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SUMMARY

We propose a structural mean modeling approach to obtain compliance-adjusted estimates for treatment
effects in a randomized-controlled trial comparing 2 active treatments. The model relates an individual’s
observed outcome to his or her counterfactual untreated outcome through the observed receipt of active
treatments. Our proposed estimation procedure exploits baseline covariates that predict compliance levels
on each arm. We give a closed-form estimator which allows for differential and unexplained selectivity
(i.e. noncausal compliance-outcome association due to unobserved confounding) as well as a nonpara-
metric error distribution. In a simple linear model for a 2-arm trial, we show that the distinct causal
parameters are identified unless covariate-specific expected compliance levels are proportional on both
treatment arms. In the latter case, only a linear contrast between the 2 treatment effects is estimable and
may well be of key interest. We demonstrate the method in a clinical trial comparing 2 antidepressants.

Keywords Causal inference; Randomized-controlled trials; Structural mean models.

1. INTRODUCTION

Regulators and stakeholders agree that today’s drug evaluation process has become expensive to the
point of threatening new drug developmebilNlasi and others2003. At the same time, technological
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developments have raised the hope for more targeted, individualized medicine. The challenge is to learn
as much as possible from pivotal randomized studies, for instance, on departures from randomized treat-
ment, including prescribed changes of treatment, noncompliance, and dose-response relatiefinships (

and Feldmanl1991) or more accurate estimation of treatment efficacy (the causal effect of the prescribed
dose as intendedixpetghebeur and Laph997).

Analysis of data on actual treatments can be complex. In phase Il trials, a standard intention to
treat (ITT) analysis is a good starting point, especially for drug regulators motivated by the desire for a
conservative conclusion. Conventional alternatives such as per-protocol analysis risk serious bias since
nonadherence to the study protocol (treatment noncompliance) may be related to treatment and outcome.
In this paper we focus on compliance-adjusted linear regression analysis, which uses randomization as
an instrument\(Vhite, 2005 Sommer and Zegefi991 Goetghebeur and Lapp997 Vansteelandt and
Goetghebey2003. Technically, our approach is an application of the theoretical developmdritins
and otherq1994) for parameter estimation in structural mean models (SMMs).

Applications of SMMs have hitherto focused on adjusting for observed experimental exposure in trials
with a placebo group or an untreated control group. However, active-controlled trials (ACTs) are increas-
ingly warranted as drug treatment becomes standard for ever more dideléesgizsgrg and Temp)@000.

ACTs present new challenges in comparing efficacy. First, unlike in placebo-controlled trials, in ACTs
treatment noncompliance need not attenuate the ITT difference. For example, it is possible to observe an
ITT difference when 2 treatments are equally efficacious but one is more commonly discontinued. Second,
some ACTs are aimed at demonstrating noninferiority of the new treatment to the standard treatment, not
superiority. Noncompliance then exaggerates any evidence of equivalence in outcomes, potentially lead-
ing to anticonservative behavialdnesand others1996 Vrijens and Urquhar2005 as pointed out in the

ICH E10 guideline Ipternational Conference On Harmonisation Of Technical Requirements For Regis-
tration Of Pharmaceuticals For Human U$899. Third, compliance-adjusted analysis is complicated in
ACTs by the lack of a reference group of unexposed participants. Without a directly observed treatment-
free reference, even the choice and interpretation of the causal estimand requires affamickahd

others 1997).

Some authors have tackled compliance adjustment in ACTs by making strong assunipoioins.

(1998 did not exploit the randomization but relied on the untestable no-unmeasured-confounders assump-
tion. Roy and otherq2008 added relatively strong untestable parametric assumptions.

This paper studies the potential and limitations of the instrumental variable—based SMM estimator
of treatment effects in ACTs. Our case study is a clinical trial of fluoxetine and paroxetine, 2 common
antidepressant drugBémyttenaerand others2009. Like most mental health trials, it is compromised
both by noncompliance and by dropout, with nonadherent patients particularly prone to diopont (
and others2003.

In Section 2, we formalize the model and its estimating equations for our problem. A closed-form
estimator is derived in Section 3. Identifiability conditions are discussed in Section 4. In Section 5, we
demonstrate the usage of the estimator on the antidepressant trial. We end with a discussion in Section 6.

2. AN SMM FOR THE COMPARISON OR2 ACTIVE TREATMENTS

Consider a randomized 2-arm trial, whergatients are randomized to one of 2 active treatments, A
or B. We define the following (observed or potential) variables for each patient, ..., n: YiA, YiB:
(potential) outcome under assignment to treatment A or B, respectivﬁty;potential treatment-free
outcome;CiA, CiB: (potential) vectors of treatment compliance summaries observed under assignment to
A or B, respectivelyX;: a vector of baseline covariateR*, RB: randomization indicators, with value

1, when patient is randomized to A (B) and 0 otherwise. We will also use the notaRpr= RiA and

Y: = Y,ARA + Y,BRE for the observed outcome.
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An SMM defines the average effects of assignmemtand B as the expected dif'ferenceS\ﬁA —
Y2 IXi, CM) and BY,B — Y0|X;, CB) and assumes these are known functipAsandy B of compliance,
baseline characteristics, and unknown parameter veptdmsr y 2, respectively Goetghebeur and Lapp
1997. Subtracting postulated effects from corresponding outcomes yields on average the expected
treatment-free response, conditional on compliance and baseline characteristics:

E[YA -y ACA Xi; wMICA X1 = EIYICA Xi] and 2
E[Y® -y B(CP. Xisw®)ICP, Xi] = EYICP, Xil.
It is common to assume the following “exclusion restrictions” hold:
y A0, Xi; y*) =0andy ®(0, Xi; y®) = 0. (2.2)

Thus, if no active treatment is received, expected outcome equals expected treatment-free outcome.
Equations in 2.1) reflect 2 SMMs, equivalent to the models introducedGxyetghebeur and Lapp
(1997. The functionsy A(CA, Xi; w*) and y B(CB, Xi; wB) represent average effects of A or B as-
signment in a subgroup of patients at given levelXaindC” or CB. The models allow for treatment
effect heterogeneity, make no assumptions on the effects of one treatment dose in patients observed to
take a different dose and make no assumptions on the association b&een CE. However, as the
Yio—distribution is not observed, the estimator propose@aetghebeur and Lap{d997) is not directly
applicable here.
The main interest lies often in a difference between the 2 treatment effects. Conditioning jointly on
C andCP leads to the single equation:

E[YA — y ACH, Xi; w™MICH, CB, Xi] = E[Y;® — y B(CP, Xi; w®)ICA, CB, Xil. (2.3)

Now the differencey A(CA, Xi; w*) — y B(CB, Xi; wB) has a direct interpretation as the expected
outcome difference under A and B assignments in a subgroup of patients with given valye’yfand
CB. As the 2 potential compliance measures are never jointly observed in a parallel trial, such subgroups
are not identified.

By taking expectations conditional of) only, either @.1) or (2.3) implies

ELVA =y ACH X1 wAIXi] = EIY® — 7 BCP X5 wB)IXil. @4

As the expectations of the variables appearing on the left are estimable from arm A and those on the right
from arm B data, Z.4) suggests the following estimation procedure. With= (y*; w ®), an unbiased
estimating equation foy is

D Ui =D g(R, XDIHi(w) —a(Xi)] =0, (2.5)

i=1 i=1

whereHi (y) = Yi — RAACH, Xi; w?) — RBy B(CP, Xi; w®); 9(R, Xi) is any vector with dinty)
elements, satisfying B[R, X;j)|Xi] = 0, andq(X;) is any function ofX;. Efficient estimates are
obtained with optimal choices gfandg. Following Robins (1994), the optimal functiogpt is dopt(Xi) =
E[Hi (wo)|Xi], with wg the true (unknown) value of . A different choice ofj(X;) will not introduce bias
in the estimating equation, but the variance of the soluﬁois a function of VarH; (wo) — q(Xi)|Xi]
and thus depends on how wgllX;) approximatesH; (). So a better precision @f can be achieved by
including inX; covariates that are predictive for the potential treatment-free outcome.

Since EHi (wg)|Xi] = E[Yi°|Xi] is the expected treatment-free response, it is not directly estimable
from the data on either active treatment arm, unlike in the placebo-controlled trial with no contamination
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in the control arm Goetghebeur and Laph997). However, with a parametric mode(X;) = q(Xi; a),
consistent estimates fgr anda are obtained by simultaneously solving the unbiased estimating equations
(2.5 and

n
> dX)IHi () — a(Xi,a)] =0, (2.6)
i=1
with d(X;) being any function ofX;j. By analogy with generalized linear models, we chod€€;j) =
oqXi.@)

oa
Giveng, the optimal functiorg,, is described irRobins(1994 or Goetghebeur and Lag997:

Jonti = woptiopti = wopti {E[OH; (wo) /0w IR, Xi] — E[0Hi (wo) /o' IXi]}. (2.7)

wherewgptj = Var{H; (y)|X; }~1 can be dropped if the variance does not change XjthWhengq and

g have their optimal forms, Van'/ 2[c/A/(qopt, Jopv]} attains the “semiparametric efficiency bound.” If the
conditional variance oH; (y) givenX; were to vary on either treatment arm beyond what is expected for
the standard generalized linear model, one would weig} by the inverse variance.

With ¢ = E[6U; (wq, 9, q)/0w’] andQ = Var[U; (w, 9, )], a consistent variance estimator for the
estimated parameter vector is derived from the corresponding estimatestad- Q7 2.

3. CLOSED-FORM ESTIMATOR FOR A LINEARSMM
A linear SMM is defined by

y ACA, Xis ) = w~zP andy B(CB, X;; wB) = yB'ZB, (3.1)

where the vectorziA andZiB may contain compliance summaries (componen@i’bbndCiB) and their
interactions with baseline covariates. This paper focuses on estimatipfi ahdy & and their contrast
w—y B, the latter being often of greatest interest, given the trial’s objective of direct comparison between
treatments A and B. In the absence of an untreated control group, we will show that inference on the
contrasty ® — B is typically more robust.

Assuming a linear modej(X;, a) = a’X; for the dependence of potential treatment-free response on
Xi, the optimalg becomes

opti = {E@M XY [RY — E(RAXi]; EZBIXi)[RE — E(REIX)]Y. (3.2)
where the expectations can be estimated by regression methods.
Let G, Z, X be matrices withith row gop;; (or gg)p,;i, if the use of weights is indicatedQRiAZiA,

RiBZiB') andX;, respectively, and let be the column vector witith elementy;. The estimating equations
(2.5 and @.6) then have matrix representation

G'(Y-Zy —Xa) = 0O,
X(Y—-Zy—Xa) = 0 (33)
and the closed-form solution far is

y = {G'PxZ} 1G'PxY, with Px =1 — X(X'X)"1X/, (3.4)

provided all inverse matrices exist. Hefés ann x n identity matrix. The parameter vectercan subse-
quently be estimated &= (X'X)"X'(Y — Zy). When ing,, E(Z{|X;) andE(Z2|X;) are estimated
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from classical linear regression models, this estimator is equivalent to the 2-stage least squares estima-
tor often used in econometrics and social science applicatiasaty and Dunn2010. A consistent
estimator for the variance—covariance matrix of the estimated parameter yectmm be derived from
(3.4), as
Var(y) = {G'PxZ}~1G'PxG{G'PxZ} 152 (3.5)
Here,62 is the estimated variance bk (y) (givenX;), obtained as the residual varianée: = >t q-z/
df with df = n—dimy — dima and residualg, defined bye = H; (y) —q(Xi,a) = Y; — RAZAyA -
RiBZiB wB—a’X;. The estimator is easy to implement in software supporting simple matrix language. The

main practical issue is identifiability of the parameters, which corresponds mathematically to the existence
of inverse matrices in3(4). We discuss this next.

4. IDENTIFIABILITY
4.1 Condition for identifiability of the 2 distinct parameters in a simple linear SMM

Consider first univariate compliance summaries: (potential) expoﬁﬁeand CiB, for example, the
percentage of the assigned dose of drug that would be taken by paifeagsigned to treatment A or

B, respectively. We assun® > 0, although the methodology can accommodate negative values. The
valuesC; = 0 have here the special meaning of absence of treatment exposure. For a simple linear SMM,
estimating equations are derived from

ELYA — wACH IXi] = E[Y{® — wBCB IXi]. (4.1)

Note that this SMM implies for the ITT treatment effe@(Y* — Y;8) = yw AE(C?) — wBE(CP). Inthe
special case WhelE(CiA) = E(CiB) = uc, for instance, when compliance can be seen as an attribute of
the patient (as itefron and Feldmarl991), the ITT treatment difference is proportional to the difference
of the 2 SMM parametersE (YA — YB) = (¢ — yB)uc but this is not generally true. In general, the
parametersy * andy B are identified under the following condition:

“The two distinct parameters of a simple linear SMKML1) comparing each active treatment with
treatment free response are identified, unless there exists a cdastanft that ECiB|Xi) = kE(CiA|Xi ).
In the latter case, only the contrast y” — ki B is estimable.”

One hence needs baseline covariates which predict compliance differently across randomized groups.
This would hold if the 2 treatments were preferred by different patient subcategories.

A detailed discussion on estimation when the 2 separate parameters cannot be estimated, with some
practical recommendations, can be found in Section A of the Supplementary Material available at
Biostatisticsonline.

4.2 ldentifiability of a multiple linear SMM

For some purposes, a simple linear SMM is an oversimplification and m8dglwould include the

causal effect of multiple exposures or several summaries of dose timing (possibly interacting with certain
baseline covariates). For all distinct parameters to be identified, it is then necessary and sufficient that the
matrix E(Z|X) with ith row EZ;|X;) = E[(ZiA/, ZiB/)/|Xi] is of full column rank. This can happen as

long as dingX;) > dim(Z;) — 1 and none of the components ofZ|X;) can be expressed as a linear
combination of the others. Even then, linear or near-linear dependenci€z|X)Ecan make causal pa-
rameter estimates highly variable. They might nevertheless allow for precise estimation of useful contrasts
such as.
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4.3 Simulations

We conducted simulations to study the precision and possible finite sample bias of the estimates, assuming
the model 4.1), also examining the performance when parameters are unidentified. Details of simulations
are given in Section B of the Supplementary Material availabRi@gtatisticsonline.

The results indicate that estimator behaves quite well when the 2 expected compliance measures,
given baseline characteristics, are different with correlation 0.75 or even 0.95, with a relatively small
finite sample bias in small samples. When the correlation between the 2 expected compliance summaries
is 1, but the 2 summaries differ by an additive constant, the estimate is still reasonably precise for sample
size of 2,000 and might also work far= 400. When the 2 summaries differ by a multiplicative constant
or are equal, the estimates are more imprecise and in these cases one is unlikely to identify the 2 distinct
parameters.

The simulations demonstrate that the differefice y* — y B is always estimated with much better
precision than the 2 distinct parameter§ andy B, the SMM algorithm providing unbiased and relatively
precise estimates even when the 2 expected compliance summaries are equal.

4.4 Extensions

The linear SMM defined by3(1) can be applied in a much wider range of applications than the simple
situation, where on each arm only one treatment, A or B, is available and the exclusion restti@jon (
holds. Section C of the Supplementary Material availabBiastatisticsonline discusses 2 possible ex-
tensions. First, one can allow for contamination—treatment A being received by some patients on arm B
and treatment B by some patients on arm A, which leads to a special case of an SMM with multivariate
compliance summaries, possibly still simplified to a 2-parameter model. Second, one can relax the exclu-
sion restriction by allowing a constant nonzero difference between potential outcomes on arms A and B
in addition to the coefficients of the received dose. In this case, the SMM involves 3 causal parameters
that may be difficult to identify in practice with reasonable precision.

5. ATRIAL OF 2 ANTIDEPRESSANTS

We apply our method to compare 2 antidepressant treatments, fluoxetine and paroxetine, accounting for
variability in drug exposure due to suboptimal compliance with prescribed therapy.

The trial Demyttenaerand others2004 2008 was designed as part of a study to develop an antide-
pressant compliance questionnaire. It was a double-blind randomized multicentre study in patients with
major depressive disorder. 85 patients were randomized to fluoxetiged®, later referred to as treat-
ment A) or paroxetine (a= 43, treatment B), 20 mg/day, for 22 weeks after an initial wash out and run-in
period on placebo. The severity of depression was assessed by the Hamilton depression scale at clinic
visits before the run-in period (Visit 1), at randomization (Visit 2), after the initial 2 weeks on randomized
treatment (Visit 3), and then every 4 weeks for the next 5 months (Visits 4-8). Medication event mon-
itoring systems (MEMS) were used to automatically compile drug dosing histdfigser(s and others
2005; treatment compliance was the percentage of prescribed dose actually taken by the patient during a
given time period.

As all patients returned their MEMS devices, complete compliance data were available. Also, Hamil-
ton scores at Visits 1 and 2 were available for all 77 patients, but 3, 2, 4, 3, 4, and 8 patients dropped
out prior to Visits 3-8, respectively, and so the Hamilton score at final Visit 8 was available for only 53
patients (69%).

Figurel shows the evolution of individual Hamilton scores during the trial. The ITT analysis reveals
no significant difference between the 2 treatment arms, although both arms saw significant reduction
in average Hamilton scores over the active period ( 45% at 6 weeks and 76% at 22 weeks). Estimated
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Evolution of Hamilton scores over time
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Fig. 2. Histograms of compliance, estimated as percentage of prescribed dose taken by the time of Visit 8.

treatment compliance varied widely between patients (Figurelere, we use the SMM methodology to
explore how drug effects compare at different drug-specific compliance levels. To handle dropouts in the
data set, we used multiple imputatidRubin 1987 assuming the data are missing at random.

5.1 Possible SMMs for the antidepressant trial

LetCi (j, k) denote the percentage of prescribed pills taken by patiegttiveen Visitg andk andC{ (j)

the percentage of prescribed pills taken during the week beforej\/isiuppose(:iA andCiB are vectors
with component€; (j, k) andC” (j) for all j andk. We assume the following models for the final (Visit 8)

outcomesy/A(8) andY;B(8):

E[YA®) - Y®)ICA Xl = yCA28) +ysC" @),
EIYB®) — YO®)ICE, Xi] = wBCB(2 8 +ylCcB ().

(5.1)

These models assume that the effect of each treatment comprises a cumulative effect of the total dose
taken since baseline, reflected py* (w£), and a short-term effear* (v2). We fit this model and 4

nested models, with eitheéis 2, v 2), (v, w2), (w3, wP), or (v, y2) being set to equalo, 0), to

explore whether one of these effects may be dominant.
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5.2 A goodness of fit test
A test for goodness of fit (GOF) is based on
E(HiIXi, R = 1) = E(HiIXi, R® = 1) = E(Y2IX)).

If the parameter estimateg” and y are close to the true values, then the estimales= Y, —

R y?AZA R! By ® Z8 should have similar expectation, givé§ in both randomized groups. So, as

a (partial) GOF test, one can test for the interaction effed® @ind X in a linear regression model for

H. In complete data, one can use the analysis of vari&atest comparing regression models féron

X and R, with and without the interaction. The numerator and denominator degrees of freedom for the
F-statistic arep — q andn — (1 + 2p — q), where p is the number of components ¥ andq is the

number of estimated SMM parameters. In the presence of missing data, the testing procedure and degrees
of freedom were modified using the formulasRgiter(2007).

5.3 Results

First, a set of baseline covariates was selected based on the results of separate multiple regression models
for compliance summaries and final Hamilton scores on both arms. Details on the covariate selection
and multiple imputation procedure are given in Section D of the Supplementary Material available at
Biostatisticsonline.

The resulting estimates for SMM parameters and their standard errors are presented in Aable
cording to the Wald test, all models except Model 5 provide either significant or borderline significant
evidence against the null hypothesis that all causal parameters argo@ahe for Model 4 being below
the conventionad-level of 0.05. Model 3 gives the best fit according to Frest but the parameter esti-
mates have high variability and the model is hard to interpret. Model 4 is the most convincing model and
suggests that treatment A has a more cumulative effedE (4@, 8) is important), whereas B has a more
short-term effect (s€*-B(8) is important)—both parameter estimates being significantly different from
0. The results are in accordance with the knowledge that fluoxetine (A) has significantly longer half-life
than paroxetine (B)Rosenbaunand others1999.

The estimated treatment contrast for full compliers (both compliance summaries being equal to 1)
is estimated with better precision than the distinct parameters. In the best-fitting Models 3 and 4, the
hypothesis of no treatment difference for full compliers cannot be rejected. Model 4 estimates a significant
effect of each separate treatment relative to the treatment-free reference, as defined here. Since Figure 2
reveals how few observations directly reflect the (near) treatment-free response, the latter result is model
dependent and needs to be interpreted with caution.

Table 1. Estimated SMM parameters (standard error), treatment contrast (standard error) for full com-
pliers, and GOF tests fos SMMs and the nuinodel

Coefficient Contrast Test for GOF
CA@2,8) cw-A8) cB(2,8) cw-B(g) for full y=0 (p-value)
compliers p-value)

Null — — — — — — 1.41 (0.20)
SMM1 —14.7(7.1) — —9.3(6.9) — —5.4(2.9) 2.8(0.07) 0.96(0.47)
SMM 2 — —11.5 (4.6) — -57(4.2) —57(35) 3.2(0.05) 0.93(0.50)
SMM3 —12.7(25.2) 5.6 (18.4) 22.2(22.0) —31.7 (15.7) 2.3(5.9) 2.3(0.07) 0.23(0.97)
SMM4 —15.9(5.4) — — —13.4(6.0) -25(3.3) 4.3(0.02) 0.51(0.84)

SMM 5 — -86(5.1) —1.5(4.5) — -7.7(3.3) 2.3(0.11) 1.3@.25)
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In sensitivity analyses, we omitted one or more covariates from the causal analysis. This caused stan-
dard errors of the estimated causal effects to increase, but the results remained consistent with those
tabulated.

The validity of the SMM approach in the presence of missing data (assuming the data is missing
at random) was also tested in our simulation study (Section B of the Supplementary Material available
at Biostatisticsonline). As expected, missing data led to somewhat increased mean squared error of the
estimates using multiple imputation, but no biases are observed.

6. DISCUSSION

We have developed SMMs, which provide inferences about the causal effects of treatment, for trials where
different arms are assigned different active treatments, in the presence of treatment noncompliance.

We have considered flexible causal models involving several causal parameters. Precise estimation of
such models requires the existence of strong baseline predictors for observed exposure on each arm, and
the data requirements increase with model dimension. It is common in randomized trials to record the
covariates that are known to be associated with the outcome, but the present work highlights the impor-
tant role of covariates that predict treatment compliance. Ideally, the covariates should produce different
predictions for the 2 compliance summaries, as for example, when the treatments differ by aspects that
are important to the patient, such as half-life, side effects, frequency of dosage, etc.

Our models assume that the baseline covariates do not modify the causal effect of either treatment.
Interaction terms between compliance and baseline covariates could be included in th& \{8cthras
was done in placebo-controlled trialSgetghebeur and Laph997). However, this cannot be done for all
baseline covariates: the parameters are only identified when enough baseline covariates are (differentially)
predictive for but are assumed not to freely interact with compliance on arms A or B.

From a clinical perspective, the ability of baseline covariates to identify patients whose compliance is
likely to differ under the 2 assignments can help to guide treatment decisions. Our models can be used to
estimate the benefit of assignment to treatment A rather than treatment B for a particular patient’s set of
baseline covariates.

Interpretation of parameters such@8 and y B requires care since different causal parameters de-
fined in this paper pertain to different subpopulations. If one starts f&f then y Ac” is the average
causal effect of compliance®® compared with no compliance in the subpopulation with compliafice
Equation R.3), which conditions on the unobserved joint distributiorqﬁ andCiB, relies on a stronger
assumption which implies thag“c” — yBcB is the ITT difference (the expected difference in out-
come between assignment to A and assignment to B) for the subpopul@tiol©®) = (c?, cB). The
practical usefulness of this interpretation is limited as long as we have no information on how patients
would comply with both treatment assignments. Thus, for examplg Aitand CB are defined as per-
centages of assigned dose theft — B is the ITT difference in the “perfect compliers” subgroup
with CA = CB = 1. However, such a subgroup may not exist or may be hard to identify if it does.

It may be more realistic to consider the ITT difference in a subgroup defined by (for example) 0.8
(CA,CB)y 1.2

Equations 2.1) involve a counterfactual untreated outcokfe In some settings, some patients could
not ethically receive no active treatment, so our us€bis questionable. Models of forn2 (3) avoid this
problem.

In the depression trial analyzed her2,3 requires the causal effect of compliance with fluoxetine to
be unaffected by the potential compliance of the same patients with paroxetine (and vice versa). There
is no obvious reason to expect such interaction, so we interpret the estimated cpfitrasy ® as the
expected ITT difference for those patients whose compliance under either assignment would be close to 1.
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The causal parameter estimates in the best-fitting SMM seem to reflect known differences in the duration
of action of the 2 treatments.

We close by reminding readers that the causal model framework provides some prior structure which
our data alone can neither refute nor confirm. Nevertheless, in many problems, the linear SMM is a good
first-order approximation to the true average causal effect.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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