.272). As for DL, the Chen herbs revealed the
highest DL index (0.53±0.23) which displayed significant
difference from the Zuo-Shi herbs (0.44±0.19, p=0.012) while

https://david.ncifcrf.gov/
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Table 1: Comparison of molecular properties among the Jun, Chen, and Zuo-Shi herbs.

INDEX MW nHdon nHacc AlogP OB DL
(mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD) (mean ± SD)

Jun herbs 380.28 (94.23) 2.65 (2.26) 5.11 (3.21) 3.37 (4.36) 55.59 (23.91) 0.49 (0.18)
Chen herbs 381.80 (91.60) 2.18 (1.95) 5.5 (3.47) 3.14 (3.15) 45.64 (13.27) 0.53 (0.23)
Zuo-shi herbs 357.45 (88.22) 2.61 (1.60) 5.6 (2.49) 3.44 (1.85) 48.77 (15.05) 0.44 (0.19)
OB, oral bioavailability; MW, molecular weight; DL, drug-likeness; AlogP, partition coefficient between octanol and water; nHacc, number of hydrogen-bond
acceptors; nHdon, number of hydrogen-bond donors.

Table 2: Top 10 candidate compounds according to 2 centrality indicators.

Compounds Degree Compounds Betweenness
quercetin 153 quercetin 0.35875838
kaempferol 65 naringenin 0.08768253
luteolin 48 kaempferol 0.07665228
wogonin 46 luteolin 0.05736204
7-Methoxy-2-methyl isoflavone 44 baicalein 0.05542898
beta-sitosterol 41 beta-sitosterol 0.041007
baicalein 40 wogonin 0.03968963
formononetin 39 Stigmasterol 0.03586788
naringenin 39 nobiletin 0.03057461
isorhamnetin 38 formononetin 0.03051437

showing nodifferencewith the Junherbs (0.49±0.18 p=0.333).
Figure 3(a) indicated that 5 bioactive compounds were
shared by the Jun, Chen, and Zuo-Shi herbs. One compound
overlapped between the Jun andChen herbs, while there were
2 compounds shared by the Chen and Zuo-Shi herbs. One
compound overlapped between the Jun and Zuo-Shi herbs.

3.2. Target Prediction of XFZYD. A total of 285 potential
targets from the 162 compounds were generated using the
target prediction model. The amounts of potential targets hit
by the Jun, Chen, and Zuo-Shi drugs were 217, 218, and 261,
respectively. The detailed data of the targets is shown in Table
S2. As depicted in Figure 3(b), there was a significant target
overlap among the 3 groups (189 candidate targets), but less
overlap between the Jun andChenherbs (9 candidate targets).
The number of targets shared by the Jun and Zuo-Shi herbs
was 14, while 10 targets were overlapped between the Chen
and Zuo-Shi herbs.

3.3. HB-cC-cT Network Construction and Analysis. We next
established aHB-cC-cT network through network analysis to
illuminate the relationship among the herbs, candidate com-
pounds, and candidate targets (Figure 3(c)). This network
consisted of 485 nodes (11 herbs, 162 candidate compounds,
and 285 candidate targets) and 2585 edges. A herb (triangle)
and cC (square) are connected if the compound is contained
in this herb and the edges between cC and cT represent the
interaction. The size of nodes is proportional to the value
of degree. The larger size of the node means more phar-
macologically important. Two centrality indicators, degree
and betweenness, identify the important nodes within the
network. Different centralities reflect different importance
of nodes in a network from different angles. Interestingly,

both of the two types of centrality indicators uniformly
confirmed themost important 10 candidate compounds from
XFZYD and the top 10 targets anchored by XFZYD (Tables
2 and 3). Figure 3(c) demonstrated that licorice possessed
the largest degree (88) compared with other herbs originated
from XFZYD. This implicated that it contained the most
bioactive compounds (88), including quercetin (Mol 148,
degree=153), kaempferol (Mol 108, degree=65), 7-Methoxy-2-
methyl isoflavone (Mol 33, degree=44), formononetin (Mol
63, degree=39), naringenin (Mol 133, degree=39), isorham-
netin (Mol 105, degree=38), medicarpin (Mol 131, degree=35),
and licochalcone a (Mol 113, degree=33), followed by
Persicae Semen (degree=19), Carthami Flos (degree=18),
Achyranthis Bidentatae Radix (degree=17), Radix Paeoniae
Rubra (degree=14), Radix Bupleuri (degree=12), Chuanxiong
Rhizoma (degree=6), Aurantii Fructus (degree=4), Platy-
codon Grandiforus (degree=4), Rehmannia glutinosa Libosch
(degree=3), andAngelicae Sinensis Radix (degree=2). Persicae
Semen (degree=19) and Carthami Flos (degree=18), the Jun
herbs from XFZYD, possessed 29 specific compounds and
5 unique target proteins including ALB, CTNNB1, MMP10,
LYZ, andNFKB1. Twenty-three Chen-specific potential com-
pounds targeted 10 specific proteins including CD14, LBP,
NR3C1, BBC3, TEP1, PRKCD, FN1, PDE10A, GSTA1, and
GSTA2. The Zuo-Shi herbs possessed the largest number of
specific compounds (101) and 48 unique proteins such as
HTR3A, ADRA1D, PYGM, OLR1, CHRM5, RXRB, STAT3,
MAPK10, OPRD1, and MAPK3. There were 189 proteins
anchored by the Jun, Chen, and Zuo-Shi drugs.

Among the 162 candidate compounds, quercetin had
the largest value of degree (153), implicating its critical role
in XFZYD. The four herbs, namely, Carthami Flos (Jun),
Achyranthis Bidentatae Radix (Chen), and licorice, and
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Figure 3: HB-cC-cT network of XFZYD. (a) and (b) The distribution of different candidate compounds and targets in the network (red: the
Jun herbs-specific cC (a) and cT (b); aqua: the Chen herbs-specific cC (a) and cT (b); periwinkle: the Zuo-Shi herbs-specific cC (a) and cT
(b); claybank: common cC (a) and cT (b) between the Jun and Chen herbs; blue: common cC (a) and cT (b) between the Jun and Zuo-Shi
herbs; green: common cC (a) and cT (b) between the Chen and Zuo-Shi herbs; purple: common cC (a) and cT (b) among the 3 group of
herbs. (c) The triangles with circle backgrounds represent the herbs (HB); the squares and circles represent the candidate compounds (cC)
and candidate targets (cT). The red triangles, squares, and circles represent corresponding HB, cC, and cT in the Jun herbs; the same is to
aqua representing the Chen herbs and periwinkle representing the Zuo-Shi herbs. The claybank squares and circles represent corresponding
cC and cT overlap between the Jun and Chen herbs; the same is to blue representing the overlap between the Jun and Zuo-Shi herbs and the
green representing the overlap between the Chen and Zuo-Shi herbs. The purple squares and circles represent the corresponding cC and cT
shared by the 3 group of herbs. The size of the node is proportional to the value of degree.

Radix Bupleuri (Zuo-Shi) contained quercetin. It targeted
149 bioactive proteins. PTGS2 (degree=126), HSP90AB2P
(degree=85), AR (degree=81), NCOA2 (degree=75), PRSS1
(degree=68), PTGS1 (degree=67), PPARG (degree=66),
and F10 (degree=60) were predicted as the major candidate
targets of quercetin, followed by kaempferol (degree=65),
which was contained by Carthami Flos (Jun), Achyranthis
Bidentatae Radix (Chen), and Radix Bupleuri, licorice
(Zuo-Shi). It targeted 61 bioactive proteins including
PTGS2 (degree=126), HSP90AB2P (degree=85), CALM
(degree=81), AR (degree=81), NOS2 (degree=76), and
NCOA2 (degree=75). Quercetin, stigmasterol, kaempferol,

baicalin, and beta-sitosterol existed in 3, the Jun, Chen,
and Zuo-Shi, drugs, demonstrating crucial roles of these
components. The 5 ingredients in the Jun, Chen, and Zuo-Shi
herbs targeted 186 bioactive proteins which accounted for
65% targets of XFZYD. Baicalein existed in the Jun and
Chen herbs. Luteolin existed in the Jun and Zuo-Shi herbs.
Spinasterol and sitosterol existed in the Chen and Zuo-Shi
herbs. 126 bioactive compounds targeted PTGS2, followed
by ESR1 (88), HSP90AB2P (85), AR (81), CALM (81), NOS2
(76), NCOA2 (75), PRSS1 (68), PTGS1 (67), and PPARG
(66). As depicted in Figure 3(c), these target proteins were
anchored by ingredients in the 3 group drugs.
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Table 3: Top 10 target proteins of XFZYD according to 2 centrality indicators.

Proteins Degree Proteins Betweenness
PTGS2 126 PTGS2 0.128936
ESR1 88 NCOA2 0.060806
HSP90AB2P 85 HSP90AB2P 0.049647
AR 81 PRKACA 0.046484
CALM 81 PTGS1 0.04365
NOS2 76 AR 0.030252
NCOA2 75 PRSS1 0.025575
PRSS1 68 ESR1 0.022212
PTGS1 67 PPARG 0.021403
PPARG 66 PGR 0.020685
Note: the centrality indicators identify the important nodes within the network. Higher degree centrality and betweenness centrality indicate greater
importance.

The analysis of the network revealed that quercetin (Mol
148), kaempferol (Mol 108), luteolin (Mol 127), wogonin (Mol
160), 7-Methoxy-2-methyl (Mol 33), and beta-sitosterol (Mol
41) were predicted as the major active compounds of XFZYD.
Theproteins including F2, NOS2, PTGS1, PTGS2, and CALM
were predicted as essential pharmacological proteins for the
therapeutic effects of XFZYD.

3.4. Analyses on TBI Based Specific Protein Interaction Net-
work. Network biology integrated with different kinds of
data, including physical or functional networks and disease
gene sets, is used to interpret humandiseases. Protein-protein
interaction networks (PPI) are fundamental to understand
the cellular organizations, biological processes, and protein
functions [54]. From the systematic perspective, the analysis
of TBI-related PPI will improve the understanding of the
complicated molecular pathways and the dynamic processes
underlying TBI. We screened the TBI-specific genes and
protein targets using Online Mendelian Inheritance in Man
database (OMIM) and Therapeutic Target Database (TTD).
Figure 4 indicated that 21 TBI-specific genes/proteins were
acquired. Further these hub-proteins were submitted to
HPRD and STRING to establish the TBI-specific protein
interaction network. The detailed information of the TBI-
specific proteins is shown in Table S3. The results suggested
that the network consisted of 489 nodes and 5738 edges
(Figure 4(a)). We obtained top 10 TBI-related proteins
according to 2 centrality indicators generated and summa-
rized in Table 4. Interestingly, we found that the node with
higher betweenness tends to possess larger degree (Fig-
ure 5). Network topology analysis showed that protoonco-
gene tyrosine-protein kinase Src (SRC, degree=164, between-
ness=0.059), RAC-alpha serine/threonine-protein kinase
(AKT1, degree=157, betweenness=0.045), Serum albumin
(ALB, degree=153, betweenness=0.069), Epidermal growth
factor receptor (EGFR, degree=139, betweenness=0.053),
and Amyloid beta A4 protein (APP, degree=134, between-
ness=0.072) contributed to the essential role in the patho-
physiology of TBI. All of these indicated that the top mutual
target proteins performed various beneficial functions to treat
TBI at the molecular level. For example, SRC is activated
following engagement of many different classes of cellular

receptors. It participates in signal pathways that control
a diverse spectrum of biological activities including gene
transcription, immune response, cell adhesion, cell cycle
progression, apoptosis, migration, and transformation [55].
SRC can result in blood-brain barrier (BBB) disruption
and brain edema at the acute stage; the inhibition of SRC
family kinases can protect hippocampal neurons and improve
cognitive function after TBI [56]. AKT1 regulates many
processes including metabolism, proliferation, cell survival,
growth, and angiogenesis [57]. The PI3K/AKT/PTEN path-
way has been shown to play a pivotal role in neuroprotection,
enhancing cell survival by stimulating cell proliferation and
inhibiting apoptosis after TBI [58]. ALB is the main protein
of plasma and can be a biomarker to predict outcome of
TBI [59]. Its main function is the regulation of the colloidal
osmotic pressure of blood. We found that it may participate
in pathological process of TBI.

KEGG pathway analysis was also used to determine the
functions of proteins. Table 5 describes the top 10 significantly
enriched KEGG pathways. These pathways play crucial roles
in pathophysiology process which have also been widely
discussed in existing literature. For instance,MAPK signaling
pathway can promote pathological axonal death through
triggering a local energy deficit [60]. Neurotrophin signaling
through Trk receptors regulates cell survival, proliferation,
the fate of neural precursors, axon, and dendrite growth and
patterning, and the expression and activity of functionally
important proteins, such as ion channels and neurotransmit-
ter receptors [61]. Engagement of cells with the extracellular
matrix (ECM) proteins is crucial for various biological pro-
cesses, including cell adhesion, differentiation, and apoptosis,
contributing to maintenance of tissue integrity and wound
healing [62].The 47 TBI-specific proteins targeted byXFZYD
(yellow and green) were further discussed below.

3.5. HB-pC-pT Network, pT-F Network Construction, and
Molecule Docking Analyses of XFZYD for the Treatment of
TBI. To investigate the therapeutic mechanisms of XFZYD
for the treatment of TBI, a HB-pC-pT network of XFZYD
for treating TBI was built (Figure 6). 47 TBI-specific target
proteins (circles) were targeted by 119 potential compounds
(squares) from XFZYD (Figure 6). Detailed information
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Figure 4: TBI-related protein interaction network. (a) 21 hub proteins (red and green) were identified through the analysis of Therapeutic
TargetDatabase (TTD), aswell asOnlineMendelian Inheritance inMan (OMIM). 4 overlapped protein targets (green)were obtained between
21 hub proteins in TBI and candidate targets of XFZYD. Periwinkle: proteins fromHPRD and STRING analyses were not targeted by XFZYD.
(b) 47 candidate protein targets of XFZYD were screened for treating TBI. Yellow: candidate protein targets of XFZYD. The size of nodes is
proportional to the value of degree.
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Table 4: Top 10 proteins of TBI specific proteins according to 2 centrality indicators.

Proteins Degree Proteins Betweenness
SRC 164 APP 0.071814
AKT1 157 ALB 0.069343
ALB 153 SRC 0.058568
EGFR 139 EGFR 0.052938
APP 134 AKT1 0.045466
GAPDH 131 HTT 0.037164
HSP90AA1 108 GAPDH 0.034549
BCL2 106 HSP90AA1 0.027596
MAPK1 105 CTNNB1 0.021759
HRAS 105 GNB1 0.019492
Note: the centrality indicators identify the important nodes within the network. Higher degree centrality and betweenness centrality indicate greater
importance.

Table 5: Top 10 significantly enriched KEGG pathways in TBI-specific proteins.

Pathway ID Pathway description Gene count FDR
4010 MAPK signaling pathway 44 2.99E-23
5200 Pathways in cancer 43 1.13E-18
4722 Neurotrophin signaling pathway 41 1.01E-34
4151 PI3K-Akt signaling pathway 40 1.11E-15
4510 Focal adhesion 39 2.92E-22
5205 Proteoglycans in cancer 39 4.10E-21
5010 Alzheimer s disease 34 1.24E-20
4015 Rap1 signaling pathway 33 7.69E-17
4014 Ras signaling pathway 33 6.46E-16
4020 Calcium signaling pathway 31 5.05E-17
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Figure 5: Relationship between degree and betweenness centrality
in the TBI-specific protein interaction network.

for the 119 potential compounds is shown in Table S4.
Similarly, 5 pharmacologically active ingredients in the Jun,
Chen, and Zuo-Shi groups, including quercetin, stigmasterol,
kaempferol, baicalin, and beta-sitosterol, anchored 33 TBI-
specific proteins such as CALM, SCN5A, F2, ACHE, F7,
ADRA1B, NOS3, BCL2, CASP3, and AKT1. 11 Jun-specific
compounds targeted 2 specific targets (ALB, CTNNB1), while
12 Chen-specific compounds anchored 3 unique proteins
(PRKCD, FN1, and BC3). The Zuo-Shi herbs possessed the
largest number of active compounds (89) and targeted 5

unique proteins including EPHB2, BACE1, LDLR, MAPK3,
and PRSS3. GSK3Bwas the common target between theChen
andZuo-Shi drugs. KCNMA1, CASP7, andAPPwere targeted
by the Jun and Zuo-Shi drugs.

The top 10 candidate compounds and targets to treat TBI
were showed in Tables 6 and 7. Formost of active compounds
from XFZYD, each component hit more than one target.
Table 6 demonstrated that quercetin had the highest number
of targets (degree =76), followed by kaempferol (degree
=43), beta-sitosterol (degree =35), stigmasterol (degree =19),
luteolin (degree=18), baicalein (degree=15), 7-Methoxy-
2-methyl isoflavone (degree=12), wogonin (degree=12),
nobiletin (degree=11), and naringenin (degree=9). For
instance, quercetin (3,3,4,5,7-pentahydroxyflavone) is a
naturally occurring flavonoid commonly found in fruits and
vegetables. It regulates multiple biological pathways eliciting
induction of apoptosis as well as inhibiting angiogenesis
and proliferation [63, 64]. Quercetin can attenuate neuronal
autophagy and apoptosis in rat traumatic brain injury model
via activation of PI3K/Akt signaling pathway [65]. It has also
been reported to have a protective ability against oxidative
stress and mutagenesis in normal cells [66, 67]. Kaempferol
(3, 4, 5, 7 tetrahydroxy flavone) is a yellow-colored flavonoid
that is widely distributed in many botanical families
[68]. It has been shown to possess a variety of biological
characteristics, including effects of anti-inflammatory
[69], antioxidative [70], tumor growth inhibition [71], and
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Figure 6: HB-pC-pT network of XFZYD for treating TBI. The triangles with circle backgrounds represent the herbs (HB); the squares and
circles represent the potential compounds (pC) and targets (pT).The red triangles, squares, and circles represent corresponding HB, pC, and
pT in the Junherbs; the same is to aqua representing theChen herbs and periwinkle representing the Zuo-Shi herbs.The claybank squares and
circles represent corresponding pC and pT shared by the Chen and Zuo-Shi herbs; the same is to blue representing the overlap between the
Jun and Zuo-Shi herbs and the green representing the overlap between the Chen and Zuo-Shi herbs.The purple squares and circles represent
the corresponding pC and pT shared by the 3 groups of herbs.

alleviating insulin resistance in type 2 diabetic rats [72].
Beta-sitosterol (BS) is a vegetable-derived compound found
in various plants and is suggested to modulate the immune
function, inflammation, and pain levels by controlling the
production of inflammatory cytokines [73].

For targets analysis, CALM possesses the largest degree
(degree =84), followed by GSK3B (degree =61), SCN5A
(degree = 59), F2 (degree = 43), ACHE (degree=28),
F7 (degree=28), ADRA1B (degree=28), NOS3 (degree=20),
BCL2 (degree=18), and CASP3 (degree=18), which demon-
strated their crucial therapeutic effects for treating TBI. For
instance, CALM possess an essential position in calcium
signaling pathway and is related to morphological changes,
migration, proliferation, and secretion of cytokines and
reactive oxygen species ofMicroglial cells [74].The activation
of CaMKII𝛼, major isoform of Ca2+/calmodulin-dependent
protein kinase (CaMK) in brain, is directly associated with
the production of proinflammatory cytokines, such as TNF-𝛼
and IL-1𝛽 [75]. GSK-3𝛽 is a serine/threonine-protein kinase,
which is abundant in the central nervous system (CNS),
particularly in neurons [76]. It can control gene transcrip-
tion, axonal transport, and cytoskeletal dynamics in growth
cones [77]. The inhibition of GSK-3𝛽 attenuates apoptotic

signals and prevents neuronal death [78]. There is increasing
evidence that prothrombin (F2) and its active derivative
thrombin are expressed locally in the central nervous system.
Beside the central role in the coagulation cascade, the gener-
ation of thrombin leads to receptor mediated inflammatory
responses, cell proliferation/modulation, cell protection, and
apoptosis [79, 80]. The role in brain injury depends upon its
concentration, as higher amounts cause neuroinflammation
and apoptosis, while lower concentrations might even be
cytoprotective [81].

Direct tissue damage, aswell as hypoxic-ischemic increas-
ing anaerobic glycolysis of the brain tissue, results in the
ATP-stores depletion and failure of energy-dependent mem-
brane ion pumps, especially for voltage-dependent Ca2+ and
Na+-channels. Accumulated Ca2+ activates lipid peroxidases,
proteases, and phospholipases and caspases at the same
time, increasing the intracellular concentration of free fatty
acids and free radicals, leading to necrosis or apoptosis of
neurocyte [82]. At the same time, the activation of resident
glial cells, microglia, and astrocytes and the infiltration of
blood leukocytes secrete various immune mediators elicited
inflammatory responses, which subsequently intersect with
adjacent pathological cascades including oxidative stress,
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Table 6: Top 10 potential candidate compounds of XFZYD for treating TBI according to 2 centrality indicators.

Compound Degree Compound Betweenness
quercetin 76 quercetin 0.1682179
kaempferol 43 kaempferol 0.05501511
beta-sitosterol 35 wogonin 0.05141376
Stigmasterol 19 beta-sitosterol 0.04451294
luteolin 18 naringenin 0.03251738
baicalein 15 beta-carotene 0.0297721
7-Methoxy-2-methyl isoflavone 12 nobiletin 0.02787992
wogonin 12 7-Methoxy-2-methyl isoflavone 0.02096439
nobiletin 11 luteolin 0.02090223
naringenin 9 baicalein 0.01453488

Table 7: Top 10 potential targets of XFZYD for treating TBI according to 2 centrality indicators.

Targets Degree Targets Betweenness
CALM 84 CALM 0.21452046
GSK3B 61 SCN5A 0.11441591
SCN5A 59 GSK3B 0.09553896
F2 43 F2 0.0689171
ACHE 28 BCL2 0.02651903
F7 28 CASP3 0.02372836
ADRA1B 28 F7 0.02032647
NOS3 20 ACHE 0.01845996
BCL2 18 ADRA1B 0.01704505
CASP3 18 NOS3 0.0166699

excitotoxicity, or reparative events including angiogenesis,
scarring, and neurogenesis [83]. Function analysis of the 47
target proteins regulated by XFZYD was mainly associated
with core pathophysiology process of TBI (Figure 7). 47 target
proteins were connected with 16 key process related to TBI.
Most of the targets have one or more links to other biolog-
ical process such as apoptosis, cell proliferation, superoxide
anion generation, nitric oxide biosynthetic process, response
to calcium ion, I-kappaB kinase/NF-kappaB signaling, and
regulation of inflammation. The above analysis implied the
multifunction character of these target proteins regulated by
XFZYD. Of these target proteins, 25 proteins (53% of the 47),
such as TGFB1, EGFR, CAV1, MAPK1, PRKCB, and AKT1
were responsible for regulating the apoptosis process, 17 for
blood coagulation, 14 for cell proliferation and axon genesis,
and 12 for hypoxia andMAPK cascade. We found that TGFB1
was the crucial protein, because it participated in 9 biological
processes related to TBI such as apoptosis, blood coagulation,
cell proliferation, and MAPK cascade followed by EGFR (8),
CAV1 (7), MAPK1 (6), PRKCB (6), and AKT1 (6).

Overall, these observations strongly support the evidence
that the generated HB-pC−pT network and pT-F network
have important roles in treating TBI, further validating the
drug targeting approach.

Molecule docking was used to further validate the bind-
ing mode between candidate compounds and their target
proteins. We found that 18 TBI-specific target proteins inter-
acted with 91 candidate compounds from XFZYD (Figure 8).

Other 29 target proteins were not discussed for the lack
of proper protein crystal structure. The detailed molecule
docking results are shown in Table S5.The 6 essential proteins
including GSK3B, AKT1, CDK1, F2, NOS3, and ACHE
were used to elucidate the exact binding mode (Figure 9).
Quercetin was located within the binding cavity of AKT1 and
CDK1 (Figures 9(a) and 9(b) and S1A, B). Four conventional
hydrogen bonds were formed between quercetin and AKT1
by interacting with the key amino acids including ILE-
290, THR-211, and SER 205. Additionally, 𝜋-𝜋 interactions
between quercetin and TRP-90 were found in the active
site which helped the stabilization of the compound at the
binding site (Figure 9(a), S1A). Figure 9(b) and S1B suggested
that five conventional hydrogen bonds (LEU-83, ASP-146,
and LYS-33) and 𝜋-𝜋 interaction (PHE-80) were formed
between quercetin and CDK1. The GSK3B-FA complexes
(Figure 9(c), S1C) were stabilized by 6 hydrogen-bonding
interactions between FA and LYS-85, GLU-97, TYR-134, and
ARG-141. Glyasperin Bmainly bonds to F2 through hydrogen
bonds by interacting with the key amino acids including
GLY-193, SER-195, and GLY-219 (Figure 9(d), S1D), and
an edge-to-face 𝜋 − 𝜋 interaction was also observed with
TYR-228. The GLN-247, GLU-351, and GLY-355 from the
active site pocket of NOS3 participated in the hydrogen-bond
formationwith 1-Methoxyphaseollidin (Figure 9(e), S1E).The
(-)-Medicocarpin formed a total of 6 hydrogen bonds with
SER-293, PHE-295, ARG-296, and TRY-341 in the active site
of ACHE (Figure 9(f), S1F). Besides, an edge-to-face 𝜋 − 𝜋
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Figure 7: pT-F network of XFZYD for treating TBI. 16 biological processes (red square) the 47 target proteins (periwinkle circle) of XFZYD
participate in for treating TBI.

interactionwas also observedwith TYR-337. From the results,
hydrogen-bonding and edge-to-face 𝜋 − 𝜋 interactions play
key roles in the protein−ligand recognition and stability,
which may be helpful in determining the inhibitor activities.
And the C-T network confirmed the potential therapeutic
effects of the candidate compounds from XFZYD to treat
TBI through interacting with the relevant proteins. The com-
putational analysis further elucidated the accurate molecule
mechanisms between active compounds and targets.

4. Discussion

Traumatic brain injury (TBI) is a growing public health
problem worldwide and is a leading cause of death and
disability [84]. Although major progress has been made in

understanding the pathophysiology of this injury, this has
not yet led to substantial improvements in outcome by a
lack of treatments which have proven successful during phase
III trials for modern medicine [85, 86]. TCM, rooted in
thousands of years of history, may offer an alternative or a
complementary strategy for the treatment of TBI. XFZYD,
a representative formula in TCM, has been used for years
to treat TBI in China and has been demonstrated to be
effective in clinical practice. However, its “multicomponents”
and “multitargets” features make it much difficult to decipher
themolecular mechanisms of XFZYD in the treatment of TBI
from a systematic perspective if employing routine methods.

In the present study, a network pharmacology-based
method was employed to elucidate the pharmacological
mechanisms of XFZYD to treat TBI according to the drug
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Figure 8: C-T network through molecule docking validating. 119 potential compounds (green triangles) interacting with 18 potential targets
(yellow circles) of XFZYD.The size of the nodes is proportional to the value of degree.

combination principle of TCM. We first proposed a new
modeling system, combining OB and DL screening, multiple
drug targets prediction and validation, network construction,
and molecule docking, to probe the efficiency of a typical
TCM formula XFZYD for the treatment of TBI. The 11
herbs from XFZYD possessed 162 bioactive compounds and
targeted 285 proteins. There were 5 compounds and 189

target proteins overlapped among the Jun, Chen, and Zuo-Shi
group. Furthermore, 47 TBI-specific proteins were targeted
by 119 (73%) bioactive compounds from XFZYD. Similarly, 5
common compounds and 33 (70%) common target proteins
among the 3 groups of drugs were observed. Most of the
bioactive ingredients targeted more than one protein. The 47
target proteins regulated several essential pathophysiological
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(d) (e) (f)

Figure 9: Hydrogen-bonding networks within the binding site of the compound−target complexes obtained from molecule docking.
(a) AKT1-quercetin, (b) CDK1-quercetin, (c) GSK3B-FA, (d) F2-glyasperin B, (e) NOS3-1-Methoxyphaseollidin, and (f) ACHE-(-)-
Medicocarpin. The molecules are presented as ball and stick models. Active site amino acid residues are represented as lines. Dotted blue
lines in these pictures represent hydrogen bonds with distance unit of Å. Other O and N atoms are colored as red and blue, respectively.

processes of TBI that referred to apoptosis, inflammation,
cell proliferation, superoxide anion generation, nitric oxide
biosynthetic process, response to calcium ion, etc. The above
analysis reveals that the synergistic action mechanisms of
XFZYDmay be (1) bioactive compounds overlapping among
the different group of herbs; (2) specific bioactive com-
pounds from different groups of herbs targeting the same
proteins; (3) specific bioactive compounds from different
groups of herbs targeting different proteins which participate
in the same pathophysiological process of the disease. To
a certain degree, the 5 compounds including quercetin,
stigmasterol, kaempferol, baicalin, and beta-sitosterol played
essential role in XFZYD for TBI treatment. MAPK3,MAPK1,
AKT1, PRKCA, TNF, PRKCB, EGFR, BCL2, GSK3B, CASP3,
PPP3CA, and NOS3 were the main target proteins regulated
by XFZYD in the treatment of TBI.

Interestingly, Beta-carotene (Mol 43) from Carthami Flos
(the Jun herb) specifically regulated 𝛽-Catenin (CTNNB1)
and played critical role for curing TBI. The 𝛽-Catenin is a
critical downstream component of the Wnt pathway, which
plays essential role in the regulation of mammalian neural
development [87]. In vitro and in vivo studies demonstrate

that the Wnt/𝛽-catenin pathway regulates the proliferation
and differentiation of neural progenitor cells [88]. Neuronal
differentiation is induced by overexpression of 𝛽-catenin
or the pharmacological inhibition of GSK3𝛽 (the phospho-
rylating enzyme of 𝛽-catenin) [89, 90]. This pathway also
promotes blood vessel formation during vascular develop-
ment, as well as the vascular repair process after TBI [91].
In addition, wogonin (Mol 160) from Achyranthis Bidentatae
Radix (the Chen herb) specifically targeted fibronectin (FN1),
Bcl-2-binding component 3 (BBC3), and Protein Kinase
C delta type (PRKCD). FN1, an important component of
the extracellular matrix (ECM) environment, promotes cell
migration, neurite outgrowth, and synapse formation dur-
ing neural development [92]. It aggregates in the injured
brain and plays a neuroprotection role through antiapoptosis
and anti-inflammation ways following TBI [93, 94]. BBC3,
namely p53 upregulated modulator of apoptosis (PUMA), is
critical for the p53-dependent apoptosis pathway which plays
an important role in hippocampal neuronal loss and associ-
ated cognitive deficits [95]. PRKCD, one of PKC isoforms,
activates signal transduction pathways involved in neuronal
regeneration [96], synaptic transmission/plasticity [97], and
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activation of apoptosis processes [98] as well as higher brain
functions such as learning andmemory [99].The activators of
PKCare effective for the treatment of TBI [100]. Furthermore,
Mitogen-activated protein kinase 3 (MAPK3), Beta-secretase
1 (BACE1), Ephrin type-B receptor 2 (EphB), and low-density
lipoprotein receptor (LDLR) were specifically targeted by
the ingredients in the Zuo-Shi herbs. Naringenin (Mol
133) targeted LDLR, MAPK3, while euchrenone (Mol 60)
anchored BACE1 and nobiletin (Mol 134) targeted EphB2.
MAPK3 is an essential component of the MAP kinase signal
transduction pathway. It has been appreciated recently that
the ERK1/2 cascade plays a fundamental role in synaptic
plasticity and memory [101]. BACE1 is responsible for pro-
duction of A𝛽 from amyloid precursor protein (APP). A𝛽
can cause cell death, activate inflammatory pathways [102],
and prime proapoptotic pathways for activation by other
insults [103]. The blocking of BACE1 can ameliorate motor
and cognitive deficits and reduce cell loss after experimental
TBI in mice [104]. EphB is localized to synaptic sites in
hippocampal neurons [105]. The interaction between EphB
and NMDA receptors regulates excitatory synapse formation
[106]. LDLR acts as an important receptor that facilitates
brain A𝛽 clearance and inhibits amyloid deposition [107]
and then ameliorates Alzheimer’s disease neuropathology
after TBI [108]. The analysis above indicates the “Jun”,
“Chen”, and “Zuo-Shi” herbs from XFZYD trigger their
specific targets regulation, respectively, for the therapeutic
effects.

XFZYD is a very famous traditional Chinese formula in
promoting qi circulation and removing blood stasis accord-
ing to TCM theory. However, several limited researches have
demonstrated its efficacy for treating TBI, such as anti-
inflammatory and synaptic regulation [30, 31], which are
in accord with our study. However, previous studies merely
partially deciphered the molecule mechanism of XFZYD for
treating TBI. This study reports 119 bioactive compounds in
XFZYD that target 47 TBI-specific proteins such as MAPK3,
MAPK1, AKT1, PRKCA, TNF, PRKCB, and EGFR. These
proteins regulate several crucial pathophysiological processes
of TBI, such as apoptosis, inflammation, blood coagulation,
and axon genesis. Our study demonstrates that the therapeu-
tic actions of XFZYD refer to “multicompounds”, “multitar-
gets” features, rather than only the improvement of blood
circulation. With the help of molecule docking method,
we further validate the interactions between bioactive com-
pounds and potential targets of XFZYD. The hydrogen-
bonding and edge-to-face 𝜋 −𝜋 interactions play key roles in
the protein−ligand recognition and stability. This provides a
valuable reference for further experimental investigations of
bioactive ingredients and therapeutic targets of XFZYD for
treating TBI.

5. Conclusion

Our work successfully illuminates the efficiency of XFZYD
for the treatment of TBI, as well as herb combination rule
of TCM formula. Network pharmacology with molecule
docking method confirms the “multicompounds, multitar-
gets” therapeutic actions of XFZYD in the treatment of TBI.

The present work may provide valuable evidence for further
clinical application of XFZYD for treating TBI.
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