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OBJECTIVE

Todevelopapatient-level simulationmodel for predicting lifetimehealth outcomes
of patients with type 1 diabetes and as a tool for economic evaluation of type 1
diabetes treatment based on data from a large, longitudinal cohort.

RESEARCH DESIGN AND METHODS

Data for model development were obtained from the Swedish National Diabetes
Register. We derived parametric proportional hazards models predicting the
absolute risk of diabetes complications and death based on a wide range of clinical
variables and history of complications.We used linear regressionmodels to predict
risk factor progression. Internal validation was performed, estimates of life
expectancies for different age-sex strata were computed, and the impact of key
risk factors on life expectancy was assessed.

RESULTS

The study population consisted of 27,841 patientswith type 1 diabeteswith amean
duration of follow-up of 7 years. Internal validation showed good agreement
between the predicted and observed cumulative incidence of death and 10 com-
plications. Simulated life expectancy was∼13 years lower than that of the sex- and
age-matched general population, and patients with type 1 diabetes could expect to
live with one or more complications for ∼40% of their remaining life. Sensitivity
analysis showed the importance of preventing renal dysfunction, hypoglycemia,
and hyperglycemia as well as lowering HbA1c in reducing the risk of complications
and death.

CONCLUSIONS

Our model was able to simulate risk factor progression and event histories that
closelymatch the observedoutcomes and toproject events occurring over patients’
lifetimes. The model can serve as a tool to estimate the impact of changing clinical
risk factors on health outcomes to inform economic evaluations of interventions in
type 1 diabetes.

Simulationmodels are nowbeingwidely used for predicting theprogressionofdiabetes
and its complications, particularly when evaluating the long-term clinical and economic
benefitsof interventions (1). Thesemodelshavemanyapplications. Forexample, theUK
ProspectiveDiabetesStudy (UKPDS)outcomesmodel for type2diabetes (2)wasused to
develop life expectancy tables stratifiedby combined levels of risk factors (3),which can
assist cliniciansandpatients inmakingdecisionsonstrategies to improvemodifiable risk
factors. Models that predict health outcomes in chronic diseases are also essential for
optimizing health policies because it can take many years to observe the impact of new
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interventions on patient outcomes. These
simulatedoutcomes,whencombinedwith
the associated quality of life and costs, can
facilitate the quantification of quality-
adjusted life years (QALYs) and total
lifetime costs, which constitute the foun-
dations of modern health technology
assessment.
There are currentlymore than a dozen

published simulation models for type 1
diabetes (4), butmost of themwere built
by synthesizing inconsistent data from
clinical trials involving cohorts with dif-
ferent characteristics and using equations
frompopulationswithout type1diabetes,
such as the Framingham equation (5) and
thosefromtheUKPDSmodel (6), topredict
macrovascularevents.Patientswith type1
diabetes havehigher risk of cardiovascular
disease (CVD) compared with the general
population (7), but the current tools for
absolute CVD risk assessment fail to pro-
vide reasonable estimates of CVD risk in
patientswithtype1diabetes.Forexample,
the Framingham equation developed for
the general adult population (5) and the
UKPDS model developed for type 2 di-
abetes (6) have been shown to poorly
predict CVD risk in type 1 diabetes (8).
It has long been recognized that there

is a need to develop risk stratification
models specifically for patients with type 1
diabetes. There have been several efforts
to develop calculators for CVD risk in type1
diabetes (9,10), but there is currently no
integrated set of equations like those
that have been developed for type 2
diabetes (2,11) to predict the occurrence
of a range of complications in type 1
diabetes.
The lack of an appropriate simulation

model based entirely on large clinical
data from patients with type 1 diabetes
has been a major gap in the current
literature toassess thecost-effectiveness
of interventions for this disease. To ad-
dress this, we developed a comprehen-
sive simulation model for lifetime health
outcomes of patients with type 1 diabe-
tes based on a nationally representative
population. This model is envisaged to
serve as a tool for economic evaluationof
new interventions for type 1 diabetes.

RESEARCH DESIGN AND METHODS

Data Sources and Study Population
We used data from the Swedish National
Diabetes Register (NDR) for adults,which
contains longitudinal data since 1996
from patient visits to the registered

primary health care centers (PHCs) and
hospital outpatient clinics (HOCs) across
Sweden (12,13). It is estimated that up to
95% of PHCs and 100% of HOCs reported
to the NDR. In brief, the NDR includes
demographicvariables, dateofdiagnosis,
diabetes duration, treatment modalities,
and various risk factorsmeasured at least
annually for;97%ofpatientswith type1
diabetes (12,14). To capture the occur-
rence of diabetes-related complications
and deaths, the NDR was confidentially
linked to the Swedish National Inpatient
Register (15) and the Swedish Cause of
Death Register (16) by using the Swedish
personal identity numbers that are as-
signed toall Swedesatbirthorat the time
of immigration (15,17).

Because data on blood lipids were first
recorded in the NDR in 2002, we set the
time window of analysis between 1 Jan-
uary 2002 and the timewe first compiled
the data (31 December 2011) and in-
cluded patientswith a diagnosis of type 1
diabetes within this time window. To
minimize the risk of including patients
with type 2 diabetes in our analyses, we
includedonlypatientswhowereyounger
than 30 years old at the timeof the type 1
diabetes diagnosis and, during the follow-
up period, had at least one prescription
for insulin annually and no prescriptions
for metformin. The latter criterion was
based on the fact that metformin is not
indicated in Sweden and is seldom used
in practice for type 1 diabetes. The pre-
scription recordswere obtained from the
Swedish Prescribed Drug Register, which
includes information on dispensed sub-
stances and dates of prescribing and was
linked to the NDR (18). The flowchart for
study cohort selection is provided in
Supplementary Fig. 1. Approval for our
study was obtained from the Regional
Ethical and Review Board in Sweden.

Measurement of Risk Factors and
Health Outcomes
All HbA1c (19) values were converted to
standard levels according to the U.S.
National Glycohemoglobin Standardiza-
tion Program (20). In addition to the
current HbA1c, a variable representing
the time-weighted mean of past HbA1c
measureswas also created to capture the
legacy effect or “metabolic memory” of
past HbA1c control. The theory of met-
abolic memory is based on evidence that
patients who underwent early glycemic
control or intensive treatment have

significantly fewer vascular complications
compared with patients receiving stan-
dard treatment, despite no difference in
thecurrent glycemic control between the
two patient groups (21). To estimate the
time-weighted mean of past HbA1c, we
assigned a weight for each HbA1c mea-
sure as the duration between that mea-
sure and the immediately preceding
HbA1cmeasure (or thediagnosis of type1
diabetes for thefirstHbA1cmeasure). The
time-weighted mean HbA1c was calcu-
lated by averaging all previous HbA1c
measures using the above-mentioned
weights.

Microalbuminuria andmacroalbuminu-
ria were defined as occurrence of positive
results in two of three consecutive tests
within a year. A positive test for micro-
albuminuria indicates an albumin-to-
creatinine ratio (ACR) between 3 and 30
mg/mmol or a urinary albumin excretion
rate (UAE) between 20 and 200 mg/min
or between 20 and 300 mg/L; and for
macroalbuminuria, anACR.30mg/mmol
or aUAE.200mg/minor.300mg/L. The
estimatedglomerularfiltrationrate(eGFR)
was calculated using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-
EPI) formula (22).

Major complications were identified
using the International Classification of
Diseases-Ninth Revision and ICD-10 co-
des for the following events and proce-
dures: fatal and nonfatal myocardial
infarction (MI), fatal and nonfatal stroke,
heart failure, peripheral vascular disease
(PVD), severe hypoglycemia and hyper-
glycemia (i.e., those events leading to
hospitalization), amputation, end-stage
renal disease (ESRD), percutaneous cor-
onary intervention (PCI), and coronary
arterybypassgraft (CABG) (seeSupplemen-
tary Table 1 for specific codes).

Estimation of Risk Equations for
Complications and Mortality
In our simulationmodel, we captured the
history of events that influence risk of
mortality and other events (see section
MODEL SIMULATION below for details). To
increase the generalizability of themodel,
we defined a CVD event as a composite
outcome of MI, PCI, and CABG because
the proportion of patients with the same
risk factors who undergo PCI or CABG
varies across health care systems.As such,
for each of the five acute complications
(CVD, stroke, amputation, severe hypo-
glycemia, and severe hyperglycemia), we
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developed twoseparate riskequations for
first and second events. For each of the
three chronic conditions (heart failure,
PVD, and ESRD), we developed one risk
equation predicting the beginning of the
condition. We used the multivariable
parametric proportional hazards (PHs)
models to develop these risk equations.
Conditional on the occurrence of a CVD
event, a multinomial logit model was
developed to determine whether the
event was MI, PCI, or CABG. The set of
candidate covariates for each equation
included time-independent factors (e.g.,
sex), time-varying risk factors (e.g., time-
weightedmean HbA1c), and time-varying
complications (e.g., history of stroke).
We used MI, PCI, and CABG instead of
CVD as potential predictors of other
events. Because a BMI that is too low or
too high has a harmful effect on survival
(23,24), we treated BMI as a categorical
variable in the risk models based on the
following ranges (in kg/m2): 22.51–25.00
(BMI_category [cat]1, reference),#20.00
(BMI_cat2),20.01–22.50 (BMI_cat3),25.01–
27.50 (BMI_cat4), 27.51–30.00 (BMI_cat5),
and .30.0 (BMI_cat6). We compared
this approach with using a continuous
BMI covariate by examining the impact
of changes in BMI on the simulated life
expectancy.
A risk equation for all-cause mortality

was developed using a Gompertz PHs
model with time to death determined as
the duration between the first visit to a
PHC or HOC after 1 January 2002 and
death or last data collection, whichever
came first.We used age as a time scale to
allow extrapolation beyond ages at the
end of the follow-up period, where the
age at the first visit to a PHC or HOC
after 1 January 2002 was treated as left
censored.
Significant covariates in themodels for

complications and death were selected
in a backward stepwise regression at
P, 0.05. The selection of a distribution,
being exponential, Weibull, or Gompertz
for a complication risk model was based
on the log-cumulative hazard plot (25)
and theAkaike information criterion. The
PHs assumption was tested by examina-
tion of Schoenfeld residuals (26) in com-
parable Cox models, and the model fit
was examined using the cumulative haz-
ard plot of the Cox–Snell residuals (27). A
full description of covariates considered
in the model selection is presented in
Supplementary Table 2.

Estimation of Equations for Risk Factor
Progression
As risk factors influence the occurrence
of events, it is essential to model the
progression of risk factors. Because con-
tinuous risk factors (HbA1c, BMI, systolic
blood pressure [SBP], triglycerides, HDL
cholesterol, LDL cholesterol, and eGFR)
changed considerably with age and the
patients entered the first clinic after
2002 (baseline) at different ages (17–93
years), we used age as a time scale to
model the progression of these risk fac-
tors, which is consistent with the use of
ageas timescale in survival analysisof the
events. We found a moderate to strong
correlation between two adjacent meas-
uresofa risk factor and therefore included
the 1-year lagged value as a potential
predictor. Plots of continuous risk factors
against age for individual patients showed
both linear and quadratic patterns, and
the magnitudes of changes over time
were strongly governed by the baseline
values. Therefore, the baseline value of
the modeled risk factor, sex, age, age
squared, and the 1-year lagged value of
the modeled risk factor were included as
potential predictors in the full linear
regression model for each continuous
risk factor, and backward stepwise pro-
cedures were performed to select the
final set of predictors.Wedid not include
historyof complications in themodels for
risk factors because this resulted in poor
agreement between observed and sim-
ulated changes in risk factors over time
(see Supplementary Fig. 3).

To predict initiation and cessation of
smoking anddevelopment and remission
of microalbuminuria and macroalbumi-
nuria, we used logistic regressionmodels
with independent variables being sex,
age, and continuous risk factors, selected
based on backward stepwise procedures.
For both continuous and binary risk
factors, we did not include history of
complications as predictors because this
resulted in poor agreement between
observed and simulated cumulative in-
cidence of complications and risk factor
progression (see section FACE AND INTERNAL

VALIDATIONbelow). Statistical analyseswere
performed using Stata (28) and R (29)
software.

Model Simulation
The estimated equations for risk of events
and risk factor progression were integrated
into a discrete-time simulationmodel with

annual cycles.Model inputs includedbase-
linecharacteristics (demographicvariables,
clinical risk factors, and complication his-
tory) of the individual patients in the study
population. The simulation involved using
the risk equations to estimate the prob-
ability of each complication and death for
each patient, which was compared with a
random number drawn from the standard
uniformdistribution todeterminewhether
the event occurred. If themodel predicted
that an individual died, time to death and
time free of complications was calculated;
if the individual survived the cycle, age,
diabetes duration, event histories, and risk
factor values (including time-weighted
HbA1c) were updated. Then, this patient
entered the next cycle, with their up-
dated risk factors and event histories
being used to predict the occurrence of
events and changes in risk factors in that
cycle. Model outputs included annual
incidence of complications and death, time
toevents, and changes in risk factors over the
simulation time. Half-cycle correctionwas
applied inthecalculationof lifeexpectancy.
The model was developed in Stata (28).

Simulated Outcomes and Uncertainty
Analysis
The simulated outcomes of interest
were life expectancy (i.e., time between
the current age and age at death) and
complication-free survival time (i.e., time
between the current age and age at the
first occurrence of any of the complica-
tions after the current age), stratified by
sex and into 10-year age groups. We
included all patients irrespective of the
prior complication status before the
current age in the calculation of mean
complication-free survival time.Wemin-
imized the first-order uncertainty (i.e.,
uncertainty due to patient variability) by
performing Monte Carlo simulations
with increasing number of replications
until the mean survival time in each age-
sex stratum was stable (i.e., changes in
themean survival timewere,0.05 years
regardless of any further increase in the
number of replications) (30). Second-
order uncertainty (i.e., uncertainty due
to variation in parameter estimates) was
addressed by bootstrapping (i.e., sam-
pling with replacement) the patients in
the study population and, for each sam-
ple, reestimating all equations to derive
a set of fully correlated regression co-
efficients (30). From 1,000 bootstrap
replications, distributions and 95% CIs of
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the expected outcomes were derived.
This approach conforms to the American
Diabetes Association guidelines on sim-
ulation modeling in diabetes (1).

Sensitivity Analysis
In the sensitivity analysis,weexamined the
effectson lifeexpectancyandcomplication-
free survival time of 1) increasing and
decreasing the baseline value of each
continuous risk factor for each person by
1 SD of the cohort values at baseline, and
2) increasing and decreasing the estimated
probability of each of the complications
within each model cycle by 20%.

Face and Internal Validation
Face validity was assessed by having the
model structure, equations for risk factor
progression and events, and dependen-
cies between events reviewed by experts
in simulation modeling, internal medi-
cine, statistics, and epidemiology repre-
sented within the authorship group and
through presentation to and feedback
from global diabetesmodeling experts at
both the Eighth (2016) and Ninth (2018)
Mount Hood Challenges (31). We per-
formed internal validation of the model
by simulating outcomes for each patient
in the study population to predict the
occurrence of complications and death
over the follow-up period given the ob-
served baseline risk factors and then
comparing the simulated with the ob-
served cumulative incidence of each
event. We also internally validated the
equations for risk factor progression by
comparing the changes in mean risk fac-
tors over time within each quartile of
baseline risk values between the simu-
lated and observed values of risk factors.
To examine whether the model behaved
appropriately (referred to as stress tests),
we ran the simulation with a wide range of
values for seven risk factors and checked
whether the simulated life expectancy
met the expectation. For example, life
expectancy of a patient with type 1 di-
abetes should be about 9–13 years lower
than that of an age- and sex-matched
person from the general population, and
higher HbA1c levels or lower eGFR should
be associated with lower life expectancy.

RESULTS

Descriptive Statistics and Simulated
Outcomes
The study population consisted of 27,841
patients (55.6%male)withtype1diabetes

with a mean follow-up time of 7.0 years.
Mean age (SD) at onset and baseline (i.e.,
first visit to a clinic after 1 January 2002)
was 15.1 (7.6) and 37.0 (14.9) years,
respectively (see baseline descriptive sta-
tistics in Supplementary Table 3). There
were 2,018 deaths during the follow-up
period, which translated to an annual
probability of 0.0104. Acute events that
occurred at the highest rates included
third amputation and third MI, and hos-
pitalizations of chronic conditions that
occurred at the highest rates included
third and second ESRD, third heart fail-
ure, and third PVD, where time at risk for
the first event started from the first clinic
visit and for the second and third event
from the first and second event, respec-
tively (see numbers of events and annual
event rates observedduring the follow-up
period in Supplementary Table 4).

Figure 1 shows the dependencies be-
tween events and the estimated hazard
ratios for significant risk factors. The
arrows in thefigure indicate thedirection
of event-related dependencies. The large
number of arrows indicates that the oc-
currence of many complications increased
the risk of others in subsequent years.
Functional forms and coefficients of the
risk equations are provided in Supple-
mentary Table 5. For coefficients in the
models for continuous and binary risk
factors, see Supplementary Tables 6 and
7, respectively.

Figure 2 shows the simulated and
observed cumulative incidences for each
complication and all-causemortality from
age 18 years. The predicted values in all
cases were generally within the 95% CIs
of theobserved cumulative incidence.We
also obtained a good agreement between
observed and simulated progression of
meanrisk factors (seeSupplementaryFig.2).

All outputs from the stress tests met
our expectation. For example, an increase
in HbA1c resulted in a decrease in life
expectancy, and patients with a normal
BMI of 25 kg/m2 lived longer than those
with a lower BMI (,20 kg/m2) or higher
BMI (.30 kg/m2), holding other risk
factors constant. In contrast, when BMI
was treated as a continuous variable in the
risk models (see Supplementary Table 8
for coefficients), the simulated life expec-
tancy in patients with a higher BMI was
higher than that in patients with a lower
BMI, regardlessof thebaselineBMI.These
observations supported the use of BMI
as a categorical variable in our main

analyses. Table 1 reports the mean life
expectancyandcomplication-freesurvival
time of the patients with type 1 diabetes
in different age and sex groups. Within
each age group, men and women had
similar mean baseline age, but life expec-
tancies of womenwere longer than those
of men, with the difference of 2.9 years
for the age-group 20.0–29.9 years and 0.7
years for the age-group 80.0–89.9 years.
Similarly, complication-free survival times
of women in all but the oldest age groups
were longer than those of men, with the
difference of 1.2 years for the age-group
20.0–29.9 years and 0.8 years for the age-
group 70.0–79.9 years.

Sensitivity Analysis
The tornado plots of the impact of each risk
factorconsidered inourmodelonpredicting
life expectancy and complication-free
survival time (Fig. 3A and B, respectively)
show the importance of BMI, renal func-
tion (represented by eGFR), and HbA1c in
predicting the outcomes.

The tornado plots of the impact of
changes in risks of major complications
on the outcomes (Fig. 3C and D, respec-
tively) show the importance of the risk
of the first CVD event (MI, PCI, or CABG)
and hypoglycemia and hyperglycemia in
predicting life expectancy as well as
complication-free survival time.

CONCLUSIONS

Using a nationwide cohort of patients
with type 1 diabetes, we developed a
comprehensive, face-valid and internally
valid simulation model for occurrence of
major complications and mortality in
these patients, which can be used to
support economic evaluation of type 1
diabetes treatment. The model can pre-
dict risk factor progression, impact of
risk factors on the occurrence of an
event, and the dependencies between
the occurrences of events. Our model is
the first to incorporate the impact of
hypoglycemic events on the occurrence
of other complications such as ESRD,
stroke, amputation, and death. The
model has been developed according to
best modeling practice following inter-
national guidelines (1,32).

Using thismodel,wequantified the life
expectancy for different patient sub-
groups, and supported the hypothesis
that patients with type 1 diabetes have a
much lower life expectancy compared
with the general population. Specifically,
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mean life expectancy of the Swedish
patients with type 1 diabetes was ;13
years lower compared with the sex- and
age-matched general population (33).
For example, the predicted mean life
expectancy in the base-case analysis for
the age-group 20.0–29.9 years (mean
age, 24) was 46.4 (95% CI, 45.9–46.9)
years for women and 43.5 (95% CI, 43.1–
44) years for men, against the life ex-
pectancy estimates of 59.4 years for
24-year-old women and 55.5 years for
24-year-old men in the general popula-
tion in 2007 (the middle year of the
follow-up period in our study cohort).
The predicted mean complication-free
survival times for the age-group 20.0–
29.9 years (mean age, 24)were28.3 (95%
CI, 27.7–28.9) years for women and 27.1
(95%CI, 26.6–27.6)years formen,or;17
years below the predicted mean life
expectancy. This indicates that patients
with type 1 diabetes could expect to live
with one or more complications for
;40% of their remaining life. Sensitivity

analysis of the impact of risk factors
confirmed the importance of renal func-
tion and classic risk factors such as HbA1c
as determinants of life expectancy, with
major implications for optimal renal
screening and treatment strategies such
as control of bloodpressure andglycemic
levels. In line with the results from pre-
vious analyses using the NDR (34), our
study showed that triglycerides had a
greater impact on life expectancy com-
pared with LDL or HDL cholesterol in this
population with type 1 diabetes.

In the sensitivity analysis, we note that
the impact of increasing BMI of each
individual by 1 SD (3.7 kg/m2) in the
population on the mean survival time is
influenced by two opposing effects: in-
creasing survival time in patients with a
lower BMI category (#22.50 kg/m2)
shifted to a middle category (between
20.01 and 27.00 kg/m2), and decreasing
survival time in patients with a BMI
category of 27.5–30 kg/m2 shifted to the
highest BMI category (.30 kg/m2) (see

Supplementary Table 5 for coefficient
associatedwith each BMI category). Sim-
ilarly, the impact of decreasing BMI of
each individual by 1 SD is also influenced
by two opposing effects: decreasing sur-
vival time in patients with a middle BMI
category shifted to a lower BMI category,
and increasing survival time in patients
with a highest BMI category shifted to a
lower BMI category. As a consequence,
the effect of changing BMI of each in-
dividual on the mean survival time de-
pends on the distribution of BMI and the
hazard ratios associated with different
BMI categories.

This model has identified a large num-
ber of relationships between risk factors,
complications history, and development
of complications. There is a need to use
evidence from large clinical and epide-
miological studies to confirm whether
these are causal relationships or are
simply statistical correlations. Interest-
ingly, triglycerides were more of a driver
of life expectancy than HDL and LDL

Figure 1—Summary of model equations showingmajor risk factors and the interdependencies between events. The top part of each box indicates the
event predicted by the risk factors in the body of the box, each of which is associated with the hazard ratio next to it. Each arrow indicates that the
occurrence of the root event influences the subsequent occurrenceof the target event. Thenumericalfigureon each arrow indicates the hazard ratio of
the target event (complication or death) in patients with a history of the root event compared with patients without a history of such an event. The
reference category of BMI (kg/m2) represents BMI between 22.51 and 25.00, BMI_cat2 (BMI #20.00), BMI_cat3 (20.01–22.50), BMI_cat5 (27.51–
30.00), BMI_cat6 (BMI .30). BP, blood pressure; HF, heart failure; wHbA1c, time-weighted mean HbA1c of past HbA1c measures.
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cholesterol in this population, possibly
through their impact on multiple com-
plications, including ESRD, MI, heart fail-
ure, PVD, hyperglycemia, amputation,
and death. BMI was also found to have a
greater impact on outcomes than SBP
and HDL and LDL cholesterol. This can be
explained by the larger hazard ratios for
BMI_cat2, BMI_cat3, BMI_cat5, and
BMI_cat6 compared with those for SBP,
HDL and LDL cholesterol in the equations
predicting the risk of CVD, ESRD, stroke,
and death (see Fig. 1), and a change by
1 SD (3.7 kg/m2) in BMI leading to a large
shift in termsof thenumber of patients in
different BMI categories. Sensitivity anal-
ysis of the effect of complication risk
suggests that among eight complica-
tions, reducing the risk of CVD and

hypoglycemia has the greatest impact on
improvinglifeexpectancyandcomplication-
free survival time, respectively.

Our model is a major advance over
existing published type 1 diabetes simu-
lation models. A recent review of simula-
tion models for type 1 diabetes identified
13models (4), and there are othermodels
for type 1 diabetes thatwere not captured
in this review (9,35–39). All of these pre-
viously published models relied primarily
on data from the Diabetes Control and
ComplicationsTrial (DCCT),which included
only 1,441 patients with type 1 diabetes,
and on its follow-up study, the Epidemi-
ology of Diabetes Interventions and Com-
plications (EDIC) (40) for most of their
inputs, supplemented by a variety of type 2
diabetes data from other studies to fill data

gaps. In contrast tomost of these existing
type 1 diabetes models (4,9,35–39), all
equations for risk factor progression and
complications in ourmodel were derived
solely from one cohort that included
almost all of the patients diagnosed with
type 1 diabetes in Sweden. We also
captured theeffect ofmetabolicmemory
on the occurrence of complications. The
approach we used to calculate the time-
weighted average HbA1c represented a
pooled effect of the glycemic control in
the past. We realized that there are
different methods for quantifying the
metabolic memory, one of which is the
integration of glycemic burden as the
area under the HbA1c curve .7% (41).
While we found a strong correlation
between this glycemic burden indicator

Figure2—Observedandsimulatedcumulative incidenceofeachof10majordiabetes-relatedcomplicationsandofall-causemortality. Theshadedareas
in red and blue represent 95% confidence regions of the observed and simulated values, respectively. The curves were generated using Kaplan-Meier
methods with a cumulative failure estimator. CV, cardiovascular; HF, heart failure.
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and our time-weighted average HbA1c
(Pearson correlation coefficient.0.7), a
future study examining whether the
former indicator improves the prediction

of the complications is warranted. With
all hospitalizations and mortality recorded
over a long follow-up period, we were
able to adjust the survival models for

multiple complications and death, as well
as capture the interdependency in the oc-
currence of the events. In addition, while
the uncertainty in the model outcomes

Table 1—Survival time of female and male patients in different baseline age groups

Survival time, mean (95% CI),* years

Baseline age-group Age, mean (SD), years N
Diabetes duration,
mean (SD), years Life expectancy† Complication-free‡

Female
20.0–29.9 24.1 (3.0) 2,887 11.8 (6.8) 46.4 (45.9–46.9) 28.3 (27.7–28.9)
30.0–39.9 34.5 (2.9) 2,514 20.2 (8.6) 37.3 (36.9–37.8) 23.3 (22.7–23.8)
40.0–49.9 44.3 (2.9) 1,974 29.8 (7.9) 28.7 (28.1–29.2) 17.3 (16.8–17.9)
50.0–59.9 54.3 (2.8) 1,646 38.6 (8.0) 21.1 (20.6–21.6) 12.3 (11.8–12.7)
60.0–69.9 63.6 (2.8) 824 47.0 (7.7) 14.7 (14.1–15.3) 8.5 (8–9)
70.0–79.9 73.4 (2.7) 260 55.2 (8.0) 9.9 (9.1–10.7) 6.2 (5.5–6.9)
80.0–89.9 81.7 (2.4) 30 63.1 (6.7) 5.9 (4.5–7.3) 3.3 (2.3–4.2)

Male
20.0–29.9 24.3 (3.0) 3,706 10.7 (6.9) 43.5 (43.1–44) 27.1 (26.6–27.6)
30.0–39.9 34.5 (2.9) 3,185 19.1 (8.5) 35.4 (34.9–35.8) 22.3 (21.9–22.8)
40.0–49.9 44.3 (2.9) 2,487 28.2 (8.2) 26.5 (26.1–27) 15.6 (15.2–16.1)
50.0–59.9 54.3 (2.8) 1,951 37.6 (8.2) 19.1 (18.7–19.6) 10.6 (10.2–11)
60.0–69.9 63.6 (2.7) 954 46.5 (7.9) 14.1 (13.6–14.6) 7.7 (7.3–8.1)
70.0–79.9 73.3 (2.6) 239 53.7 (7.1) 9.5 (8.8–10.3) 5.4 (4.9–6)
80.0–89.9 82.3 (2.6) 26 63.5 (8.7) 5.2 (3.8–6.7) 3.5 (2.1–4.8)

*The 95%CI of the survival timeswere calculated based on data obtained from the second-order uncertainty analysis. †Defined as, for each individual,
thenumberof yearsof life remaining fromtheageatbaseline.‡Definedas, foreach individual, thedifference in yearsbetweentheageat theoccurrence
of the first complication after the baseline age or occurrence of death, whichever came first, and the age at baseline.

Figure 3—Tornadoplots show the impact of changing one risk factor at a time by 1 SDon life expectancy (A) and complication-free survival time (B), and
the impact of changing the annual probability of onemajor complication at a timeby 20%on life expectancy (C) and complication-free survival time (D).
The cardiovascular (CV) event is a composite end point including MI, PCI, and CABG. HF, heart failure.
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due to patient variability and parameter
uncertainty were accounted for only in a
few of the existing type 1 diabetes mod-
els, we thoroughly addressed and mini-
mized thefirst-orderuncertaintybyusing
large numbers of Monte Carlo replica-
tions until the projected outcomes sta-
bilized and appropriately captured the
second-order uncertainty by using prob-
abilistic sensitivity analysis through boot-
strapping the entire the study cohort.
The authors of the above-mentioned

systematic review (4) recommended that
a “best in class” type 1 diabetes model
would use microsimulation methods to
simulatemicro-andmacrovascularevents,
costs, and QALYs over a lifetime horizon,
accounting for parameter uncertainty.
While fulfilling most of these criteria, our
model, however, requires further work,
including determination of complication-
related costs andhealth utility values and
incorporation of these inputs into the
model to enable its use as a fully func-
tional tool for cost-utility analyses. Be-
cause theNDR captured only complications
leading to hospitalization, events that
occurred outside the hospital were not
incorporated in our model. Although we
captured a large number of events, the
model does not predict occurrence of angina
and mild hypoglycemia/hyperglycemia.
While none of the existing simulation
models for diabetes provides risk equations
for all diabetes-related complications,
we acknowledged that incorporating
more events into a model may enhance
its applications. Currently, it is unclear
whether the occurrence of mild events,
such as angina, substantially affect the
incrementalhealthoutcomeandcostof a
new intervention, and this is an objective
for our future research.
Possible changes in insulin treatment

patterns during the follow-up period,
including the introduction of insulin ana-
logs, may have additional impacts on the
occurrence of complications. Although
wedidnotdirectly includedrug therapies
in themodel,wehave illustrated how the
model could be used to capture the
effects of changes in the risk of compli-
cations (Fig. 3C and D). This shows that
our model can be adapted to account for
complex andmultifacetedeffects of some
therapies. However, this requires the user
of the model to specify the effects of the
treatment on risk factors andany addition
of effects not captured in the model. The
Real-World Progression inDiabetes (RAPIDs)

model for type 2 diabetes illustrated how
these effects couldbemeasured in a real-
world setting (42), and this approach
should be explored for type 1 diabetes in
future work.

Validation using external data sets,
such as the DCCT/EDIC (40), Wisconsin
Epidemiologic Study of Diabetic Retinop-
athy (WESDR) (43), and the Pittsburgh
Epidemiology of Diabetes Complications
Study (44), as well as cross-comparisons
with other type 1 diabetes models (45–48),
is also needed. Past validation efforts in
type 2 diabetes suggest that testing a
model against a variety of different ex-
ternal data sets provides an understand-
ing of the model generalizability. Because
weuseddata frompatients aged17 years
and/or older, validation of our equations
in children is also necessary. Despite
these limitations,wewouldenvisage that
our model will provide an important tool
for the economic evaluation of interven-
tions for type 1 diabetes.

The development of this model is
timely given the emergence of new tech-
nologies, such as hybrid closed-loop in-
sulin pump systems (49), and interest in
the potential role for oral agents, such as
sodium–glucose cotransporter 2 inhibi-
tors (50), for patients with type 1 di-
abetes. In many countries, access to new
technologies requires a demonstration
that these interventions represent value
for money, and this will require increas-
ing use of simulation models to quantify
the benefits of interventions in terms of
relevant outcomes such as QALYs.

Another limitation of our model in-
volves the use of stepwise procedures to
select variables in the regressionmodels.
Our equations might not contain all
clinically important determinants of the
occurrence of the complications and
progression of risk factors. However,
given that our model was primarily de-
signed as a prediction rather than an
explanation tool and that the number of
potential covariates was very large, the
stepwise procedures should be accept-
able. Because we focused on the pre-
dictive power of the statistical models,
there might be a risk of overfitting (i.e.,
our models fit well to the NDR data but
they might not fit well to another data
set). Therefore, external validation of our
equations is needed in future research.

In conclusion, we have developed the
first outcome model for type 1 diabetes
that is based entirely on a nationwide

populationandcanbeused toproject the
occurrence of major complications over
the lifetime of the patients and to estimate
life expectancy as well as complication-
free survival time of the patients. Our
face-valid and internally valid model of-
fers an important tool to assist economic
evaluations of and inform decisions on
treatment strategies for type 1 diabetes.
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