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SUMMARY

We propose a structural mean modeling approach to obtain compliance-adjusted estimates for treatment
effects in a randomized-controlled trial comparing 2 active treatments. The model relates an individual’s
observed outcome to his or her counterfactual untreated outcome through the observed receipt of active
treatments. Our proposed estimation procedure exploits baseline covariates that predict compliance levels
on each arm. We give a closed-form estimator which allows for differential and unexplained selectivity
(i.e. noncausal compliance-outcome association due to unobserved confounding) as well as a nonpara-
metric error distribution. In a simple linear model for a 2-arm trial, we show that the distinct causal
parameters are identified unless covariate-specific expected compliance levels are proportional on both
treatment arms. In the latter case, only a linear contrast between the 2 treatment effects is estimable and
may well be of key interest. We demonstrate the method in a clinical trial comparing 2 antidepressants.

Keywords: Causal inference; Randomized-controlled trials; Structural mean models.

1. INTRODUCTION

Regulators and stakeholders agree that today’s drug evaluation process has become expensive to the
point of threatening new drug development (DiMasi and others, 2003). At the same time, technological
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developments have raised the hope for more targeted, individualized medicine. The challenge is to learn
as much as possible from pivotal randomized studies, for instance, on departures from randomized treat-
ment, including prescribed changes of treatment, noncompliance, and dose–response relationships (Efron
and Feldman, 1991) or more accurate estimation of treatment efficacy (the causal effect of the prescribed
dose as intended) (Goetghebeur and Lapp, 1997).

Analysis of data on actual treatments can be complex. In phase III trials, a standard intention to
treat (ITT) analysis is a good starting point, especially for drug regulators motivated by the desire for a
conservative conclusion. Conventional alternatives such as per-protocol analysis risk serious bias since
nonadherence to the study protocol (treatment noncompliance) may be related to treatment and outcome.
In this paper we focus on compliance-adjusted linear regression analysis, which uses randomization as
an instrument (White, 2005; Sommer and Zeger, 1991; Goetghebeur and Lapp, 1997; Vansteelandt and
Goetghebeur, 2003). Technically, our approach is an application of the theoretical developments inRobins
and others(1994) for parameter estimation in structural mean models (SMMs).

Applications of SMMs have hitherto focused on adjusting for observed experimental exposure in trials
with a placebo group or an untreated control group. However, active-controlled trials (ACTs) are increas-
ingly warranted as drug treatment becomes standard for ever more diseases (Ellenberg and Temple, 2000).
ACTs present new challenges in comparing efficacy. First, unlike in placebo-controlled trials, in ACTs
treatment noncompliance need not attenuate the ITT difference. For example, it is possible to observe an
ITT difference when 2 treatments are equally efficacious but one is more commonly discontinued. Second,
some ACTs are aimed at demonstrating noninferiority of the new treatment to the standard treatment, not
superiority. Noncompliance then exaggerates any evidence of equivalence in outcomes, potentially lead-
ing to anticonservative behavior (Jonesand others, 1996; Vrijens and Urquhart, 2005) as pointed out in the
ICH E10 guideline (International Conference On Harmonisation Of Technical Requirements For Regis-
tration Of Pharmaceuticals For Human Use, 1999). Third, compliance-adjusted analysis is complicated in
ACTs by the lack of a reference group of unexposed participants. Without a directly observed treatment-
free reference, even the choice and interpretation of the causal estimand requires attention (Cuzick and
others, 1997).

Some authors have tackled compliance adjustment in ACTs by making strong assumptions.Robins
(1998) did not exploit the randomization but relied on the untestable no-unmeasured-confounders assump-
tion. Royand others(2008) added relatively strong untestable parametric assumptions.

This paper studies the potential and limitations of the instrumental variable–based SMM estimator
of treatment effects in ACTs. Our case study is a clinical trial of fluoxetine and paroxetine, 2 common
antidepressant drugs (Demyttenaereand others, 2008). Like most mental health trials, it is compromised
both by noncompliance and by dropout, with nonadherent patients particularly prone to dropout (Dunn
and others, 2003).

In Section 2, we formalize the model and its estimating equations for our problem. A closed-form
estimator is derived in Section 3. Identifiability conditions are discussed in Section 4. In Section 5, we
demonstrate the usage of the estimator on the antidepressant trial. We end with a discussion in Section 6.

2. AN SMM FOR THE COMPARISON OF2 ACTIVE TREATMENTS

Consider a randomized 2-arm trial, wheren patients are randomized to one of 2 active treatments, A
or B. We define the following (observed or potential) variables for each patienti = 1, . . . , n: YA

i , YB
i :

(potential) outcome under assignment to treatment A or B, respectively;Y0
i : potential treatment-free

outcome;CA
i , CB

i : (potential) vectors of treatment compliance summaries observed under assignment to
A or B, respectively;Xi : a vector of baseline covariates;RA

i , RB
i : randomization indicators, with value

1, when patienti is randomized to A (B) and 0 otherwise. We will also use the notationRi = RA
i and

Yi = YA
i RA

i + YB
i RB

i for the observed outcome.
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An SMM defines the average effects of assignment toA and B as the expected differences E(YA
i −

Y0
i |Xi ,CA

i ) and E(YB
i − Y0

i |Xi ,CB
i ) and assumes these are known functionsγ A andγ B of compliance,

baseline characteristics, and unknown parameter vectorsψψψ A orψψψB, respectively (Goetghebeur and Lapp,
1997). Subtracting postulated effects from corresponding outcomes yields on average the expected
treatment-free response, conditional on compliance and baseline characteristics:

E[YA
i − γ A(CA

i ,Xi ;ψψψ A)|CA
i ,Xi ] = E[Y0

i |CA
i ,Xi ] and

E[YB
i − γ B(CB

i ,Xi ;ψψψB)|CB
i ,Xi ] = E[Y0

i |CB
i ,Xi ].

(2.1)

It is common to assume the following “exclusion restrictions” hold:

γ A(0,X i ;ψψψ
A) = 0 andγ B(0,Xi ;ψψψ

B) = 0. (2.2)

Thus, if no active treatment is received, expected outcome equals expected treatment-free outcome.
Equations in (2.1) reflect 2 SMMs, equivalent to the models introduced byGoetghebeur and Lapp

(1997). The functionsγ A(CA
i ,Xi ;ψψψ A) and γ B(CB

i ,Xi ;ψψψB) represent average effects of A or B as-
signment in a subgroup of patients at given levels ofX andCA or CB. The models allow for treatment
effect heterogeneity, make no assumptions on the effects of one treatment dose in patients observed to
take a different dose and make no assumptions on the association betweenCA andCB. However, as the
Y0

i -distribution is not observed, the estimator proposed inGoetghebeur and Lapp(1997) is not directly
applicable here.

The main interest lies often in a difference between the 2 treatment effects. Conditioning jointly on
CA

i andCB
i leads to the single equation:

E[YA
i − γ A(CA

i ,Xi ;ψψψ
A)|CA

i ,C
B
i ,Xi ] = E[YB

i − γ B(CB
i ,Xi ;ψψψ

B)|CA
i ,C

B
i ,Xi ]. (2.3)

Now the differenceγ A(CA
i ,Xi ;ψψψ A) − γ B(CB

i ,Xi ;ψψψB) has a direct interpretation as the expected
outcome difference under A and B assignments in a subgroup of patients with given values ofX, CA, and
CB. As the 2 potential compliance measures are never jointly observed in a parallel trial, such subgroups
are not identified.

By taking expectations conditional onXi only, either (2.1) or (2.3) implies

E[YA
i − γ A(CA

i ,Xi ;ψψψ
A)|Xi ] = E[YB

i − γ B(CB
i ,Xi ;ψψψ

B)|Xi ]. (2.4)

As the expectations of the variables appearing on the left are estimable from arm A and those on the right
from arm B data, (2.4) suggests the following estimation procedure. Withψψψ = (ψψψ A;ψψψB), an unbiased
estimating equation forψψψ is

n∑

i =1

Ui =
n∑

i =1

g(Ri ,Xi )[Hi (ψψψ)− q(Xi )] = 0, (2.5)

whereHi (ψψψ) = Yi − RA
i γ

A(CA
i ,Xi ;ψψψ A) − RB

i γ
B(CB

i ,Xi ;ψψψB); g(Ri ,Xi ) is any vector with dim(ψψψ)
elements, satisfying E[g(Ri ,Xi )|Xi ] = 0, andq(Xi ) is any function ofXi . Efficient estimates are
obtained with optimal choices ofgandq. Following Robins (1994), the optimal functionqopt isqopt(Xi ) =
E[Hi (ψψψ0)|Xi ], with ψ0 the true (unknown) value ofψ . A different choice ofq(X i ) will not introduce bias
in the estimating equation, but the variance of the solutionψ̂ψψ is a function of Var[Hi (ψψψ0) − q(Xi )|Xi ]
and thus depends on how wellq(Xi ) approximatesHi (ψψψ0). So a better precision of̂ψψψ can be achieved by
including inXi covariates that are predictive for the potential treatment-free outcome.

Since E[Hi (ψψψ0)|Xi ] = E[Y0
i |Xi ] is the expected treatment-free response, it is not directly estimable

from the data on either active treatment arm, unlike in the placebo-controlled trial with no contamination
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in the control arm (Goetghebeur and Lapp, 1997). However, with a parametric modelq(Xi ) = q(Xi ;ααα),
consistent estimates forψψψ andααα are obtained by simultaneously solving the unbiased estimating equations
(2.5) and

n∑

i =1

d(Xi )[Hi (ψψψ)− q(Xi ,ααα)] = 0, (2.6)

with d(Xi ) being any function ofXi . By analogy with generalized linear models, we choosed(Xi ) =
∂q(X i ,ααα)

∂ααα .
Givenq, the optimal functiongopt is described inRobins(1994) or Goetghebeur and Lapp(1997):

gw
′

opt,i = wopt,i g′
opt,i = wopt,i {E[∂Hi (ψψψ0)/∂ψψψ

′|Ri ,Xi ] − E[∂Hi (ψψψ0)/∂ψψψ
′|Xi ]}, (2.7)

wherewopt,i = Var{Hi (ψψψ)|Xi }−1 can be dropped if the variance does not change withX i . Whenq and
g have their optimal forms, Var{n1/2[ψ̂ψψ(qopt, gopt)]} attains the “semiparametric efficiency bound.” If the
conditional variance ofHi (ψψψ) givenXi were to vary on either treatment arm beyond what is expected for
the standard generalized linear model, one would weight (2.6) by the inverse variance.

With τ = E[∂Ui (ψψψ0, g,q)/∂ψψψ
′] and� = Var[Ui (ψψψ0, g,q)], a consistent variance estimator for the

estimated parameter vector is derived from the corresponding estimates asn−1τ̂−1�̂τ̂
′−1.

3. CLOSED-FORM ESTIMATOR FOR A LINEARSMM

A linear SMM is defined by

γ A(CA
i ,Xi ;ψψψ

A) = ψψψ A′
Z A

i andγ B(CB
i ,Xi ;ψψψ

B) = ψψψB′
ZB

i , (3.1)

where the vectorsZ A
i andZB

i may contain compliance summaries (components ofCA
i andCB

i ) and their
interactions with baseline covariates. This paper focuses on estimation ofψψψ A andψψψB and their contrast
ψψψ A−ψψψB, the latter being often of greatest interest, given the trial’s objective of direct comparison between
treatments A and B. In the absence of an untreated control group, we will show that inference on the
contrastψψψ A −ψψψB is typically more robust.

Assuming a linear modelq(Xi ,ααα) = ααα′Xi for the dependence of potential treatment-free response on
Xi , the optimalg becomes

gopt,i = {E(Z A
i |Xi )

′[RA
i − E(RA

i |Xi )]; E(ZB
i |Xi )

′[RB
i − E(RB

i |Xi )]}
′, (3.2)

where the expectations can be estimated by regression methods.
Let G,Z,X be matrices withi th row ĝopt,i (or ĝwopt,i , if the use of weights is indicated),(RA

i Z A′

i ,

RB
i ZB′

i ) andXi , respectively, and letY be the column vector withi th elementYi . The estimating equations
(2.5) and (2.6) then have matrix representation

G′(Y − Zψψψ − Xααα) = 0,
X′(Y − Zψψψ − Xααα) = 0

(3.3)

and the closed-form solution forψψψ is

ψ̂ψψ = {G′ PXZ}−1G′ PXY, with PX = I − X(X′X)−1X′, (3.4)

provided all inverse matrices exist. Here,I is ann × n identity matrix. The parameter vectorααα can subse-
quently be estimated aŝααα = (X′X)−1X′(Y − Zψ̂ψψ). When ingopt, E(Z A

i |Xi ) andE(ZB
i |Xi ) are estimated
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from classical linear regression models, this estimator is equivalent to the 2-stage least squares estima-
tor often used in econometrics and social science applications (Maracy and Dunn, 2010). A consistent
estimator for the variance–covariance matrix of the estimated parameter vectorψψψ can be derived from
(3.4), as

V̂ar(ψ̂ψψ) = {G′ PXZ}−1G′ PXG{G′ PXZ}−1′
σ̂ 2. (3.5)

Here,σ̂ 2 is the estimated variance ofHi (ψψψ) (givenXi ), obtained as the residual variance:σ̂ 2 =
∑n

i =1 e2
i /

d f with d f = n−dimψψψ−dimααα and residualsei defined byei = Hi (ψ̂ψψ)−q(Xi , α̂αα) = Yi − RA
i Z A

i ψ̂
A −

RB
i ZB

i ψ̂
B −α̂αα′Xi . The estimator is easy to implement in software supporting simple matrix language. The

main practical issue is identifiability of the parameters, which corresponds mathematically to the existence
of inverse matrices in (3.4). We discuss this next.

4. IDENTIFIABILITY

4.1 Condition for identifiability of the 2 distinct parameters in a simple linear SMM

Consider first univariate compliance summaries: (potential) exposuresCA
i and CB

i , for example, the
percentage of the assigned dose of drug that would be taken by patienti if assigned to treatment A or
B, respectively. We assumeCi > 0, although the methodology can accommodate negative values. The
valuesCi = 0 have here the special meaning of absence of treatment exposure. For a simple linear SMM,
estimating equations are derived from

E[YA
i − ψ ACA

i |Xi ] = E[YB
i − ψBCB

i |Xi ]. (4.1)

Note that this SMM implies for the ITT treatment effect:E(YA
i − YB

i ) = ψ AE(CA
i )−ψB E(CB

i ). In the
special case whereE(CA

i ) = E(CB
i ) = μc, for instance, when compliance can be seen as an attribute of

the patient (as inEfron and Feldman, 1991), the ITT treatment difference is proportional to the difference
of the 2 SMM parameters:E(YA

i − YB
i ) = (ψ A − ψB)μc but this is not generally true. In general, the

parametersψ A andψB are identified under the following condition:
“The two distinct parameters of a simple linear SMM (4.1) comparing each active treatment with

treatment free response are identified, unless there exists a constantk such that E(CB
i |Xi ) = kE(CA

i |Xi ).
In the latter case, only the contrastδ = ψ A − kψB is estimable.”

One hence needs baseline covariates which predict compliance differently across randomized groups.
This would hold if the 2 treatments were preferred by different patient subcategories.

A detailed discussion on estimation when the 2 separate parameters cannot be estimated, with some
practical recommendations, can be found in Section A of the Supplementary Material available at
Biostatisticsonline.

4.2 Identifiability of a multiple linear SMM

For some purposes, a simple linear SMM is an oversimplification and model (3.1) would include the
causal effect of multiple exposures or several summaries of dose timing (possibly interacting with certain
baseline covariates). For all distinct parameters to be identified, it is then necessary and sufficient that the
matrix E(Z|X) with i th row E(Z i |Xi ) = E[(Z A′

i ,Z
B′

i )
′|Xi ] is of full column rank. This can happen as

long as dim(Xi ) > dim(Z i ) − 1 and none of the components of E(Z i |Xi ) can be expressed as a linear
combination of the others. Even then, linear or near-linear dependencies in E(Z|X) can make causal pa-
rameter estimates highly variable. They might nevertheless allow for precise estimation of useful contrasts
such asδ.
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4.3 Simulations

We conducted simulations to study the precision and possible finite sample bias of the estimates, assuming
the model (4.1), also examining the performance when parameters are unidentified. Details of simulations
are given in Section B of the Supplementary Material available atBiostatisticsonline.

The results indicate that estimator behaves quite well when the 2 expected compliance measures,
given baseline characteristics, are different with correlation 0.75 or even 0.95, with a relatively small
finite sample bias in small samples. When the correlation between the 2 expected compliance summaries
is 1, but the 2 summaries differ by an additive constant, the estimate is still reasonably precise for sample
size of 2,000 and might also work forn = 400. When the 2 summaries differ by a multiplicative constant
or are equal, the estimates are more imprecise and in these cases one is unlikely to identify the 2 distinct
parameters.

The simulations demonstrate that the differenceδ = ψ A − ψB is always estimated with much better
precision than the 2 distinct parametersψ A andψB, the SMM algorithm providing unbiased and relatively
precise estimates even when the 2 expected compliance summaries are equal.

4.4 Extensions

The linear SMM defined by (3.1) can be applied in a much wider range of applications than the simple
situation, where on each arm only one treatment, A or B, is available and the exclusion restriction (2.2)
holds. Section C of the Supplementary Material available atBiostatisticsonline discusses 2 possible ex-
tensions. First, one can allow for contamination—treatment A being received by some patients on arm B
and treatment B by some patients on arm A, which leads to a special case of an SMM with multivariate
compliance summaries, possibly still simplified to a 2-parameter model. Second, one can relax the exclu-
sion restriction by allowing a constant nonzero difference between potential outcomes on arms A and B
in addition to the coefficients of the received dose. In this case, the SMM involves 3 causal parameters
that may be difficult to identify in practice with reasonable precision.

5. A TRIAL OF 2 ANTIDEPRESSANTS

We apply our method to compare 2 antidepressant treatments, fluoxetine and paroxetine, accounting for
variability in drug exposure due to suboptimal compliance with prescribed therapy.

The trial (Demyttenaereand others, 2004, 2008) was designed as part of a study to develop an antide-
pressant compliance questionnaire. It was a double-blind randomized multicentre study in patients with
major depressive disorder. 85 patients were randomized to fluoxetine (n= 42, later referred to as treat-
ment A) or paroxetine (n= 43, treatment B), 20 mg/day, for 22 weeks after an initial wash out and run-in
period on placebo. The severity of depression was assessed by the Hamilton depression scale at clinic
visits before the run-in period (Visit 1), at randomization (Visit 2), after the initial 2 weeks on randomized
treatment (Visit 3), and then every 4 weeks for the next 5 months (Visits 4–8). Medication event mon-
itoring systems (MEMS) were used to automatically compile drug dosing histories (Vrijens and others,
2005); treatment compliance was the percentage of prescribed dose actually taken by the patient during a
given time period.

As all patients returned their MEMS devices, complete compliance data were available. Also, Hamil-
ton scores at Visits 1 and 2 were available for all 77 patients, but 3, 2, 4, 3, 4, and 8 patients dropped
out prior to Visits 3–8, respectively, and so the Hamilton score at final Visit 8 was available for only 53
patients (69%).

Figure1 shows the evolution of individual Hamilton scores during the trial. The ITT analysis reveals
no significant difference between the 2 treatment arms, although both arms saw significant reduction
in average Hamilton scores over the active period ( 45% at 6 weeks and 76% at 22 weeks). Estimated
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Fig. 1. Evolution of Hamilton scores during the 23 weeks of the trial.

Fig. 2. Histograms of compliance, estimated as percentage of prescribed dose taken by the time of Visit 8.

treatment compliance varied widely between patients (Figure2). Here, we use the SMM methodology to
explore how drug effects compare at different drug-specific compliance levels. To handle dropouts in the
data set, we used multiple imputation (Rubin, 1987) assuming the data are missing at random.

5.1 Possible SMMs for the antidepressant trial

Let Ci ( j, k) denote the percentage of prescribed pills taken by patienti between Visitsj andk andCw
i ( j )

the percentage of prescribed pills taken during the week before Visitj . SupposeCA
i andCB

i are vectors
with componentsCi ( j, k) andCw

i ( j ) for all j andk. We assume the following models for the final (Visit 8)
outcomesYA

i (8) andYB
i (8):

E[YA
i (8)− Y0

i (8)|C
A
i ,Xi ] = ψ A

1 CA
i (2, 8)+ ψ A

2 Cw,A
i (8),

E[YB
i (8)− Y0

i (8)|C
B
i ,Xi ] = ψB

1 CB
i (2, 8)+ ψB

2 Cw,B
i (8).

(5.1)

These models assume that the effect of each treatment comprises a cumulative effect of the total dose
taken since baseline, reflected byψ A

1 (ψB
1 ), and a short-term effectψ A

2 (ψB
2 ). We fit this model and 4

nested models, with either(ψ A
1 , ψ

B
1 ), (ψ

A
2 , ψ

B
2 ), (ψ

A
2 , ψ

B
1 ), or (ψ A

1 , ψ
B
2 ) being set to equal(0, 0), to

explore whether one of these effects may be dominant.
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5.2 A goodness of fit test

A test for goodness of fit (GOF) is based on

E(Hi |Xi , RA
i = 1) = E(Hi |Xi , RB

i = 1) = E(Y0
i |Xi ).

If the parameter estimatesψψψ A andψψψB are close to the true values, then the estimatesĤi = Yi −

RA
i ψ̂ψψ

A′

Z A
i − RB

i ψ̂ψψ
B′

ZB
i should have similar expectation, givenX, in both randomized groups. So, as

a (partial) GOF test, one can test for the interaction effect ofR andX in a linear regression model for
Ĥ . In complete data, one can use the analysis of varianceF-test comparing regression models forĤ on
X and R, with and without the interaction. The numerator and denominator degrees of freedom for the
F-statistic arep − q andn − (1 + 2p − q), wherep is the number of components inXi andq is the
number of estimated SMM parameters. In the presence of missing data, the testing procedure and degrees
of freedom were modified using the formulas byReiter(2007).

5.3 Results

First, a set of baseline covariates was selected based on the results of separate multiple regression models
for compliance summaries and final Hamilton scores on both arms. Details on the covariate selection
and multiple imputation procedure are given in Section D of the Supplementary Material available at
Biostatisticsonline.

The resulting estimates for SMM parameters and their standard errors are presented in Table1. Ac-
cording to the Wald test, all models except Model 5 provide either significant or borderline significant
evidence against the null hypothesis that all causal parameters are 0, thep-value for Model 4 being below
the conventionalα-level of 0.05. Model 3 gives the best fit according to theF-test but the parameter esti-
mates have high variability and the model is hard to interpret. Model 4 is the most convincing model and
suggests that treatment A has a more cumulative effect (soCA(2, 8) is important), whereas B has a more
short-term effect (soCw,B(8) is important)—both parameter estimates being significantly different from
0. The results are in accordance with the knowledge that fluoxetine (A) has significantly longer half-life
than paroxetine (B) (Rosenbaumand others, 1998).

The estimated treatment contrast for full compliers (both compliance summaries being equal to 1)
is estimated with better precision than the distinct parameters. In the best-fitting Models 3 and 4, the
hypothesis of no treatment difference for full compliers cannot be rejected. Model 4 estimates a significant
effect of each separate treatment relative to the treatment-free reference, as defined here. Since Figure 2
reveals how few observations directly reflect the (near) treatment-free response, the latter result is model
dependent and needs to be interpreted with caution.

Table 1. Estimated SMM parameters (standard error), treatment contrast (standard error) for full com-
pliers, and GOF tests for5 SMMs and the nullmodel

Coefficient Contrast Test for GOFF
CA(2, 8) Cw,A(8) CB(2, 8) Cw,B(8) for full ψψψ = 0 (p-value)

compliers (p-value)

Null — — — — — — 1.41 (0.20)
SMM 1 −14.7 (7.1) — −9.3 (6.9) — −5.4 (2.9) 2.8 (0.07) 0.96 (0.47)
SMM 2 — −11.5 (4.6) — −5.7 (4.2) −5.7 (3.5) 3.2 (0.05) 0.93 (0.50)
SMM 3 −12.7 (25.2) 5.6 (18.4) 22.2 (22.0) −31.7 (15.7) 2.3 (5.9) 2.3 (0.07) 0.23 (0.97)
SMM 4 −15.9 (5.4) — — −13.4 (6.0) −2.5 (3.3) 4.3 (0.02) 0.51 (0.84)
SMM 5 — −8.6 (5.1) −1.5 (4.5) — −7.7 (3.3) 2.3 (0.11) 1.32(0.25)



An SMM to compare 2 active treatments 255

In sensitivity analyses, we omitted one or more covariates from the causal analysis. This caused stan-
dard errors of the estimated causal effects to increase, but the results remained consistent with those
tabulated.

The validity of the SMM approach in the presence of missing data (assuming the data is missing
at random) was also tested in our simulation study (Section B of the Supplementary Material available
at Biostatisticsonline). As expected, missing data led to somewhat increased mean squared error of the
estimates using multiple imputation, but no biases are observed.

6. DISCUSSION

We have developed SMMs, which provide inferences about the causal effects of treatment, for trials where
different arms are assigned different active treatments, in the presence of treatment noncompliance.

We have considered flexible causal models involving several causal parameters. Precise estimation of
such models requires the existence of strong baseline predictors for observed exposure on each arm, and
the data requirements increase with model dimension. It is common in randomized trials to record the
covariates that are known to be associated with the outcome, but the present work highlights the impor-
tant role of covariates that predict treatment compliance. Ideally, the covariates should produce different
predictions for the 2 compliance summaries, as for example, when the treatments differ by aspects that
are important to the patient, such as half-life, side effects, frequency of dosage, etc.

Our models assume that the baseline covariates do not modify the causal effect of either treatment.
Interaction terms between compliance and baseline covariates could be included in the vectorZ (3.1), as
was done in placebo-controlled trials (Goetghebeur and Lapp, 1997). However, this cannot be done for all
baseline covariates: the parameters are only identified when enough baseline covariates are (differentially)
predictive for but are assumed not to freely interact with compliance on arms A or B.

From a clinical perspective, the ability of baseline covariates to identify patients whose compliance is
likely to differ under the 2 assignments can help to guide treatment decisions. Our models can be used to
estimate the benefit of assignment to treatment A rather than treatment B for a particular patient’s set of
baseline covariates.

Interpretation of parameters such asψ A andψB requires care since different causal parameters de-
fined in this paper pertain to different subpopulations. If one starts from (2.1) thenψ AcA is the average
causal effect of compliancecA compared with no compliance in the subpopulation with compliancecA.
Equation (2.3), which conditions on the unobserved joint distribution ofCA

i andCB
i , relies on a stronger

assumption which implies thatψ AcA − ψBcB is the ITT difference (the expected difference in out-
come between assignment to A and assignment to B) for the subpopulation(CA,CB) = (cA, cB). The
practical usefulness of this interpretation is limited as long as we have no information on how patients
would comply with both treatment assignments. Thus, for example, ifCA andCB are defined as per-
centages of assigned dose thenψ A − ψB is the ITT difference in the “perfect compliers” subgroup
with CA = CB = 1. However, such a subgroup may not exist or may be hard to identify if it does.
It may be more realistic to consider the ITT difference in a subgroup defined by (for example) 0.86
(CA,CB) 6 1.2.

Equations (2.1) involve a counterfactual untreated outcomeY0. In some settings, some patients could
not ethically receive no active treatment, so our use ofY0 is questionable. Models of form (2.3) avoid this
problem.

In the depression trial analyzed here, (2.3) requires the causal effect of compliance with fluoxetine to
be unaffected by the potential compliance of the same patients with paroxetine (and vice versa). There
is no obvious reason to expect such interaction, so we interpret the estimated contrastψ A − ψB as the
expected ITT difference for those patients whose compliance under either assignment would be close to 1.
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The causal parameter estimates in the best-fitting SMM seem to reflect known differences in the duration
of action of the 2 treatments.

We close by reminding readers that the causal model framework provides some prior structure which
our data alone can neither refute nor confirm. Nevertheless, in many problems, the linear SMM is a good
first-order approximation to the true average causal effect.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGMENT

Conflict of Interest:None declared.

FUNDING

UK Medical Research Council (U.1052.00.006) to K.F., I.R.W.; Interuniversity Attraction Poles research
network grant P6/03 of the Belgian government (Belgian Science Policy) to E.G.

REFERENCES

CUZICK, J., EDWARDS, R. AND SEGNAN, N. (1997). Adjusting for non-compliance and contamination in random-
ized controlled trials.Statistics in Medicine16, 1017–1029.

DEMYTTENAERE, K., ADELIN, A., PATRICK, M., WALTH ’ ERE, D., KATRIEN DE, B. AND MICH’ ELE, S. (2008).
Six-month compliance with antidepressant medication in the treatment of major depressive disorder.International
Clinical Psychopharmacology23, 36–42.

DEMYTTENAERE, K., BRUFFAERTS, R., ALBERT, A., MESTERS, P., DEW, W., DEBRUYCKERE, K. AND

SANGELEER, M. (2004). Development of an antidepressant compliance questionnaire.Acta Psychiatrica Scandi-
navica110, 201–207.

DIMASI, J. A., HANSEN, R. W. AND GRABOWSKI, H. G. (2003). The price of innovation: new estimates of drug
development costs.Journal of Health Economics22, 151–185.

DUNN, G., MARACY, M., DOWRICK, C., AYUSO-MATEOS, J. L., DALGARD, O. S., PAGE, H., LEHTINEN,
V., CASEY, P., WILKINSON, C., VAZQUEZ-BARQUERO, J. L. and others(2003). Estimating psychological
treatment effects from a randomised controlled trial with both non-compliance and loss to follow-up.The British
Journal of Psychiatry183, 323–331.

EFRON, B. AND FELDMAN , D. (1991). Compliance as an explanatory variable in clinical trials.Journal of the
American Statistical Association86, 9–17.

ELLENBERG, S. S.AND TEMPLE, R. (2000). Placebo-controlled trials and active-control trials in the evaluation of
new treatments. part 2: practical issues and specific cases.Annals of International Medicine133, 464–470.

GOETGHEBEUR, E. AND LAPP, K. (1997). The effect of treatment compliance in a placebo-controlled trial: regres-
sion with unpaired data.Journal of the Royal Statistical Society, Series C46, 351–364.

INTERNATIONAL CONFERENCEON HARMONISATION OF TECHNICAL REQUIREMENTSFOR REGISTRATION OF

PHARMACEUTICALS FOR HUMAN USE(1999). Choice of control group and related issues in clinical trials (E10).
Technical Report. The International Conference on Harmonisation of Technical Requirements for Registration of
Pharmaceuticals for Human Use.http://www.ich.org/LOB/media/MEDIA486.pdf.

JONES, B., JARVIS, P., LEWIS, J. A. AND EBBUTT, A. F. (1996). Trials to assess equivalence: the importance of
rigorous methods.British Medical Journal313, 36–39.

http://www.ich.org/LOB/media/MEDIA486.pdf


An SMM to compare 2 active treatments 257

MARACY, M. AND DUNN, G. (2010). Estimating dose-response effects in psychological treatment trials: the role of
instrumental variables.Statistical Methods in Medical Research(in press: first published online on November 26,
2008). doi: 10.1177/0962280208097243.

REITER, J. P. (2007). Small-sample degrees of freedom for multi-component significance tests with multiple impu-
tation for missing data.Biometrika94, 502–508.

ROBINS, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models.
Communications in Statistics—Theory and Methods23, 2379–2412.

ROBINS, J. M. (1998). Correction for non-compliance in equivalence trials.Statistics in Medicine17, 269–302.

ROBINS, J. M., ROTNITZKY, A. AND ZHAO, L. P. (1994). Estimation of regression coefficients when some regres-
sors are not always observed.Journal of the American Statistical Association89, 846–866.

ROSENBAUM, J. F., FAVA , M., HOOG, S. L., ASCROFT, R. C. AND KREBS, W. B. (1998). Selective serotonin
reuptake inhibitor discontinuation syndrome: a randomized clinical trial.Biological Psychiatry44, 77–87.

ROY, J., HOGAN, J. W. AND MARCUS, B. H. (2008). Principal stratification with predictors of compliance for
randomized trials with 2 active treatments.Biostatistics9, 277–289.

RUBIN, D. B. (1987).Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons.

SOMMER, A. AND ZEGER, S. L. (1991). On estimating efficacy from clinical trials.Statistics in Medicine10, 45–52.

VANSTEELANDT, S. AND GOETGHEBEUR, E. (2003). Causal inference with generalized structural mean models.
Journal of the Royal Statistical Society, Series B65, 817–835.

VRIJENS, B., TOUSSET, E., RODE, R., BERTZ, R., MAYER, S. AND URQUHART, J. (2005). Successful projection
of the time course of drug concentration in plasma during a 1-year period from electronically compiled dosing-time
data used as input to individually parameterized pharmacokinetic models.Journal of Clinical Pharmacology45,
461–467.

VRIJENS, B. AND URQUHART, J. (2005). Patient adherence to prescribed antimicrobial drug dosing regimens.
Journal of Antimicrobial Chemotherapy52, 616–627.

WHITE, I. R. (2005). Uses and limitations of randomization-based efficacy estimators.Statistical Methods in Medical
Research14, 327–347.

[Received July 9, 2009; revised July 20, 2010; accepted for publication July 22, 2010]


	Introduction
	An SMM for the comparison of 2 active treatments
	Closed-form estimator for a linear SMM
	Identifiability
	Condition for identifiability of the 2 distinct parameters in a simple linear SMM 
	Identifiability of a multiple linear SMM
	Simulations
	Extensions

	A trial of 2 antidepressants 
	Possible SMMs for the antidepressant trial
	A goodness of fit test 
	Results

	Discussion

