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Abstract

Motivation: Proteins are commonly used by biochemical industry for numerous processes.

Refining these proteins’ properties via mutations causes stability effects as well. Accurate compu-

tational method to predict how mutations affect protein stability is necessary to facilitate efficient

protein design. However, accuracy of predictive models is ultimately constrained by the limited

availability of experimental data.

Results: We have developed mGPfusion, a novel Gaussian process (GP) method for predicting pro-

tein’s stability changes upon single and multiple mutations. This method complements the limited

experimental data with large amounts of molecular simulation data. We introduce a Bayesian data

fusion model that re-calibrates the experimental and in silico data sources and then learns a pre-

dictive GP model from the combined data. Our protein-specific model requires experimental data

only regarding the protein of interest and performs well even with few experimental measure-

ments. The mGPfusion models proteins by contact maps and infers the stability effects caused

by mutations with a mixture of graph kernels. Our results show that mGPfusion outperforms state-

of-the-art methods in predicting protein stability on a dataset of 15 different proteins and that incor-

porating molecular simulation data improves the model learning and prediction accuracy.

Availability and implementation: Software implementation and datasets are available at github.

com/emmijokinen/mgpfusion.

Contact: emmi.jokinen@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins are used in various applications by pharmaceutical, food,

fuel and many other industries and their usage is growing steadily

(Kirk et al., 2002; Sanchez and Demain, 2011). Proteins have im-

portant advantages over chemical catalysts, as they are derived from

renewable resources, are biodegradable and are often highly select-

ive (Cherry and Fidantsef, 2003). Protein engineering is used to fur-

ther improve the properties of proteins, for example to enhance

their catalytic activity, modify their substrate specificity or to im-

prove their thermostability (Rapley and Walker, 2000). Increasing

the stability is an important aspect of protein engineering, as the

proteins used in industry should be stable in the industrial process

conditions, which often involve higher than ambient temperature

and non-aqueous solvents (Bommarius et al., 2011). The properties

of a protein are modified by introducing alterations to its amino

acid sequence. Mutations in general tend to be destabilising, and if

too many destabilising mutations are implemented, the protein may

not remain functional without compensatory stabilising mutations

(Tokuriki and Tawfik, 2009).

The stability of a protein can be defined as the difference in

Gibbs energy DG between the folded and unfolded (or native and

denaturated) state of the protein. More precisely, the Gibbs energy

difference determines the thermodynamic stability DGt of the pro-

tein, as it does not take into account the kinetic stability DGk which

determines the energy needed for the transition between the folded

and unfolded states (Anslyn and Dougherty, 2006) (see

Supplementary Fig. S1). Here we will consider only the thermo-

dynamic stability and from now on it will be referred to merely as

stability DG.

The effect of mutations can be defined by the change they cause to

the Gibbs energy DG, denoted as DDG (Pace and Scholtz, 1997). To

comprehend the significance of stability changes upon mutations,
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we can consider globular proteins, the most common type of enzymes,

whose polypeptide chain is folded up in a compact ball-like shape

with an irregular surface (Alberts et al., 2007). These proteins are

only marginally stable and the difference in Gibbs energy between the

folded and unfolded state is only about 5–15kcal/mol, which is not

much more than the energy of a single hydrogen bond that is about

2–5 kcal/mol (Branden and Tooze, 1999). Therefore, even one

mutation that breaks a hydrogen bond can prevent a protein from

folding properly.

The protein stability can be measured with many techniques,

including thermal, urea and guanidinium chloride (GdmCl) denatur-

ation curves that are determined as the fraction of unfolded proteins

at different temperatures or at different concentrations of urea or

GdmCl (Pace and Shaw, 2000). Some of the experimentally meas-

ured stability changes upon mutations have been gathered in

thermodynamic databases such as Protherm (Kumar et al., 2006).

A variety of computational methods have been introduced to

predict the stability changes upon mutations more effortlessly than

through experimental measurements. These methods utilize physics

or knowledge-based potentials (Leaver-Fay et al., 2011), their com-

binations, or different machine learning methods. The machine

learning methods utilize support vector machines (SVM) (Capriotti

et al., 2005b, 2008; Chen et al., 2013; Cheng et al., 2005; Folkman

et al., 2014; Liu and Kang, 2012; Pires et al., 2014a), random forests

(Tian et al., 2010; Wainreb et al., 2011), neural networks (Dehouck

et al., 2009; Giollo et al., 2014) and Gaussian processes (Pires et al.,

2014b). However, it has been assessed that although on average

many of these methods provide good results, they tend to fail on

details (Potapov et al., 2009). In addition, many of these methods

are able to predict the stability effects only for single-point

mutations.

We introduce mGPfusion (mutation Gaussian Processes with

data fusion), a method for predicting stability effects of both point

and multiple mutations. mGPfusion is a protein-specific model—in

contrast to earlier stability predictors that aim to estimate arbitrary

protein structure or sequence stabilities—and achieves markedly

higher accuracy while utilising data only from a single protein at a

time. In contrast to earlier works that only use experimental data to

train their models, we also combine exhaustive Rosetta (Leaver-Fay

et al., 2011) simulated point mutation in silico stabilities to our

training data.

A key part of mGPfusion is the automatic scaling of simulated

data to better match the experimental data distribution based on

those variants that have both experimental and simulated stability

values. Furthermore, we estimate a variance resulting from the scal-

ing, which places a higher uncertainty on very destabilising simula-

tions. Our Gaussian process model then utilizes the joint dataset

with their estimated heteroscedastic variances and uses a mixture of

graph kernels to assess the stability effects caused by changes in

amino acid sequence according to 21 substitution models. Our

experiments on a novel 15 protein dataset show a state-of-the-art

stability prediction performance, which is also sustained when there

is access only to a very few experimental stability measurements.

2 Materials and methods

Following Pires et al. (2014b) we choose a Bayesian model family of

Gaussian processes for prediction of mutation effects on protein sta-

bility due to its inherent ability to handle uncertainty in a principle

way. Bayesian modelling is a natural approach for combining the ex-

perimental and simulated data distribution, while it is also suitable

for learning the underlying mixture of substitution models that gov-

erns the mutational process.

The pipeline for mGPfusion is presented in Figure 1. The first

part of mGPfusion consists of collection of in silico and experimen-

tal datasets discussed in Section 2.1, the scaling of the in silico data-

set in Section 2.2 and the fusion of these two datasets in Section 2.3.

The second part consists of the Gaussian process model described in

Section 2.4 with detailed description of the graph kernels in Sections

2.5–2.6 and model inference in Section 2.7. Finally, the evaluation

criteria used are described in Section 2.8.

2.1 Experimental and in silico data
Protherm is a database of numerical thermodynamic parameters for

proteins and their mutants (Kumar et al., 2006). From Protherm we

gathered all proteins with at least 50 unique mutations whose DDG

has been measured by thermal denaturation, and where a PDB code

for a 3D structure of the protein was reported. We required the pro-

teins to have at least 50 unique mutations, so that we would have a

representative test set and get sufficiently reliable estimates of pre-

diction accuracy on individual proteins and examine how the

amount of experimental training data affects the accuracy of the

model. The 3D structures are necessary for obtaining the connec-

tions between residues. We collected the 3D structures with the

reported PDB codes from the Protein Databank, www.rcsb.org

(Berman et al., 2000). The 15 proteins that fulfilled these require-

ments are listed in Table 1. We averaged the stability values for pro-

teins with multiple measurements and ignored mutations to residues

not present in their 3D structures. These datasets are available at

github.com/emmijokinen/mgpfusion.

We also generate simulated data of the stability effects of all

possible single mutations of the proteins. Our method can utilize

any simulated stability values. We used the ‘ddG monomer’ ap-

plication of Rosetta 3.6 (Leaver-Fay et al., 2011) using the high-

resolution backrub-based protocol 16 recommended in Kellogg

et al. (2011). The predictions yS made with Rosetta are given in

Rosetta Energy Units (REU). Kellogg et al. (2011) suggest trans-

formation 0:57yS for converting the predictions into physical

units. The simulated data scaled this way is not as accurate as the

experimental data, the correlation and root mean square error

(rmse) with respect to the experimental data are shown for all

proteins in Table 2 and for individual proteins in Supplementary

Table S2, on rows labelled Rosetta. For this reason, we use in-

stead a Bayesian scaling described in the next section and differ-

ent noise models for the experimental and simulated data,

described in Section 2.3.

For each of the 15 proteins, let xi ¼ ðxi1; . . . ; xiMÞ denote its

M-length variant i with positions p labelled with residues

xip 2 fA;R;N; . . . ;Vg. We denote the wild-type protein as x0. We

collect 15 separate sets of simulated and experimental data. We de-

note the NE experimental variants of each protein as XE ¼
ðxE

1 ; . . . ; xE
NE
ÞT with the corresponding experimental stability values

yE ¼ ðyE
1 ; . . . ; yE

NE
ÞT 2 RNE . Similarly, we denote the NS simulated

observations as XS ¼ ðxS
1; . . . ; xS

NS
ÞT and yS ¼ ðyS

1; . . . ; yS
NS
ÞT 2 RNS .

2.2 Bayesian scaling of in silico data
The described transformation from REU to physical units may not

be optimal for all proteins. We therefore applied instead a linear-

exponential scaling function to obtain scaled Rosetta simulated

stabilities ~yS,
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~yS ¼ gðyS j hjÞ ¼ aje
cjy

S þ bjy
S þ dj: (1)

This scaling transforms the Rosetta simulations yS for each protein

j ¼ 1; . . . ; 15 to correspond better to the experimental data. The

parameters hj ¼ ðaj; bj; cj; djÞ define the weight aj and steepness cj of

the exponential term, while the linear term has slope bj and intercept

dj. To avoid overfitting, we perform Bayesian linear regression and

start by defining parameter prior pðhjÞ ¼ pðajÞpðbjÞpðcjÞpðdjÞ that

reflects our beliefs about realistic scalings having only moderate

steepness:

pðajÞ ¼ Gammaðaj j aa; baÞ

pðbjÞ ¼ Betað1=2 � bj j ab;bbÞ

pðcjÞ ¼ Betað10=3 � cj j ac; bcÞ

pðdjÞ ¼ Nðdj j ld;r
2
dÞ:

(2)

The empirically selected hyperparameter values are listed in

Supplementary Table S1 and the priors are illustrated in

Supplementary Figure S2.

We compute the posterior for hj using the subset of simulated

data that have corresponding experimentally measured data:

pðhjjyE; ySÞ /
Y

i:xi2XE\XS

NðyE
i j gðyS

i jhjÞ;r2
nÞpðhjÞ:

The product iterates over all NE\S simulated DDG’s that have a

matching experimentally observed value. The r2
n is the scaling error

variance, which was set to r2
n ¼ 0:5. The parameters h for each pro-

tein were sampled using a random walk Metropolis-Hastings MCMC

algorithm (the mhsample function in Matlab) for NMC¼10000

samples with a burn-in set to 500. The proposal distribution

was selected to be a symmetric uniform distribution such that ½asþ1;

bsþ1; csþ1; dsþ1� � Uðas60:4; bs60:04; cs60:04; ds60:4Þ. Given the

sample of scaling parameters ðhðsÞj Þ
NMC

s¼1 , we define the scaled simulated

data as the average scaling over the MCMC sample, and record also

the sample scaling variance

~yS
i ¼

1

NMC

XNMC

s¼1

gðyS
i jh
ðsÞ
j Þ (3)

r2
TðiÞ ¼

1

NMC

XNMC

s¼1

gðyS
i jh
ðsÞ
j Þ � ~yS

i

� �2
: (4)

See Figure 1g for an illustration of the scaling. We collect the scaled

simulated value and its variance from each simulated point into vec-

tors ~yS ¼ ð~yS
1; . . . ; ~yS

NS
Þ and r2

T ¼ ðr2
Tð1Þ; . . . ;r2

TðNSÞÞ 2 RNS .

2.3 Data fusion and noise models
For each protein j, we organize its experimental data ðXE; yEÞ
and transformed simulated data ðXS; ~ySÞ along with the wild-

type information ðx0; y0Þ into a single joint dataset of variants

X ¼ ðx0;XE;XSÞ and stabilities y ¼ ðy0; yE; ~ySÞ of size RN where

N ¼ 1þNE þNS is the total number of simulated and experi-

mental data points, including the wild-type. We assume hetero-

scedastic additive noise models for the three information

sources

Fig. 1. Pipeline illustration for mGPfusion. (a) M¼ 21 substitution matrices utilize different information sources and give scores to pairwise amino acid substitu-

tions. (b) The wild-type structures from Protein Data Bank are modelled as contact graphs. (c) The graph kernel measures similarity of two sequences by a substi-

tution model S over all positions p and their neighbourhoods nbsðpÞ in the contact graph. (d) Each substitution matrix is used to create a separate covariance

matrix. (e) Multiple kernel learning (MKL) is used for finding the optimal combination of the base kernels. The kernel matrix measures variant similarities. (f)

Experimentally measured DDG values yE are gathered from Protherm and Rosetta’s ddg monomer application is used to simulate the stability effects yS for all

single point mutations. (g) Bayesian scaling for the simulated values yS at the x-axis. Possible scalings are coloured with green and the chosen scaling from yS

into scaled values ~y S is marked by black dots. The scaling is fitted to a subset of experimentally measured stabilities yE (circles). (h) The stability predictive GP

model is trained using experimental and simulated data through the kernel matrix
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y0 ¼ f ðx0Þ þ e0; e0 � Nð0; r2
0Þ

yE
i ¼ f ðxE

i Þ þ eE
i ; eE

i � Nð0;r2
EÞ

y~S
i ¼ f ðxS

i Þ þ eS
i ; eS

i � Nð0; ðrE þ rS þ trTðiÞÞ2Þ;

(5)

where the observed values are noisy versions of the underlying ‘true’

stability function f ðxÞ corrupted by zero-mean noise with data

source specific variances. We learn a Gaussian process based stabil-

ity function f ðxÞ in the next Section.

The Equations (5) encode that the experimental data are corrupted

by a global experimental noise variance r2
E. The simulated stabilities are

additionally corrupted by a global Rosetta simulator error variance r2
S ,

and by the value-dependent transformation variance tr2
TðiÞ scaled by

parameter t. The model then encapsulates that we trust the Rosetta data

less than the experimental data. By definition, the DDG of the wild-type

is zero (y0 ¼ 0) with very small assumed error, r0 ¼ 10�6. Note that

r2
T are fixed by Equation (4), while we infer the optimal values for the

remaining three free parameters ðrE;rR; tÞ (see Section 2.4). The

parameters r2
E and r2

S are assigned priors

rE � GammaðrEjaE;bEÞ

rS � GammaðrRjaS; bSÞ:
(6)

The values of these hyperparameters are shown in Supplementary

Table S1.

2.4 Gaussian processes
We use a Gaussian process (GP) function f to predict the stability

f ðxÞ 2 R of a protein variant x. Gaussian processes are a family of

non-parametric, non-linear Bayesian models (Rasmussen and

Williams, 2006). A zero-mean GP prior

f ðxÞ � GPð0; kðx;x0ÞÞ;

defines a distribution over functions f ðxÞ whose mean and covariance are

E½f ðxÞ� ¼ 0

cov½f ðxÞ; f ðx0Þ� ¼ kðx; x0Þ:

Table 2. Comparison of different methods on the 15 protein dataset with respect to q and rmse

Method Correlation q rmse

Point mutations Multiple mutations All mutations Point mutations Multiple mutations All mutations

Cross-validation

level

Cross-validation

level

Cross-validation

level

Cross-validation

level

Cross-validation

level

Cross-validation

level

mut. pos. prot. mut. pos. prot. mut. pos. prot. mut. pos. prot. mut. pos. prot. mut. pos. prot.

mGPfusion 0.81 0.70 0.56 0.88 0.61 0.49 0.83 0.64 0.52 1.07 1.26 1.61 1.33 2.45 2.53 1.13 1.87 1.84

mGPfusion, only B62 0.79 0.69 0.56 0.86 0.64 0.50 0.82 0.66 0.52 1.11 1.30 1.62 1.43 2.40 2.50 1.18 1.85 1.84

mGP 0.81 0.51 – 0.86 0.52 – 0.83 0.50 – 1.04 1.54 – 1.44 2.65 – 1.14 2.09 –

mGP, only B62 0.76 0.34 – 0.86 0.55 – 0.80 0.49 – 1.26 1.95 – 1.45 2.56 – 1.30 2.23 –

Rosetta scaled 0.65 0.63 – 0.51 0.39 – 0.60 0.48 – 1.35 1.38 – 2.49 2.99 – 1.66 2.22 –

Predictions from off-the-shelf implementations with no cross-validation

Rosetta 0.55 0.40 0.49 1.63 2.74 1.92

mCSM 0.61 – – 1.40 – –

PoPMuSiC 0.64 – – 1.37 – –

Note: Mutation, position and protein are referred to as mut., pos. and prot., respectively. Largest correlation value or smallest rmse of each column is bolded

for convenience. Predictions from off-the-shelf implementations of Rosetta, mCSM and PoPMuSiC are used directly without cross-validation.

Table 1. The 15 protein data from ProTherm database with counts of point mutations, all mutations and of simulated point mutation stability

changes

Protein (organism) PDB Mutations

all point point (sim)

T4 Lysozyme (Enterobacteria phage T4) 2LZM 349 264 3116

Barnase (Bacillus amyloliquefaciens) 1BNI 182 163 2052

Gene V protein (Escherichia virus m13) 1VQB 124 92 1634

Glycosyltransferase A (Homo sapiens) 1LZI 116 114 2470

Chymotrypsin inhibitor 2 (Hordeum vulgare) 2CI2 98 77 1235

Protein G (Streptococcus sp. gx7805) 1PGA 89 34 1064

Ribonuclease H (Escheria coli) 2RN2 83 65 2945

Cold shock protein B (Bacillus subtilis) 1CSP 80 50 1273

Apomyoglobin (Physeter catodon) 1BVC 80 56 2907

Hen egg white lysozyme (Gallus gallus) 4LYZ 63 50 2451

Ribonuclease A (Bos taurus) 1RTB 57 50 2356

Peptidyl-prolyl cis-trans isomerase (Homo sapiens) 1PIN 56 56 2907

Ribonuclease T1 isozyme (Aspergillus oryzae) 1RN1 53 48 1957

Ribonuclease (Streptomyces auerofaciens) 1RGG 54 45 1824

Bovine pancreatic trypsin inhibitor (Bos taurus) 1BPI 53 47 1102

Total 1537 1211 31293
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For any collection of protein variants X ¼ x1; . . . ; xN, the

function values follow a multivariate normal distribution

f � Nð0;KXXÞ, where f ¼ ðf ðx1Þ; . . . ; f ðxNÞÞT 2 RN, and where

KXX 2 RN�N with ½KXX�ij ¼ kðxi;xjÞ. The key property of Gaussian

processes is that they encode functions that predict similar stability

values f ðxÞ; f ðx0Þ for protein variants x; x0 that are similar, as

encoded by the kernel kðx;x0Þ. The key part of GP modelling is then

to infer a kernel that measures the mutation’s effects to the stability.

Let a dataset of noisy stability values from two sources be

y 2 RN, the corresponding protein structures X ¼ ðxiÞNi¼1, and a new

protein variant x� whose stability we wish to predict. A Gaussian pro-

cess defines a joint distribution over the observed values y of variants

X, and the unknown function value f ðx�Þ of the unseen variant x�,"
y

f ðx�Þ

#
� N

 
0;

"
KXX þ diagðr2Þ kX�

k�X kðx�; x�Þ

#!
;

where kX� ¼ kT
�X 2 RN is a kernel vector with elements kðxi;x�Þ

for all i ¼ 1; . . . ;N, and where r2 ¼ ðr2
0; r

2
E1T ;

ðrE1T þ rS1T þ trT
TÞ2ÞT collects final variances of the data points

from Equations (5). Here the exponents are elementwise. The condi-

tional distribution gives the posterior distribution of the stability

prediction as

f ðx�ÞjðX; yÞ � N ðlðx�Þ;r2ðx�ÞÞ;

where the prediction mean and variance are

lðx�Þ ¼ k�XðKXX þ diagðr2ÞÞ�1y;

r2ðx�Þ ¼ kðx�;x�Þ � k�XðKXX þ diagðr2ÞÞ�1kX�:

Hence, in GP regression the stability predictions lðx�Þ6 rðx�Þ will

come with uncertainty estimates.

2.5 Graph kernel
Next, we consider how to compute the similarity function kðx; x0Þ
between two variants of the same protein structure. We will encode

the 3D structural information of the two protein variants as a con-

tact map and measure their similarity by the formalism of graph ker-

nels (Vishwanathan et al., 2010).

We consider two residues to be in contact if their closest atoms are

within 5 Å of each other in the PDB structure, which is illustrated in

Figure 1b. All variants of the same protein have the same length, with

only different residues at mutating positions. Furthermore, we assume

that all variants share the wild-type protein contact map.

To compare protein variants, we construct a weighted decom-

position kernel (WDK) (Menchetti et al., 2005) between two protein

variants x ¼ ðx1; . . . ;xMÞ and x0 ¼ ðx01; . . . ;x0MÞ of length M,

kðx; x0Þ ¼
XM
p¼1

 
Sðxp;x

0
pÞ

X
l2nbsðpÞ

Sðxl; x
0
lÞ
!
; (7)

where nbsðpÞ defines the set of neighbouring positions to position p,

and S is a substitution matrix. The kernel iterates over all positions

p and compares for each of them their residues through a substitu-

tion matrix Sðxp; x
0
pÞ. Furthermore, the similarity of the residues at

each position is multiplied by the average similarity of the residues

at its neighbouring positions Sðxl; x
0
lÞ. Hence, the kernel defines the

similarity of two protein variants as the average position and neigh-

bourhood similarity over all positions. The kernel matrix

is normalized so that for two data points, x and x0, the normalized

kernel is bkðx;x0Þ ¼ kðx; x0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðx; xÞkðx0; x0Þ

p
, as defined by Shawe-

Taylor and Cristianini (2004). The kernel is illustrated in Figure 1c.

The above WDK kernel allows us to compare the effects of

multiple simultaneous mutations. However, as the wild type pro-

tein structure is used for all of the protein variants, changes that

the mutations may cause to the protein structure are not taken

into consideration. This may cause problems if mutations that

alter the protein structure significantly are introduced—especial-

ly if many of them are introduced simultaneously. On the other

hand, substitution matrices that have their basis in sequence

comparisons, should take these effects into account to some ex-

tend as these kinds of mutations are usually highly destabilising

and do not occur often in nature. In the next section, we will dis-

cuss how we utilize different substitution matrices with multiple

kernel learning.

2.6 Substitution matrices and multiple kernel learning
The BLOSUM substitution models have been a common choice for

protein models (Giguere et al., 2013), while mixtures of substitution

models were proposed by Cichonska et al. (2017). BLOSUM matri-

ces score amino acid substitutions by their appearances throughout

evolution, as they compare the frequencies of different mutations in

similar blocks of sequences (Henikoff and Henikoff, 1992).

However, there are also different ways to score amino acids substi-

tutions, such as chemical similarity and neighbourhood selectivity

(Tomii and Kanehisa, 1996). When the stability effects of mutations

are evaluated, the frequency of an amino acid substitution in nature

may not be the most important factor.

To take into account different measures of similarity between

amino acids, we employed a set of 21 amino acid substitution matri-

ces gathered from AAindex2 (http://www.genome.jp/aaindex/)

(Kawashima et al., 2007). AAindex2 currently contains 94 substitu-

tion matrices. From these we selected those that had no gaps con-

cerning substitutions between the 20 naturally occurring amino

acids and scaled them between zero and one as

S ¼ S0 �minðS0Þ þ 1

maxðS0Þ �minðS0Þ þ 1
: (8)

Out of these matrices, we only chose those 23 matrices that were

positive semidefinite. Furthermore, there were two pairs of matrices

that were extremely similar, and we only selected one matrix from

each pair, ending up with 21 substitution matrices. These substitu-

tion matrices are used together with Equation 7 for computing 21

base kernel matrices. Finally, MKL is used to find an optimal com-

bination of the base kernels of form

K/ ¼
X21

m¼1

wmKðcmÞ
m ; (9)

where wm is a kernel specific weight, cm is an (elementwise)

exponent. The elementwise exponent retains the SDP property of

K/ (Shawe-Taylor and Cristianini, 2004). We observe empirical-

ly that the optimal kernel weights wm tend to be sparse

(see Fig. 2).

The selected substitution matrices are listed in Figure 2. These

matrices have different basis and through multiple kernel learn-

ing (MKL) our model learns which of these are important for

inferring the stability effects that mutations cause on different

proteins. The figure illustrates this by showing the average

weights of the base kernel matrices obtained via the multiple ker-

nel learning.
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2.7 Parameter inference
The complete model has five parameters / ¼ ðrE; rS; t;w; cÞ to infer,

of which the variance parameters ðrE;rS; tÞ parameterise the joint

data variance r2
/, while the MKL parameters w ¼ ðw1; . . . ;w21Þ and

c ¼ ðc1; . . . ; c21Þ parameterise the kernel matrix K/. In a Gaussian

process model these can be jointly optimized by the marginal (log)

likelihood with priors

log p yj/ð Þp rEð Þp rRð Þ ¼ log
Ð

p yjf;/ð Þp fj/ð Þp rEð Þp rRð Þdf

/ �1

2
yT K/ þ diag r2

/

� �� ��1
y� 1

2
log jK/ þ diag r2

/

� �
j

þlog Gamma rEjaE; bEð Þ þ log Gamma rSjaS;bSð Þ;

(10)

which automatically balances model fit (the square term) and the

model complexity (the determinant) to avoid overfitting (Rasmussen

and Williams, 2006). The parameters can be optimized by maximis-

ing the marginal log likelihood (10) using gradient ascent, since the

marginal likelihood can be differentiated analytically (see

Supplementary Equations S1 and S2). We utilized a limited-memory

projected quasi-Newton algorithm [minConf_TMP (http://www.cs.

ubc.ca/~schmidtm/Software/minConf.html)], described by Schmidt

et al. (2009).

2.8 Evaluation criteria
We chose to evaluate the accuracy of our predictions using the same

metrics that have been used by many others—correlation q between

the predicted and experimentally measured DDG values (Capriotti

et al., 2005a; Dehouck et al., 2009; Kellogg et al., 2011; Pires et al.,

2014b; Potapov et al., 2009) and the root mean square error (rmse)

(Dehouck et al., 2009; Pires et al., 2014a,b), which are determined

in the Supplementary Equations S3 and S4. We use marginal likeli-

hood maximization to infer model parameters and perform cross-

validation to evaluate the model performance on test data. Below

we only report evaluation metrics obtained from the test sets not

used at any stage of the model learning or data transformation

sampling.

3 Results

In this section we evaluate the performance of mGPfusion on pre-

dicting stability effects of mutations, and compare it to the state-of-

the-art prediction methods mCSM, PoPMuSiC and Rosetta. Rosetta

is a molecular modelling software whose ddg_monomer module can

directly simulate the stability changes DDG of a protein upon muta-

tions. PoPMuSic and mCSM are machine learning models that pre-

dict stability based on protein variant features. We run Rosetta

locally, and use mCSM and PoPMuSiC models through their web

servers (biosig.unimelb.edu.au/mcsm and omictools.com/popmusic-

tool). This may give these methods an advantage over mGPfusion

since parts of our testing data were likely used within their training

data.

We compare four different variants of our method: mGPfusion

that uses both simulated data and MKL, ‘mGPfusion, only B62’ that

uses simulated data but incorporates only one kernel matrix

(BLOSUM62 substitution matrix), mGP model that uses MKL but

does not use simulated data, and ‘mGP, only B62’ that uses only the

base GP model but does not incorporate simulated data and uses

only the BLOSUM62 substitution matrix. In addition, we experi-

ment on transforming Rosetta predictions with the Bayesian scaling.

We perform the experiments for the 15 proteins separately using ei-

ther position or mutation level (leave-one-out) cross-validation

regarding the methods mGP, mGPfusion and the Bayesian scaling of

Rosetta. Pires et al. (2014b) used protein and position level cross-

validation to evaluate their model. In protein level cross-validation

all mutations in a protein are either in the test or training set exclu-

sively. When we train our model using protein level cross-

validation, we use no experimental data and rely only on the

Fig. 2. Average weights for kernels utilising the described substitution matrices from AAindex2, when GP models were trained with mutation level cross-valid-

ation. Basis for the substitution matrices are obtained from (Tomii and Kanehisa, 1996). * were added to AAindex2 in a later release, and their basis were not

determined by Tomii and Kanehisa (1996)
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simulated data. Position level cross-validation is defined so that all

mutations in a position are either in the test or training set exclusive-

ly. However, datasets in Pires et al. (2014b) contained only point

mutations and therefore we had to extend the definition to also in-

clude multiple mutations. In position level cross-validation we train

one model for each position using only the part of data that has a

wild-type residue in that position. Therefore, in position level cross-

validation we construct a test set that contains all protein variants

that have a mutation at position p and use as training set all the pro-

tein variants that have a wild-type residue at that position. Dehouck

et al. (2009) evaluated their models by randomly selecting training

and test sets so that each mutation was exclusively in one of the sets,

but both sets could contain mutations from the same position of the

same protein. We call this mutation level cross-validation. When we

use all available experimental data with mutation level cross-

validation, this corresponds to leave-one-out cross-validation.

3.1 Predicting point mutations
Table 2 summarizes the average prediction performance over all 15

proteins for all compared methods, types of mutations and cross-

validation types. We first compare the performances on single point

mutations, where mGPfusion and mGP achieve the highest perform-

ance with q ¼ 0:81 and rmse ¼ 1:07 kcal/mol, and q ¼ 0:81 and

rmse ¼ 1:04 kcal/mol, respectively with mutation level cross-

validation. With only one kernel utilising the BLOSUM62 matrix in-

stead of MKL, the performance decreases slightly, but the competing

methods are still outperformed, as mCSM achieves q ¼ 0:64 and

rmse ¼ 1:37 kcal/mol, PoPMuSic q ¼ 0:61 and Rosetta q ¼ 0:55.

Applying Bayesian scaling on Rosetta simulator improves the per-

formance of standard Rosetta from q ¼ 0:55 to q ¼ 0:65 and

decreases the rmse from 1.63 to 1.35 kcal/mol, which is interestingly

even slightly better than the performances of mCSCM and

PoPMuSiC.

With position level cross-validation mGPfusion achieves the

highest performance of q ¼ 0:70 and rmse ¼ 1:26 kcal/mol, likely

due to having still access to simulated variants from that position,

since they are always available to the learner. Without simulation

data, the baseline machine learning model mGP performance

decreases to q ¼ 0:51 and rmse ¼ 1:54 kcal/mol, thus demonstrating

the importance of the data fusion. Cross-validation could not be per-

formed for the off-the-shelf methods mCSM and PoPMuSiC. Even

still, mGPfusion (trained with one or multiple kernels) outperforms

competing state-of-the-art methods and achieves markedly higher

prediction performance as quantified by both mutation and position

level cross-validations. Also mGP outperforms these methods when

quantified by mutation level cross-validation. With protein level

cross-validation mGPfusion achieves slightly better results than

Rosetta.

3.2 Predicting multiple mutations
Next, we tested stability prediction accuracies for variants contain-

ing either single or multiple mutations. Figure 3 shows a scatter plot

of mGPfusion predictions for all 1537 single and multiple mutation

variants (covering all 15 proteins) against the experimental DDG val-

ues using the mutation level (leave-one-out) cross-validation. The

points are coloured by the number of simultaneous mutations in the

variants, with 326 variants having at least 2 mutations (see Table 1).

Figure 3 illustrates the mGPfusion’s overall high accuracy of

q ¼ 0:83 and rmse ¼ 1:13 kcal/mol on both single and multiple

mutations (see Table 2). Scatter plots for the individual proteins can

be found in Supplementary Figure S3. Dehouck et al. (2009) sug-

gested that considering the predictive power after removal of most

badly predicted stability effects of mutations may give more relevant

evaluation, as some of the experimental measurements may have

been made in non-physiological conditions or affected by significant

error, associated with a poorly resolved structure, or indexed incor-

rectly in the database. They thus reported correlation and rmse of

the predictions after excluding 10% of the predictions with most

negative impacts on the correlation coefficient. Pires et al. (2014b)

also reported their accuracy after 10% outlier removal. If we re-

move the 10% worst predicted stability effects from the combined

predictions, we achieve correlation q of 0.92 and rmse of 0.67 kcal/

mol. We report these results for all the methods in Supplementary

Table S3 and also present the error distribution in Supplementary

Figure S5.

The high accuracy is retained for variants with multiple muta-

tions as well (q ¼ 0:88 and rmse ¼ 1:33 kcal/mol, see Table 2 and

Supplementary Table S2). Table 3 lists mGPfusion’s rmse for differ-

ent number of simultaneous mutations. The model accuracy in fact

improves up to 6 mutations. This is explained by the training set

often containing the same single point mutations that appear in var-

iants with multiple mutations. The model can then infer the com-

bined effect of pointwise mutations. The model seems to fail when

predicting the effects of 7–9 simultaneous mutations. Most of these

mutations (8/12) are for Ribonuclease (1RGG) and their effects

seem to be exceptionally difficult to predict. This may be because

only few of the point mutations that are part of the multiple muta-

tions are present in the training data. However, these mutations

seem to be exceptionally difficult to predict for Rosetta as well,

which could indicate that the experimental measurements concern-

ing these mutations are not quite accurate. PoPMuSiC and mCSM

are unable to predict multiple mutations, while Rosetta supports

them, but its rmse accuracy decreases already with two mutations.

With multiple mutations, the decrease in performance between

the position and mutation level cross-validations becomes clearer

than with single mutations. With the position level cross-validation

the stability effects of multiple mutations are predicted multiple

times, which partly explains this loss of accuracy. For example, the

effects of mutants with nine different simultaneous mutations,

which were the most difficult cases in the mutation level cross-

validation, are predicted nine times. Surprisingly, mGPfusion trained

with protein level cross-validation achieves higher correlation and

smaller errors than Rosetta; mGPfusion utilising simulated DDG val-

ues for only single mutations, can predict the stability effects of mul-

tiple mutations better than Rosetta.

Fig. 3. Scatter plot for the mutation level (leave-one-out) predictions made for

all 15 proteins (see Table 1). The colour indicates the number of simultaneous

mutations
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3.3 Uncertainty of the predictions
Gaussian processes provide a mean lðxÞ and a standard deviation

rðxÞ for the stability prediction of a protein variant x. The standard

deviation allows estimation of the prediction accuracy even without

test data. Figure 1h visualizes the uncertainty of a few predictions

made for the protein G (1PGA) when mutation level cross-

validation is used. The estimated standard deviation allows a user

to automatically identify low quality predictions that can appear

e.g. in parts of the input protein space from which less data is

included in model training. Conversely, in order to minimize the

amount of uncertainty in the mGPfusion predictions, estimated

standard deviation can be used to guide next experiments. The prob-

abilistic nature of the predictions also admits an alternative error

measure of negative log probability density (NLPD) nlpd ¼
�
PN

i¼1 log pðyijlðxiÞ;r2ðxiÞÞ, which can naturally take into account

the prediction variance.

3.4 Effect of training set size
The results presented in Sections 3.1–3.3 used all available data for

training with cross-validation to obtain unbiased performance meas-

ures. The inclusion of thousands of simulated variants allows the

model to learn accurate models with less experimentally measured

variants. Hence, we study how the mGPfusion model with or with-

out simulated data performs with reduced number of experimental

observations. To facilitate this, we randomly selected subsets of

experimental data of size 0, 10, 20 and so on. We learned the mGP

and mGPfusion models with these reduced experimental datasets

while always using the full simulated datasets. This also allows us to

estimate how the models work with different number of cross-

validation folds. For example, the point of a learning curve which

utilizes 2/3 or 4/5 of the training data correspond to an average of

multiple 3-fold or 5-fold cross-validations, respectively.

The learning curve in Figure 4a shows how the averaged correl-

ation for protein 2LZM improves when the size of the experimental

dataset increases. The right-most values at N¼348 are obtained

with leave-one-out cross-validation. The inclusion of simulated data

in mGPfusion (dark blue line) consistently improves the perform-

ance of mGP, which is trained without simulated data. Figure 4b il-

lustrate the difference in root mean square error. Learning curves

for all proteins listed in Table 1 can be found from the

Supplementary Figures S6–S8. When the number of experimental

samples is zero, the mGPfusion model is trained solely using the

simulated data with scaling 0:57yS, and the mGP model predicts the

stability effect of every mutation as zero. The last point on the learn-

ing curves is obtained with mutation level cross-validation (see

Table 2 and Supplementary Table S2).

3.5 Effect of data fusion and multiple substitution

matrices
In the beginning of the learning curves, when only little training

data is available, mGPfusion quite consistently outperforms the

mGP model, demonstrating that the additional simulated data

improves the prediction accuracy. However, when more training

data becomes available, the performance of mGP model is almost as

good or sometimes even better than the performance of the

mGPfusion model. This shows that if enough training data is avail-

able, it is not necessary to simulate additional data in order to obtain

accurate predictions. Table 2 also shows, that the data fusion can

compensate the lack of relevant training data—with the mGPfusion

models that utilize the additional data, the decrease in accuracy is

smaller when position level cross-validation is used instead of muta-

tion level cross-validation, than with the mGP models.

The varying weights for the base kernels between different pro-

teins (shown in Fig. 2) already illustrated that different proteins

benefit from different similarity measures for amino acid substitu-

tions. The learning curves also support this observation—with some

of the proteins mGPfusion model trained with only one kernel that

utilizes BLOSUM62, provides approximately as good results as the

mGPfusion model trained with multiple kernels. However, with

many of the proteins, utilising just BLOSUM62 does not seem to be

sufficient and the accuracy of the model can be improved by using

different substitution matrices. Prior knowledge of appropriate

Table 3. Root-mean-square errors for different number of simultaneous mutations for all 15 proteins, with models trained by leave-one-out

cross-validation

Mutations 1 2 3 4 5 6 7 8 9 10

Occurences 1211 207 52 42 4 8 3 3 6 1

mGPfusion 1.07 1.06 0.80 0.51 0.40 1.01 3.02 5.89 5.16 0.25

mGPfusion, only B62 1.11 1.12 0.77 0.59 0.29 1.14 3.00 6.78 5.56 0.11

mGP 1.04 1.03 0.61 0.50 0.18 0.92 3.23 6.18 6.75 0.08

mGP, only B62 1.26 0.96 0.65 0.83 0.26 1.14 2.95 6.90 6.57 0.05

Rosetta scaled 1.35 2.10 1.92 2.94 2.29 2.32 2.93 6.75 7.28 2.69

Rosetta 1.63 2.27 2.11 3.78 2.93 2.21 2.92 5.80 7.45 3.42

Note: Rosetta is added for comparison.

Fig. 4. (a) Correlation and (b) root mean square error of predictions made by

models with different number of experimental training samples for T4

Lysozyme (2LZM). The results of Rosetta, mCSM and PoPMuSiC are invariant

to training data (because mCSM and PoPMuSiC are pre-trained), and are thus

constant lines. For both figures, an average of 100 randomly selected training

sets is taken at each point
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substitution models for each protein could enable creation of accur-

ate prediction models with just one substitution model, but the

MKL seems to be a good tool for selecting suitable substitution

models when such knowledge is not available. It seems that the data

fusion and number or relevance of used substitution matrices can

compensate each other—the learning curves show, that the differ-

ence between mGPfusion models trained with one or multiple ker-

nels is smaller than the difference between the mGP models utilising

one or multiple kernels. This indicates that if additional simulated

data is exploited, the use of multiple or appropriate substitution

models is not as important than without the data fusion. On the

other hand, if data fusion is not applied, the use of MKL can more

significantly improve the accuracy of the mGP model.

3.6 Effect of the Bayesian transformation on Rosetta
The Bayesian scaling of simulated Rosetta values, proposed in

Section 2.2, improves the match of Rosetta simulated values to em-

pirical DDG values even without using the Gaussian process frame-

work. The Bayesian scaling improves the performance of standard

Rosetta simulations from q ¼ 0:55 and rmse ¼ 1:63 kcal/mol to

q ¼ 0:65 and rmse ¼ 1:35 kcal/mol (see Table 2 and Supplementary

Table S2). This shows that the scaling proposed by Kellogg et al.

(2011) indeed is not always the optimal scaling and significant

improvements can be gained by optimising the scaling using a set of

training data.

Figure 1g visualizes the Bayesian scaling for protein 1PGA,

where the very destabilising DDG values are dampened by the scal-

ing (black dots) to less extreme values by matching the scaled simu-

lated values to the experimental points (blue circles). The black dots

along the scaling curve indicate the grid of point mutations after

transformation. The scaling variance r2
T is indicated by the green

region’s vertical width, and on the right panel. The scaling tends to

dampen very small values into less extreme stabilities, while it also

estimates higher uncertainties for stability values further away from

DDG ¼ 0. However, the scalings vary between different proteins, as

can be seen from the transformations for each of the 15 proteins pre-

sented in Supplementary Figure S9.

4 Conclusions

We present a novel method mGPfusion for predicting stability

effects of both single and multiple simultaneous mutations.

mGPfusion utilizes structural information in form of contact maps

and integrates that with amino acid residues and combines both ex-

perimental and comprehensive simulated measurements of muta-

tions’ stability effects. In contrast to earlier general-purpose stability

models, mGPfusion model is protein-specific by design, which

improves the accuracy but necessitates having a set of experimental

measurements from the protein. In practise small datasets of 10–20

experimental observations were found to provide state-of-the-art ac-

curacy models when supplemented by large simulation datasets.

An important advantage over most state-of-the-art machine

learning methods is that mGPfusion is able to predict the effects of

multiple simultaneous mutations in addition to single point muta-

tions. Our experiments show that mGPfusion is reliable in predict-

ing up to six simultaneous mutations in our dataset. Furthermore,

the Gaussian process framework provide a way to estimate the (un)-

certainty of the predictions even without a separate test set. We add-

itionally proposed a novel Bayesian scaling method to re-calibrate

simulated protein stability values against experimental observations.

This is a crucial part of the mGPfusion model, and also alone

improved protein-specific Rosetta stability predictions by calibrating

them using experimental data.

mGPfusion is best suited for a situation, where a protein is thor-

oughly experimented on and accurate predictions for stability effects

upon mutations are needed. It takes some time to set up the frame-

work and train the model, but after that new predictions can be

made in fractions of a second. The most time-consuming part is run-

ning the simulations with Rosetta, at least when the most accurate

protocol 16 is used. Simulating all 19 possible point mutations for

one position took about 12 h, but simulations for different positions

can be run on parallel. The time needed for training the prediction

model depends on the amount of experimental and simulated train-

ing data. With no simulated data, the training time ranged from few

seconds to few minutes. With data fusion and a single kernel, the

training time was under an hour. With data fusion and MKL with

21 kernels, the training time was from a few minutes to a day.
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