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Abstract: Thermoelectric materials which can convert energies directly between heat and electricity
are used for solid state cooling and power generation. There is a big challenge to improve the
efficiency of energy conversion which can be characterized by the figure of merit (ZT). In the past two
decades, the introduction of nanostructures into bulk materials was believed to possibly enhance ZT.
Nanocomposites is one kind of nanostructured material system which includes nanoconstituents in a
matrix material or is a mixture of different nanoconstituents. Recently, nanocomposites have been
theoretically proposed and experimentally synthesized to be high efficiency thermoelectric materials
by reducing the lattice thermal conductivity due to phonon-interface scattering and enhancing the
electronic performance due to manipulation of electron scattering and band structures. In this
review, we summarize the latest progress in both theoretical and experimental works in the field of
nanocomposite thermoelectric materials. In particular, we present various models of both phonon
transport and electron transport in various nanocomposites established in the last few years. The
phonon-interface scattering, low-energy electrical carrier filtering effect, and miniband formation,
etc., in nanocomposites are discussed.
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1. Introduction to Thermoelectricity

Thermoelectricity, which directly converts thermal energy and electricity, is expected to play
an increasing role in meeting the world’s rapid growing energy demand and in the thermal
management [1–10]. The efficiency of energy conversion in thermoelectric (TE) materials is described
by the dimensionless figure of merit (ZT)

ZT =
S2σT

κc + κp
, (1)

where S, σ, T, κc, and κp are, respectively, the Seebeck coefficient, electrical conductivity, absolute
temperature, electronic thermal conductivity due to the contribution of electrical carriers, and lattice
thermal conductivity due to the contribution of phonons. S2σ in the numerator is usually mentioned
as the power factor [11–13]. The efficiency of the TE device is increased by making ZT as large as
possible since the efficiency of power generation (χpower) and the coefficient of performance (COP) of
refrigeration device are

χpower = χc

√
1 + ZT − 1√

1 + ZT + Tc/TH
, (2)
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COP =
Tc(
√

1 + ZT − Tc/TH)

(TH − Tc)(
√

1 + ZT + 1)
, (3)

where χc = (TH − Tc)/TH is the Carnot efficiency, T = (Tc + TH)/2 is the mean temperature, TH
denotes the temperature of the hot end, and Tc denotes the temperature of the cold end. It is
straightforward that a high ZT material requires both large power factor and low total thermal
conductivity (κc + κp). In conventional bulk TE materials, the interrelationship between S, σ, and
κc results in a difficulty of the independent control of these variables. Therefore, ZT of the best
bulk TE material was hardly able to exceed one for 40 years since 1950s. The state-of-the-art
bulk materials at different temperature regimes are as follows, ZT ≈ 1 at low temperature regime
(200 K–400 K) in alloys of Bi2Te3 and Sb2Te3 for use in refrigeration [14], ZT ≈ 1.2 in p-type
alloy (GeTe)0.85(AgSbTe)0.15 and ZT ≈ 1.8 in p-type PbTe-based alloy for use in mid-temperature
(400 K–800 K) power generation [15,16], ZT ≈ 1 in n-type Si0.8Ge0.2 alloy for use in high-temperature
(above 800 K) power generation [17]. Various classes of materials are also widely studied: magnesium
and manganese group IV compounds such as Mg2Si , Mg2Ge and MnSix [18–20], rock-salt structural
materials such as SnTe and SnSe [21,22], tetrahedrites such as Cu12−xMx(Sb,As)4S13 [23], half-Heusler
compounds such as ZrNiSn-based alloy [24], Skutterudite-based materials such as CoSb3 and
CeFe4Sb12 [25], clathrate such as (Ba,Sr)8(Al,Ga)16(Si,Ge,Sn)30 [26], CsBi4Te6 [27], Tl9BiTe6 [28],
In4Se3−δ [29], and Cu2−xSe [30,31], and so on.

From the 1990s, the introduction of nanostructures has shown a promising way to independently
control S, σ, and κc [1] through quantum confinement effect, and to reduce the lattice thermal
conductivity κp due to the phonon-interface scattering [1,32–34] for the next generation of high
efficiency TE materials. For example, ZT ≈ 2.4 at room temperature has been reported by
Venkatasubramanian et al. [35] in p-type Bi2Te3/Sb2Te3 thin film TE materials. ZT ≈ 1.6 at room
temperature has also been reported by Harman et al. [36] in PbSeTe-based quantum dot (QD)
superlattices materials. Since the Seebeck coefficient S represents the average entropy of electrical
carriers [37], band engineering by properly manipulating the density of states (DOS) of carriers
(electrons, holes, and small polarons, et al., depends on materials) that is responsible for electrical
current could significantly enhance the Seebeck coefficient. It is straightforward to utilize the
low-dimensional structures such as superlattices [35,38], nanowires [39,40], and quantum wells [41,42]
to control DOS. DOS distortions induced by introducing resonant energy levels through doping [43]
and convergence of many valleys by tuning the doping and composition [16] in bulk materials are
newly proposed ways to engineer the DOS for high TE efficiency. It is also proposed that low-energy
carriers can be filtered through incoherent or random interfaces [44–46] which presents another way to
enhance S significantly.

2. Nanocomposites for Thermoelectricity

Nanocomposite (NC) is one candidate that could be easily synthesized to possibly achieve all three
effects mentioned above: reduction of lattice thermal conductivity, engineering DOS, and low-energy
carrier filtering [47–49]. Over the past few years, lots of works have been carried out to improve
the TE efficiency using various NC materials. A review of the studies to control and understand the
formation and the transport properties of the NC materials is given by Medlin and Snyder [50]. The TE
properties of NC materials based on different traditional TE materials such as Bi2Te3, PbTe, and SiGe
are reported experimentally. We review the experimental achievements of NC materials in detail in the
following subsections.

2.1. Bismuth Telluride Based Nanocomposites

Bi2Te3-based materials are most widely used as commercial TE materials for solid-state
refrigeration and thermal management near room temperature [51–53]. The maximum ZTs of p-type
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(BixSb1−x)2Te3 alloy and n-type Bi2(TeySe1−y)3 alloy are about 1 for a long time. It was recently reported
that the peak ZT of Bi2Te3-based NCs has been enhanced to 1.3–1.8 [54–58].

Figure 1 shows the nanostructures of a p-type Bi0.5Sb1.5Te3 NCs sample synthesized by
Poudel et al. [54] by using the ball-milling and hot-pressing method. Nanoinclusions with random
shape can be seen in the figure. The measured size of the nanoinclusions in this NCs material is
between 5 nm to 50 nm while the average value is about 20 nm. In spite of the reduction of carrier
mobility due to additional carrier-interface scattering, an increase of electrical conductivity is found,
as shown in Figure 2a because of the increase of hole concentration partly due to the formation of
nanoprecipitates in NCs. Figure 2b shows the slight decrease of Seebeck coefficient and the peak value
shifts from 370 K to a higher temperature 450 K. The thermal conductivity of NCs is reduced a lot
at all temperatures as shown in Figure 2c because of the abundant interface between nanoinclusions
and matrix in NCs. Therefore, an enhancement of ZT is obtained in Figure 2d due to the reduction
of thermal conductivity without significantly changing the electronic transport properties. ZT ≈ 1.2
at room temperature is obtained and the peak ZT appears to be 1.4 near 373 K. Following the first
work done by Poudel et al. [54], Cao et al. [56] found that p-type (BixSb1−x)2Te3-based NCs with
laminated nanostructures prepared by hydrothermal synthesis and hot-pressing method exhibit a
maximum ZT ≈ 1.47 at 480 K. Xie et al. reported that ZT ≈ 1.56 at 300 K could be obtained in p-type
Bi0.52Sb1.48Te3-based NCs [59] and ZT ≈ 1.5 at 390 K could be obtained in p-type Bi0.48Sb1.52Te3-based
NCs [60] which were fabricated by a melt spinning technique followed by a quick spark plasma
sintering procedure. Dou et al. fabricated Bi0.4Sb1.6Te3-based NCs embedded with amorphous SiO2

nanoparticles and found that the enhancement of ZT was attributed to the increase in Seebeck
coefficient and reduction in thermal conductivity [61]. Guo et al. [62] fabricated Bi0.4Sb1.6Te3-based
NCs incorporated with small proportion (0.3 vol%) of nanophase Cu2Se and found that ZT ≈ 1.6
could be obtained at 488 K. Fan et al. [63] reported the TE transport in a p-type Bi0.4Sb1.6Te3-based
NCs fabricated by a rapid and high throughput method of mixing nanoparticles obtained though
melt spinning as shown in Figure 3. The electrical conductivity of 40 wt% NC in Figure 3a is reduced
that is different from that in Figure 2a. The Seebeck coefficient in Figure 3b is slightly enhanced. The
thermal conductivity in Figure 3c which is below 0.8 W/(m·K) is even smaller than the minimum of
thermal conductivity in Figure 2c. The extremely low thermal conductivity results in ZT = 1.8 at 316 K
as shown in Figure 3d. Furthermore, (BixSb1−x)2Te3 NC materials doped with small amount of PbTe
were studied by Ebling et al. [64], the presence of PbTe is helpful to enhance ZT.

n-Type Bi2Te3−xSex NC materials can also be fabricated with similar techniques such as
ball-milling and hot pressing [65–70]. Figure 4 shows the TE properties of n-type Bi2Te3−xSex NC
prepared in the same way as p-type NCs [65]. The electrical conductivity shown in Figure 4a is
low while the Seebeck coefficient shown in Figure 4b is maintained in comparison with the bulk
material. The low thermal conductivity shown in Figure 4c leads to a peak of ZT slightly below 1.
Very recently, Soni et al. [71,72] reported that the TE properties could be enhanced in Bi2Te3−xSex

nanoplatelet-based NCs. Besides that, Xiong et al. reported that at 370 K ZT ≈ 1.59 could be obtained in
p-type Bi0.5Sb1.5Te3-based NCs and ZT ≈ 1 could be obtained in n-type Bi2Te2.7Se0.3-based NCs which
were fabricated by introducing the liquid-phase-sintering process to the bottom-up approach [73].
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Figure 1. Transmission electron microscope (TEM) images showing the microstructures of hot-pressed
BixSb2−xTe3-based nanocomposite (NC) materials. (A) Low-magnification image showing the
nanograins. (B) High-magnification image showing the grain boundaries. High-magnification
images showing the nanodots in matrix (C) without boundaries and (D) with small angle grain
boundaries. Reprinted with permission from Reference [54]. Copyright 2008, American Association for
the Advancement of Science.
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Figure 2. Temperature dependence of (a) electrical conductivity; (b) Seebeck coefficient; (c) thermal
conductivity; and (d) ZT of p-type Bi0.5Sb1.5Te3-based NC material in comparison with that of a
state-of-the-art (SOA) ingot. Reprinted with permission from Reference [54]. Copyright 2008, American
Association for the Advancement of Science.
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conductivity; and (d) ZT of p-type Bi0.4Sb1.6Te3-based NC material with 40 wt% of nanoinclusions in
comparison with that of NC material with 0 wt% of nanoinclusions. Reprinted with permission from
Reference [63]. Copyright 2010, American Institute of Physics.
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2.2. Lead Telluride Based Nanocomposites

PbTe is one of the best TE materials used in mid-temperature regime. PbTe-AgSbTe2

(or AgPbmSbTe2+m)-based NC materials were first studied by Hsu et al. [74]. They found a maximum
ZT ≈ 2.2 at T = 800 K in AgPbmSbTe2+m with nanoscale region of the crystal structure that was
Ag-Sb-rich in composition [75,76]. Figure 5 shows the TEM image of AgPb18SbTe20-based NCs with
Ag-Sb-rich nanometer sized nanodots. Figure 6 shows the TE transport properties in these NCs.
Extremely large power factor 28 µW/cm·K2 at 700 K is obtained due to the electrical conductivity
shown in Figure 6a which is about 0.25 × 105 S/m and large Seebeck coefficient shown in Figure 6b
which is −335 µV/K. Together with low thermal conductivity as shown in Figure 6c, ZT~2.2 at
800 K is obtained as shown in Figure 6d. Wang et al. [77] also found a maximum power factor
of 17.66 µW/cm·K2 at 673 K in Ag0.8Pb22SbTe20 NCs which corresponds to a high ZT = 1.37.
Paul et al. [78] reported a power factor 18.78 µW/cm·K2 at 500 K in NCs with Ag rich nanodots
embedded in PbTe matrix.

Besides PbTe-AgSbTe2-based NC materials, PbTe-based NC materials are also fabricated. Figure 7
shows the TE transport properties of p-type PbTe NCs with Tl doping compared with the PbTe ingots
reported by Yu et al. [48,79]. The electrical conductivity in NCs is increased at all temperatures as
shown in Figure 7a and the Seebeck coefficient is reduced when the temperature is over 350 K as
shown in Figure 7b. Then, an increase of power factor can be found at low temperature and a decrease
of power factor can be found at high temperature. The thermal conductivity in NCs is smaller than
that in ingots as shown in Figure 7c. Therefore, ZT in Figure 7d is enhanced at low temperature and
changes slightly at high temperature. Moreover, Kim et al synthesized the PbTe-based heterogeneous
nanocomposites by mixing the nanodot nanocomposite and the nanograined nanocomposites and
reported that ZT≈ 2.0 could be obtained at 773 K [80]. Martin et al. [81] prepared p-type PbTe NCs from
nanocrystals synthesized using an aqueous solution-phase reaction. Heremans et al. [82] fabricated
the p-type PbTe based NCs with both nanosized grains and EuTe nanoinclusions. They studied
the low-energy carrier filtering effect which induced the enhancement of Seebeck coefficient. They
also fabricated the PbTe NCs containing nanometer-sized metal Pb precipitates [83]. Vinies et al. [84]
reported a comparison between the measured and calculated electrical transport properties for both
n-type and p-type PbTe/PbSe nanodot superlattices. A reduction of carrier mobility is observed while
the Seebeck coefficient is unaffected.
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2.3. Silicon Germanium Based Nanocomposites

SiGe alloys are the major TE materials for power generation at high temperature. It has been used
in radio-isotope thermoelectric generators (RTGs) for deep-space explorations. The peak ZT reaches 1
in n-type SiGe bulk alloy [85] and 0.65 in p-type SiGe bulk alloy [17].
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SiGe alloy-based NCs material has been fabricated using ball-milling and hot pressing method
by Joshi et al. [86]. Figure 8 shows the TEM images of the nanostructures of the p-type SiGe hot
pressed NCs in Reference [86]. The TE transport properties of Si80Ge20 NCs are plotted in Figure 9
in comparison with the p-type SiGe bulk alloy used in RTGs. Figure 9a,b show that the electrical
conductivity and the Seebeck coefficient in NC samples can be either larger or smaller than that in
RTGs materials at different temperature. The power factor could be comparable to that in RTGs. Due
to the significant reduction of thermal conductivity as shown in Figure 9c, peak ZT about 0.95 can
be obtained in Figure 9d. Wang et al. [87] reported the enhanced TE performance in n-type SiGe
NCs with and without annealing in comparison with the n-type SiGe bulk alloy used in RTGs as
shown in Figure 10. Similar to p-type NCs, the electrical conductivity shown in Figure 10a and the
Seebeck coefficient shown in Figure 10b slightly change in NCs. The thermal conductivity as shown in
Figure 10c decreases from about 4.5 W/(m·K) to about 2.5 W/(m·K) at all temperatures. Then ZT in
NCs reaches 1.3 around 1200 K which is much higher than 1 in n-type SiGe bulk alloy used in RTGs as
shown in Figure 10d.

Moreover, SiGe NCs with other nanoinclusions are also studied. Yu et al. [88] demonstrated that
modulation-doping could increase ZT in Si86.25Ge13.75P1.05 NCs through increasing the carrier mobility
as well as power factor rather than reducing thermal conductivity. Zhu et al. [89] reported the increased
phonon-interface scattering when low concentration of Ge was doped in nanostructured Si could
enhance ZT. Nozariasbmarz et al. presented that the incorporation of metallic iron silicide in SiGe NCs
could effectively improve the electrical conductivity and thus increase ZT over the temperature range
of 800–950 ◦C [90]. Zamanipour and Vashaee [91] investigated the Si0.8Ge0.2 based NCs embedded
with CrSi2 nanoinclusions from both experimental and theoretical approaches. They found that the
power factor was enhanced due to the enhancement in charge carrier mobility.
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Figure 9. Temperature dependence of (a) electrical conductivity; (b) Seebeck coefficient; (c) thermal
conductivity; and (d) ZT of p-type Si80Ge20-based NC material in comparison with the p-type SiGe
bulk alloy used in radio-isotope thermoelectric generators (RTGs) [45]. Reprinted with permission
from Reference [86]. Copyright 2008, American Chemical Society.
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Figure 10. Temperature dependence of (a) electrical conductivity; (b) Seebeck coefficient; (c) thermal
conductivity; and (d) ZT of n-type Si80Ge20-based NC material and the sample after annealing
in comparison with the n-type SiGe bulk alloy used in RTGs. Reprinted with permission from
Reference [87]. Copyright 2008, American Institute of Physics.
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2.4. Other Nanocomposites

Recently, ZnO has become a potential candidate for high temperature TE materials but suffers from
low electrical conductivity [92]. Many ZnO-based NCs such as Al-doped ZnO (AZO), Ga-doped ZnO
(GZO), and Al and Ga co-doped ZnO have been investigated for increasing the electrical conductivity
and thus realization of high temperature TE power generation, in which ZT are obtain to be 0.3–0.65
at 1000 K [93–98]. Liang et al. [99] proposed that the AZO-based NCs embedded with reduced
graphene oxides (rGOs) could effectively modulate the carrier concentration and thus optimize the
electrical conductivity. The morphologies of the pure ZnO, AZO alloys, and Zn0.98Al0.02O/rGO
hybrids is shown in Figure 11, as measured by field-effect scanning electron microscopy (SEM).
Simultaneously, the increased interface between the AZO and rGOs could remarkably reduce the lattice
thermal conductivity due to the increasing phonon-boundary scattering [99]. Other materials such as
manganese silicide based NCs [100] and magnesium silicide based NCs [101–103], polycrystalline SnSe
embedded with PbTe nanoinclusions [104], Skutterudites CoSb3 compounds [105] and YbxCo4Sb12

alloy [106] based NCs, n-type half-Heuslers alloy Hf0.75Zr0.25NiSn0.99Sb0.01 based NCs [107], p-type
half-Heuslers alloy Zr0.5Hf0.5CoSb0.8Sn0.2 based NCs [108] and Zr0.25Hf0.25NiSn based NCs [109],
BiCuSeO-based NCs [110] and InGaAs alloy embedded with ErAs nanoparticles [111,112] are
also studied. Furthermore, some non-TE materials like carbon nanotube [113], C60 [114,115],
graphene [116,117], SiC [118] and platinum nanocrystals [119] are used as nanoconstituents to embed
into Bi2Te3 and Sb2Te3 based materials to enhance ZT.Materials 2017, 10, 418  10 of 30 
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Figure 11. Scanning electron microscopy (SEM) images of (a) ZnO; (b) Zn0.99Al0.01O; (c) Zn0.98Al0.02O;
(d) Zn0.98Al0.02O/rGO (1.5 wt%); (e) Zn0.98Al0.02O/rGO (2.5 wt%); and (f) Zn0.98Al0.02O/rGO
(3.5 wt%). Red circles indicate the Al in AZO as confirmed by energy-dispersive X-ray
(EDX) measurement. Reprinted with permission from Reference [99]. Copyright 2015, American
Chemical Society.

Organic NCs could be used to enhance the TE efficiency [120]. They are possibly advantageous
compared with the inorganic materials due to the fact that they are much easier and cheaper
to synthesize. Tunable physical and chemical properties in a fairly large range through simple
modifications of their molecular structures provide great material flexibility to meet the requirements of
the potential applications. For TE properties in organic materials, large electrical conductivity and large
Seebeck coefficient have been reported in conducting polymers when the materials are appropriately
doped [121,122]. Combined with the low thermal conductivity, large ZT values can be speculated.
For example, a ZT value of ~0.38 has been reported for iodine-doped polyacytelene [123] and the
value is 0.25 in poly(3,4-ethylenedioxythiophene) (PEDOT) [124]. The TE properties in nanostructured
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organic materials such as organic films [125], chain-like polymer structures [126], organic hybrid
materials [127], and self-assembled molecular nanowires that are composed of one-dimensional (1D)
stacks of planar building blocks loosely held together [128] have been studied experimentally. There
are not many theoretical works for potentially high-efficiency organic TE materials. Casian [129]
predicted that very large ZT at room temperature was possible for quasi-1D organic crystals by using
the Boltzmann transport equations of conducting electrons. Wang et al. [130] used the first-principles
calculations coupled with the Boltzmann transport theory to study the TE properties in pentacene and
rubrene crystals and ZT ranging from 0.8 to 1.1. Wang et al. [131] applied the Holstein small polaron
model to study the TE properties in the quasi-1D molecular nanowires. The study of TE properties in
organic NCs is still in the infant stage, lots of efforts are needed in this field.

Recently, organic/inorganic NCs provide an opportunity for enhancing TE performance by
combining the advantages of low thermal conductivity and high power factor from the organic and
inorganic components, respectively. Some inorganic materials such as carbon nanotubes [132,133],
traditional inorganic TE fibers [134,135], metallic nanowires [136–138], and so on, have been applied
as inorganic components to achieve high enhancement of the Seebeck coefficient and/or electrical
conductivity in the conductive polymers. Meanwhile, many conductive inorganic/insulating organic
NCs have been studied [139–141], in which the infinite conductive path is formed when the volumetric
fraction of the inorganic materials is beyond the critical volume fraction according to the percolation
theory [142–144]. The electrons can easily pass through the conductive path, and thus, the universal
scaling law is obeyed for the electrical conductivity but not for the thermal conductivity, since the
thermal energy flows in both organic and inorganic materials [145]. Furthermore, the newly raised
research work has demonstrated that the combination of Ni nanowires and insulating polymer
polyvinylidene fluoride (PVDF) could exhibit outstanding n-type TE properties [146]. Figure 12a
reveals that the as-fabricated Ni/PVDF TE NC films are highly bendable and hard to deform. The
Top-view SEM images of the Ni/PVDF TE NCs with different contents of Ni nanowires are shown in
Figure 12b–f. The incorporation of Ni nanowires provides a high power factor of 200 µW/m·K2.
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Figure 12. (a) Typical photographs of highly bendable Ni/ polymer polyvinylidene fluoride (PVDF)
thermoelectric (TE) NC film. (b–f) Top-view SEM images of the Ni/PVDF TE NCs with different
contents of Ni nanowires. Ni nanowires are denoted by the red arrow. Reprinted with permission from
Reference [146]. Copyright 2017, WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.

3. Modeling of Phonon Transport

In this section, we review the transport properties of phonons in NCs that are studied by a wide
variety of models. In NCs, it has been pointed out that the Fourier’s law breaks down in predicting the
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lattice thermal conductivity [147]. The calculation of lattice thermal conductivity of NCs beyond the
Fourier’s theory was carried out through solving the phonon Boltzmann transport equation (BTE) and
the phonon Monte Carlo in a series of papers by Yang et al. [148–152]. However, the BTE calculation
is difficult to implement in all but some particular materials with simple geometries [153,154] and
the computational cost of the Monte Carlo simulation is quite high. Satyala and Vashaee [155,156]
used the Steigmer and Abeles model based on the Callaway method [157] to model phonon transport
with the BTE and relaxation time approximation. The phonon-phonon, phonon-electron, point defect,
and grain boundary scattering mechanisms are incorporated into their model. A similar model was
also developed by Mingo et al. [158] to calculate the thermal conductivity in the SiGe alloy containing
Si nanoparticles.

The modified effective medium approximation (EMA) method which gives a closed-form
expression for the thermal conductivity in NCs with spherical nanoparticles is developed by Minnich
and Chen [159]. This method makes the calculation much simpler. Such a modified method is based
on the EMA method that is used to calculate the thermal conductivity of NCs, which considers the
thermal boundary resistance [160]. The effective thermal conductivity of NCs as a function of interface
density Φ and nanoparticle diameter a can be written as follows:

κe f f (Φ, a) = 1
3 chνp,h

1
(1/Λh)+(Φ/4) ×

κp(a)(1+2ϕ(Φ,a))+2κh(Φ)+2(Φa/6)[κp(a)(1−ϕ(Φ,a))−κh(Φ)]
κp(a)(1+2ϕ(Φ,a))+2κh(Φ)−(Φa/6)[κp(a)(1−ϕ(Φ,a))−κh(Φ)]

. (4)

where Λh, ch, and νp,h are the phonon mean free path, specific heat, and phonon group velocity
in host material, respectively. Φ = 4π(a/2)2/D3

0, ϕ(Φ, a) = κh(Φ)/(a/2), D0 is the effective cell
length, κp(a) is the particle thermal conductivity, and κh(Φ) is the host material thermal conductivity.
Figure 13 shows the effective thermal conductivity as a function of interface density for different
sizes of nanoparticles in SiGe NCs with Si nanoparticles embedded in Ge host calculated using
modified EMA and unmodified EMA in comparison with Monte Carlo simulation and BTE. The results
calculated from modified EMA are in good agreement with results from Monte Carlo simulations and
the solutions of BTE.

Ordonez et al. [161] extended the modified EMA method to consider the NCs with spheroidal
nanoparticles whose size and shape could affect the thermal conductivity. Poon and Limtragool [162]
extended the modified EMA method to investigate concentrated NCs in which the inter-particle
phonon scattering processes beyond the independent nanoparticles phonon scattering should be
considered. They found that the thermal conductivity varies more rapidly with the volumetric fraction
of nanoinclusions in comparison with original modified EMA method.
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inclusions predicted by the modified and unmodified effective medium approximation (EMA) formulae
in comparison with the data from (a) Monte Carlo simulation and (b) Boltzmann equation. Reprinted
with permission from Reference [159]. Copyright 2007, American Institute of Physics.
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4. Modeling of Electrical Carrier Transport

In this section, we review the model for electrical carrier transport in NCs. First, NCs are classified
for convenience in Figure 14. Figure 14a shows the NCs with nanoconstituents (nanoparticles or
nanowires) randomly embedded in a matrix (host) material that is called “random particle-host-type”
NCs. Nanoconstituents periodically embedded in a matrix material as shown in Figure 14b is called
“ordered particle-host-type” NCs. In these two types of NCs, any two points in the matrix can be connected
without encountering any nanoconstituents, i.e., there is a bypass for electron transport to go around
the nanoconstituents. Another type of NCs is a mixture of different kinds of nanoconstituents as shown
in Figure 14c which is called “particle-particle-type” NCs. In this type of NCs, two arbitrary points in
two separated nanostructures of the same material cannot be connected without encountering the
other kind of nanoconstituents. Different theories should be used to describe different types of NCs.
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Figure 14. (a) Nanoconstituents (nanoparticles or nanowires) randomly embedded in a matrix (host)
material, noted as random particle-host type NCs; (b) Nanoconstituents periodically embedded in a
matrix material, noted as ordered particle-host type NCs. In these two types of NCs, any two points in
the matrix can be connected without encountering any nanoconstituents; (c) Mixture of different kinds
of nanoconstituents, noted as particle-particle-type NCs. In this type of NCs, two arbitrary points in
two separated nanostructures of the same material cannot be connected without encountering the other
kind of nanoconstituent. Reprinted with permission from Reference [163]. Copyright 2010, American
Physical Society.
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4.1. Boltzmann Transport Equations for Electrical Transport

For electron transport, a transport theory is proposed based on BTE in NCs beyond the
conventional bulk TE transport model which was proposed by Bergman et al. [164,165] in the 1990s
using effective transport matrix and field decoupling transformation method. The electrical transport
theory which is under the framework of BTE and relaxation time approximation (RTA) usually starts
with Kane model [166] in which multiple bands are considered. The dispersion relation of each carrier
pocket in each band can be written as:

}2k2
i,j,‖

2m∗i,j,‖
+

}2k2
i,j,⊥

2m∗i,j,⊥
= γ

(
Ei,j
)
= Ei,j

(
1 + Ei,j/Eg

)
. (5)

Here i = (1, 2, · · ·) represents the band index, j = (e, h) represents the electrons (e) and holes (h),
m∗i,j,‖(m

∗
i,j,⊥) is the effective mass in a carrier pocket in parallel (perpendicular) direction near the band

edge and ki,j,‖(ki,j,⊥) is the corresponding wave vector. It is noted that m∗i,j = (m∗2i,j,‖m
∗
i,j,⊥)

1/3 is the

density-of-states effective mass of each carrier pocket, and m∗d,i,j = (N)2/3m∗i,j is the density-of-states
effective mass of each energy band with degeneracy N. The non-parabolicity of the band is taken into
account through the energy term (Ei,j) = Ei,j(1 + Ei,j/Eg), where Ei,j/Eg is the non-parabolicity factor
and Eg is the energy gap.

Then the electrical conductivity σ, Seebeck coefficients S, and electronic thermal conductivity κc

of both electrons and holes can then be calculated [11]:

σξ = ∑
j

σξ,j, σξ,j = ∑
i

q2
j
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2kBTm∗d,i,j
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3/2
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i,j; (6)
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j
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− ηi,j,F); (7)
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σξ,eσξ,h
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j
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κc,ξ,j = ∑
i
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(
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× (L2
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Here ξ = (‖,⊥), qj denotes the charge of carrier, ηi,j = Ei,j/kBT, ηi,e,F =
(
µ− Eg − Ei,e,0

)
/kBT,

ηi,h,F = (−µ− Ei,h,0)/kBT, ηg = Eg/kBT, and γ
(
ηi,j
)
= ηi,j

(
1 + ηi,j/ηg

)
, respectively. The integrations

in Equations (6)–(8) can be written as

Lv
i,j =

∫ ∞

0
ηv

i,j
γ3/2(ηi,j)

γ′(ηi,j)
τtot

i,j (−
∂ f

∂ηi,j
)dηi,j, (9)

where f is the equilibrium Fermi-Dirac distribution. τtot
i,j is the total relaxation time which is calculated

by the Mathiessen’s rule assuming that the scattering events are independent of each other:

1
τtot

i,j
=

1
τi,j

+
1

τb,i,j
, (10)
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where τi,j is the relaxation time of intrinsic scattering mechanisms in bulk alloys such as
electron-phonon scattering and electron-impurity scattering, and τb,i,j is the carrier-interface relaxation
time which will be discussed in detail in next subsection. The detailed expressions of the
electron-phonon scattering relaxation time and carrier-impurity scattering relaxation time are given in
Reference [165,167,168].

4.2. Relaxation Time Model for Carrier-Interface Scattering

In NCs, the Seebeck coefficient could be increased since the average entropy (or average energy)
carried by each carrier is enhanced by energy-selective filtering effect [44,168,169]. Such an effect filters
the electrical carriers whose energy are lower than the energy barrier while the carriers whose energy
are higher than the energy barrier εb can easily pass through, as shown in Figure 15. A carrier-interface
relaxation time is first introduced to describe the interface scattering experienced by the carriers in NCs
by assuming a one-dimensional rectangular potential barrier in some models [12,47,170–172]. Yang
and Chen study the TE transport properties for Si0.8Ge0.2 alloy-based NCs as a function of potential
barrier height [173] through writing the carrier-interface relaxation time in a simple way:

1
τb

=
6
√

2E/m∗

a
when E < εb,

1
τb

= 0 when E > εb, (11)

where εb is the energy barrier height, and subscript i, j are dropped for simplicity in the following
discussion. Going a step further, Minnich et al. [174] considered the interface scattering using a
charge-trapping model. The filtering effect of Shottky barriers potential induced by trapping states
in grain boundaries is studied using one-band effective mass model within the Landauer formulism
by Bachmann et al. [175]. Faleev et al. [176] and Zebarjadi et al. [177] used the partial wave method
and the Born approximation, which was applicable when the concentration of nanoinclusions was
very low, to calculate the electronic transport cross section σt and then obtained the carrier-interface
relaxation time through the relation:

1
τb

= Niνσt, (12)

where Ni is the concentration of nanoinclusions. Figure 16 shows the enhanced Seebeck coefficient
calculated in Reference [176] in PbTe NCs with spherical metallic nanoinclusions for different
radius and fixed volumetric fraction. Smaller nanoinclusions lead to larger absolute Seebeck
coefficient because of the larger interface density. When the concentration of nanoinclusion is
high, the nanoinclusions should not be treated independently; an effective medium theory based
on the coherent potential approximation similar to that used in disordered system is proposed by
Zebarjadi et al. [178,179]. A perturbation theory was also used by Yang and Qin [180] to analytically
calculate the carrier-interface scattering probabilities to obtain the relaxation time. All the above
carrier-interface scattering models are used for particle-host type NCs.

All the above models are useful in particle-host type NCs. Zhou et al. [163] proposed a
carrier-interface scattering model which could be used in both the particle-host type NCs and
particle-particle NCs. They considered the relaxation time as the average flying time between two
scattering events. The average free path length could be evaluated by averaging on distance ι which is
the distance between two successive boundaries and the carrier transmission probability P through a
potential barrier. When the carriers travel in crystals with random trajectories, they will encounter the
interface of nanoinclusion randomly. During its random trajectory, the carrier will transmit through
the potential barrier of the nanoinclusions one by one with transmission coefficient P, or be scattered
away by these barriers with reflection coefficient 1 − P as shown in Figure 17a [181]. Particularly, if the
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carrier does not meet any potential barrier during its random trajectory, we called this trajectory an
open path, as shown in Figure 17b.
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Figure 15. Schematic diagram of potential barrier scattering at grain boundary. A potential barrier of
height εb is formed at grain boundary where the µ is chemical potential, εc and εν are the band edges of
conduction band and valence band. The carriers whose energies are lower than the barrier height are
filtered while the carriers whose energies are higher than the barrier height can easily pass through the
potential barrier. Reprinted with permission from Reference [172]. Copyright 2002, American Institute
of Physics.
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Figure 17. (a) Schematic diagram of the random trajectory of a carrier transmit through or scatter by
nanoconstituents one by one with transmission probability P and reflection probability R = 1 − P.
(b) Schematic diagram of open path that the carrier does not meet any nanoconstituents. This open
path can exist only in particle-host type. In particle-particle type, there is no such path because of the
absence of topological connectedness. Reprinted with permission from Reference [163]. Copyright
2010, American Physical Society.



Materials 2017, 10, 418 17 of 31

Then, in particle-host type NC, the relaxation time due to interface scattering is:

τb =
ια
να

1
1− P

+
ιβ

νβ

P
1− P

, (13)

where να

(
νβ

)
is the velocity of the carrier in matrix (nanoinclusions), ια = a(1− x)/6x, ιβ = a/6 for

spherical nanoinclusions, x is the volumetric fraction of nanoinclusions. α and β are the index of
different constituents materials in NC.

In particle-particle type NC, because of the absence of connectedness, there is no open path,
in other words, the path shown in Figure 17b does not exist. Then the relaxation time due to interface
scattering is slightly different from the particle-host type given in Equation (13):

τb =
ια
να

P
1− P

+
ιβ

νβ

P
1− P

. (14)

The carrier transmission probability P through the energy barrier is a function of the carrier energy,
the height and geometry of each potential barrier. From the energy dependence of P, one can obtain
the effective barrier height εb near which P changes from 0 to 1 dramatically. Detailed calculation of P
can be found in Reference [163].

Figure 18 shows the comparison of calculation results of Zhou et al.’s transport model with
the experimental data of p-type Bi0.5Sb1.5Te3 alloy and high efficiency BiSbTe alloy-based NCs:
(Bi0.14Sb1.86Te3)-(Bi0.5Sb1.5Te3) NC reported by Poudel et al. in Reference [54]. The calculation results
of both bulk alloy material and NC material fit very well with the reported experimental data from
300 K to 450 K. The fitting parameters used in calculation are in good agreement with reported values
in handbooks and other references [163]. In Figure 18 (a), (b), the calculated electrical conductivity
and Seebeck coefficient agree well with the experimental data by choosing an effective barrier height
Eb ≈ 0.05 eV, the average size of particles a = 20 nm as reported in Reference [54], and the volumetric
fraction of nanoinclusion x = 0.06 as fitting parameters.
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Figure 18. Calculated transport properties for state-of-the-art p-type Bi0.5Sb1.5Te3 alloy and the
corresponding NC materials with respect to temperature, compared with experimental data in
Reference [54]. (a) Electrical conductivity. (b) Seebeck coefficient. Reprinted with permission from
Reference [163]. Copyright 2010, American Physical Society.

The size dependence of electrical conductivity, Seebeck coefficient, and power factor for two
different (Bi0.5Sb1.5Te3)1−x-based NCs with volumetric fractions, x = 0.1 and x = 0.3 have been calculated
by Zhou et al. [163]. For a fixed size a, larger x means more interfaces in the NCs, which results in
higher Seebeck coefficient and lower electrical conductivity for x = 0.3 than that for x = 0.1 NCs. For a
fixed volumetric fraction x, electrical conductivity increases and the Seebeck coefficient decreases with
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the increase of size a since fewer interfaces are involved. The power factor of NCs with both x = 0.1
and x = 0.3 does not change dramatically with the size a. Therefore, smaller size and larger volumetric
fraction of nanoinclusions lead to stronger filtering effect, i.e., smaller electrical conductivity and larger
Seebeck coefficient. The power factor could be slightly enhanced by properly choosing the parameters.

The difference between the particle-particle type and particle-host type NC is studied by
Zhou et al. [163] through the relaxation time model. The electrical conductivity and Seebeck coefficient
of these two kinds of NC are compared in Reference [163] when the size of nanoinclusion is a = 10
nm. It is obvious that the filter effect of particle-particle type is stronger than the particle-host type
under the same condition; in other words, the reduction of electrical and the enhancement of Seebeck
coefficient are more significant for the particle-particle type when size and volumetric fraction of
nanoinclusions are the same.

4.3. Band Structure and Relaxation Time Engineering in Nanocomposites

Besides the low-energy carrier filtering effect we discussed in the previous section, possible
band engineering using nanostructures is another promising way to improve the TE efficiency of
NCs. According to the theory proposed by Mahan et al. [182], Zhou et al. [183], and Jeong et al. [184],
sharp transport distribution functions, which could be induced by band structure with sharp DOS
or sharp feature in the relaxation time versus energy [185], could result in an optimal TE figure of
merit. Therefore, the modification of band structure and relaxation mechanism in NCs with specific
geometries which results in a narrow transport distribution function is preferred.

The promising nanostructure which leads sharp electron DOS is the QD-based “ordered particle-
host-type” NCs, for example, PbSe QD superlattice fabricated by Wang et al. [186] exhibited very high
Seebeck coefficient. Theoretically, Fomin and Kratzer [187] studied the TE transport in periodic
one-dimensional stacks of InAs QDs in GaAs matrix using the effective-mass model and BTE.
In their model, both the miniband formation and the modification of relaxation time due to quantum
confinement effect on the deformation potential acoustic-phonon scattering are considered. Balandin
and Lazarenkova [188–190], Yadav et al. [191], Khitun et al. [192] modeled the formation of minibands
with sharp DOS in NCs with cubic or cuboid QDs periodically embedded in matrix by solving
Schrödinger equation under the envelope function effective-mass approximation. BTE with constant
relaxation time [182,185] or relaxation time in bulk materials [186] is used to calculate the transport
properties. An enhancement of Seebeck coefficient is found due to the miniband formation. Figure 19
shows the orthorhombic QD NCs studied in Reference [190] and the calculated sharp DOS of minibands
in Ge/Si QD NCs.

Other methodologies to engineer the band structure or scattering mechanism in NCs that do
not require rigorous periodic geometric structures are also proposed. For example, Xu and Li [193]
used the deformation potential theory and a degenerate k·p method to investigate the strain effect
of n-type Si/Ge NCs which could induce energy band shift and effective mass variation. Popescu
and Woods [194] investigated electronic structure modified by the locally distorted DOS induced by
spherical nanoinclusions embedded in bulk PbTe. The mechanism in this model is analogy to the DOS
distortion induced by resonant impurity doping [43]. Significant TE efficiency enhancement is found
for strongly localized DOS modification at Fermi level.
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Figure 19. (a) Schematic structure of the orthorhombic quantum dot (QD) NCs. (b) Density of states
of heavy hole of each miniband calculated in Ge/Si QD NCs with the parameters Lx = Ly = 5 nm,
Lz = 2.5 nm, and Hx = Hy = 2.5 nm, Hz = 1.25 nm shown with the dash line. The solid line shows
the total DOS. Reprinted with permission from Reference [190]. Copyright 2002, American Institute
of Physics.

One particular case of the ordered particle-host type NCs is that the nanoinclusions are QDs with
electron confined inside, so-called QD NCs. In this NC material, both band structure and relaxation
time engineering could be realized. For finite confinement potential, the electron wave function of the
quantum confined electrons would extend into matrix as shown in Figure 20. These electrons would
hop across QD arrays. A tight-binding together with Kubo formula and Green’s function method is
established by Zhou and Yang [195–197]. They wrote the second quantized Hamiltonian of the QDs
arrays as [198]:

H = ∑
l,θ

Elc†
l,θcl,θ − ∑

l,θ,θ′
Jl(Rθ′ −Rθ)c†

l,θ′cl,θ = ∑
l,k

El(k)c†
l,kcl,k, (15)

where c†
l,θ(cl,θ) is the creation (annihilation) operator at position θ in miniband l, c†

l,k(cl,k) is the creation
(annihilation) operator with momentum k, El is the energy of the lth level. The overlap integral
Jl(Rθ −Rθ′) = Jl(δ) in Equation (15) which describes the hopping strength of electrons between two
QDs is Jl(δ) = −

∫
drφ∗l (r− δ)[V(r)− v0(r)]φl(r) [198] where V(r)− v0(r) is the difference between

the periodic potential and the potential of individual QD. The electron wave functions confined in
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QDs are obtained by solving the Schrödinger equation. The transport coefficients could be calculated
for a given chemical potential µ [199,200]:

Lv
QD = Ne2−v

∫ dE
2π

Ξ(E)(E− µ)v[−∂ f (E)
∂E

]. (16)

Here e denotes the charge of carrier, E is the energy of electrical carriers, v is integer number, and f (E)
is the equilibrium Fermi-Dirac distribution. Factor N on the right hand side of the equation denotes
the N-folded degeneracy of the bands. Then the electrical conductivity, the Seebeck coefficient, and the
electronic thermal conductivity in QDs can be obtained as:

σQD = L0
QD, (17)

SQD = L1
QD/TL0

QD, (18)

κc,QD = [L2
QD −

(
L1

QD

)2
/L0

QD]/T. (19)

The transport distribution function (TDF) Ξ(E) in Equation (16) is:

Ξ(E) = ∑
l

∫
dE′ρ̃l

(
E′
)∣∣Gret

l
(
E, E′

)∣∣2 (20)

where the square of the module of the retarded Green’s function is
∣∣Gret

l (E, E′)
∣∣2 ≈

2δ(E− E′)τl,QD(E) [201] under the relaxation time approximation, τl,QD is the total relaxation time of
the lth miniband in QDs. The quantum confinement effect on the relaxation time has been considered
through introducing form factor. ρ̃l(E) is the effective DOS for transport properties.
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Figure 20. Schematic diagram of the band structure of QDs and the quantum confinement of electron
wave functions. V0 is the height of confinement potential and V1 is the difference of band edges
between QD and matrix. Reprinted with permission from Reference [195]. Copyright 2011, American
Institute of Physics.

The quantum model is applied to PbSe/PbTe QD NCs. The electron DOS for different QD size a
and inter-dot distance D in comparison with bulk DOS is shown in Figure 21. The inter-dot spacing
D−a is fixed to 3 nm. The center and the width of the band are tunable by changing QD size a. When
a is small (a = 7 nm and 9 nm), only the lowest miniband appears, since the energy of miniband is
inversely proportional to the size of QD. The energy of the higher energy levels could exceed the
confinement potential. The center of the miniband shifts from 0.1 eV to 0.08 eV and the band width
decreases from 0.12 eV to 0.06 eV when a increases from 7 nm to 9 nm. For larger a (a = 11 nm), higher
minibands appear. The DOS becomes sharper when D increases since the band width is proportional
to the overlap integral, which decays with the inter-dot spacing D−a. Such tunability of the center and
width of the miniband shown in Figure 21 render possibilities to manipulate the Seebeck coefficient
and thus the ZT of QD NCs.
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The phonon bottleneck effect is found to be possible to engineer relaxation time. By comparison
with the relaxation time of the corresponding bulk materials in Reference [195], the total relaxation time
in QD NC is a little smaller than that of the bulk material near the lower edge of the miniband and much
larger than the bulk case near the upper edge of the miniband for QD NC when (a, D) = (7 nm, 10 nm)
and (9 nm, 12 nm), respectively. It should be noted that there is no physical meaning for relaxation
time out of the edge of the miniband. Although the electron relaxation time near the lower edge
is reduced by an order of magnitude, the average relaxation time is indeed enhanced because the
increase of the relaxation time near the upper edge is two orders of magnitude. For (a, D) = (7 nm,
13 nm), the electron relaxation time of all the energies within miniband is much larger than that
in the bulk material. The increase of the electron relaxation time is a result of the restriction of
energy and momentum conservation in electron-phonon scattering, i.e., phonon-bottleneck effect for
quantum-confined electrons [202]. The effective relaxation time of electron-phonon scattering increases
due to the quantum confinement of electrons in QDs.
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Figure 21. Density of states (DOS) for QDs with varying (a, D) in comparison with DOS in the
matrix material. Reprinted with permission from Reference [195]. Copyright 2011, American Institute
of Physics.

Zhou et al. [195] combined the classical transport of bulk-like electrical carriers (Sections 4.1
and 4.2) and quantum hopping transport of quantum-confined electrons described in this section
as a two-channel transport model in QD NCs. In this model, the low-energy carrier filtering effect,
band structure engineering through miniband formation, and relaxation time engineering through
phonon-bottleneck effect are considered. The temperature dependence of electrical conductivity and
Seebeck coefficient are calculated using two-channel transport model in PbSe/PbTe QD NC for QDs
with different size a and inter-dot distance D. The electrical conductivity and Seebeck coefficient can
be enhanced simultaneously for QD NC with (a, D) = (7 nm, 10 nm) and (a, D) = (8 nm, 11 nm). The
enhancement of electrical conductivity is a result of the large overlap integral of small inter-dot spacing
and the increase of relaxation time of electron-phonon scattering due to the phonon-bottleneck effect.
For QD NC with (a, D) = (9 nm, 12 nm), the electrical conductivity is reduced. The Seebeck coefficient
is enhanced at low temperature while reduced at high temperature. In all of the above three cases,
the transport channel of quantum-confined electrons dominates. In contrast, the contribution from
quantum-confined electrons could be very small for QD NC with (a, D) = (7 nm, 12 nm) as the overlap
integral dramatically decreases with D−a. The electrical conductivity is thus reduced a lot and the
Seebeck coefficient is only slightly enhanced due to the classical interface filtering effect.

The authors further applied the two-channel transport model to find the optimal band width for
TE materials pointed out in Reference [183] in QD NCs. Figure 22 shows the dependence of ZT on
the inter-dot spacing, which is inversely proportional to the band width of minibands, for different
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QD size and doping concentrations in Bi2Te3/Sb2Te3 QD NCs at T = 300 K [196]. The maxima of ZT
are found: (1) when D−a is 2 nm for a = 6 nm and p = 0.5p0; (2) when D−a is 2.3 nm for a = 6 nm and
p = p0; (3) when D−a is 1.7 nm for a = 7 nm and p = 0.5p0.
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5. Summary

In this article, we review the progress in the field of nanocomposite thermoelectric materials,
which are nanostructured materials with nanoconstituents embedded in a matrix material or a mixture
of different nanoconstituents. It has been theoretically proposed and experimentally synthesized
to be a high efficiency thermoelectric material by reducing the lattice thermal conductivity due to
phonon-interface scattering and enhancing the electronic performance due to modification of electron
scattering and band structures. Nanocomposites materials based on various classes of materials
and kinds of models are introduced. It is possible to slightly increase the power factor through
low-energy carrier filtering and reduce the lattice thermal conductivity through phonon interface
scattering in nanocomposites. In periodic quantum dot nanocomposites, band structure engineering
due to miniband formation and relaxation time engineering through phonon bottleneck effect could
even lead to a simultaneous enhancement of electrical conductivity and Seebeck coefficient with proper
size of quantum dots and inter-dot distance. Optimal band width for thermoelectric properties can be
realized in quantum dot nanocomposites.
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