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Abstract

Unfertilized bovine oocytes can be efficiently cryopreserved only when an extremely

rapid cooling rate (>20,000�C/min) is applied to oocytes with a very limited amount

of surrounding vitrification solution. This protocol is defined as minimum volume

cooling (MVC) vitrification. Various types of cryodevices, such as open pulled straw,

Cryoloop, and Cryotop, have been developed to accelerate the cooling efficacy. Fur-

thermore, hollow fibers with nano-scale pores, triangle nylon mesh sheets, and multi-

layer silk fibroin sheets have been optimized for the loading of large quantities of

oocytes and/or the subsequent removal of excess vitrification solution, without

requiring skillful operation to transfer individual oocytes using fine capillaries. This

article provides an up-to-date review of cryodevices suitable for the MVC vitrifica-

tion of bovine oocytes at the immature (germinal vesicle-) and mature (metaphase II-)

stages.
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1 | INTRODUCTION

Meiosis-arrested bovine oocytes are very large spherical cells (dia-

meter = 140 μm, enclosed with an acellular zona pellucida) sur-

rounded by cumulus cell layers after ovulation and prior to sperm

penetration. Cryopreserved oocytes provide a valuable resource for

embryo production via assisted reproductive technology (ART), includ-

ing in vitro fertilization (IVF), intracytoplasmic sperm injection, or

somatic cell nuclear transfer in domestic animal industries. However,

retrieval of bovine oocytes after cryopreservation is not fully suffi-

cient for subsequent embryo production. Likely obstacles for success-

ful cryopreservation of bovine oocytes included the high volume/

surface ratio, depolymerization of spindle tubulin, abnormal aster for-

mation, and premature release of cortical granules of metaphase-II

stage (MII) oocytes (Hwang & Hochi, 2014). In addition, oocytes from

domestic species, such as cattle and pigs, are known to be highly sen-

sitive to cryoinjuries due to the high level of cytoplasmic lipid droplets

when compared with human and rodent oocytes (Zhou & Li, 2013). L-

carnitine has been used to reduce intracellular lipids and improve the

cryotolerance of bovine MII oocytes (Chankitisakul et al., 2013;

Sprícigo et al., 2017). During the past decade, anti-oxidative

chemicals, such as α-tocopherol (Yashiro et al., 2015), melatonin (Zhao

et al., 2016), and resveratrol (Chinen et al., 2020; Sprícigo et al., 2017),

were also applied to improve oocyte cryotolerance.

Vitrification (Rall & Fahy, 1985), as a replacement for conven-

tional freezing (Whittingham et al., 1972; Wilmut & Rowson, 1973),

offered a simple, cost-effective, and efficient protocol in embryo cryo-

preservation, by the formation of an amorphous glass state rather

than detrimental ice crystals. This protocol includes the dehydration

of embryos by exposure to a concentrated vitrification solution (VS),

followed by direct immersion of 0.25-ml plastic straw containers into

liquid nitrogen (LN2; 2,000–2,500�C/min), rather than dehydration

during a slow cooling process in a conventional freezing regimen (0.3–

2�C/min). Technicians are familiar with using plastic straw for embryo
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vitrification, because plastic straws have been used for bovine semen

freezing/artificial insemination (0.5-ml volume) and embryo slow

freezing/transplantation (0.25-ml volume). Traditional straw vitrifica-

tion does not require specialized freezing equipment for a constant

rate of slow cooling, but the time allowed for exposure to highly toxic

VS is quite short (approximately 1 min), resulting in a tight time sched-

ule and a decreased sample number per single operation, as well as

increased pressure upon technicians. The use of straw vitrification for

bovine oocytes remained inefficient, despite of a 9% blastocyst yield

(calculated from the total number of cryopreserved oocytes unless

specified hereafter) and the in vivo development to two fetuses from

post-warmed oocytes reported in an early study (Hamano

et al., 1992). This article provides an up-to-date review of cryodevices

suitable for minimum volume cooling (MVC) vitrification of bovine

oocytes at the immature germinal vesicle (GV)- and mature MII-

stages.

2 | CRYODEVICES FOR OOCYTE MVC
VITRIFICATION

A significant breakthrough for the vitrification of bovine oocytes was

achieved by the MVC procedure. Typical cryodevices designed for the

MVC vitrification of bovine oocytes are illustrated in Figure 1. A 15%

blastocyst yield was resulted from post-warmed MII oocytes vitrified

with a MVC protocol using an electron microscope (EM) copper grid

as the cryodevice (Martino et al., 1996). The EM grid was originally

adopted to cryopreserve chilling-sensitive Drosophila melanogaster

embryos, which had a mm-scale diameter (Mazur et al., 1992;

Steponkus et al., 1990). The MVC vitrification protocol involved a 3–

15 min exposure of oocytes to equilibration solution containing mod-

erate concentrations of membrane-permeating cryoprotective agents

(CPAs; dimethylsulfoxide [DMSO] and/or ethylene glycol [EG]; 3–

20%) and a 1 min exposure to VS containing higher concentrations of

the permeable CPAs (30–40%) and a non-permeating disaccharide

(sucrose or trehalose) before rapid cooling to LN2 temperature. Within

the short exposure time to the VS, oocytes must be placed into or

onto a cryodevice with a minimal volume of VS to accelerate the

cooling rate. There is no strict definition of the “minimum” volume for

bovine oocyte vitrification, but it is generally considered to be less

than 1 μl. After storage in LN2 and rapid warming, CPAs are removed

from the oocytes in a stepwise manner using decreasing concentra-

tions of sucrose solution. Various types of cryodevices have been

developed to accelerate the cooling rate of bovine oocytes and can be

theoretically divided into two categories: tubing and surface devices

(Saragusty & Arav, 2011). Completely device-less protocols have also

been applied to the MVC vitrification of bovine mature oocytes, with

a blastocyst yield of 9% in a solid surface vitrification (SSV) system

(Dinnyés et al., 2000) and 30% in microdrop (MD) method (Papis

et al., 2000). A brief list of blastocyst yields from vitrified-warmed

bovine MII oocytes using different crydevices is shown in Table 1.

Tubing device: Oocytes are aspirated into a tubing-type

cryodevice. Vajta et al. (1998) reported that a very high cooling rate

(>20,000�C/min) can be achieved in an open pulled straw (OPS),

F I GU R E 1 Cryodevices used for oocyte MVC vitrification. Tubing-type: open pulled straw (OPS) and hollow fiber (HF). Surface-type:
electron microscope (EM) grid, Cryoloop, Cryotop, triangle nylon mesh (NM), and multilayer silk fibroin (SF) sheet
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resulting in a 13% blastocyst yield from post-warmed bovine MII

oocytes and a calf birth, followed by a few minor modifications as

superfine OPS (Isachenko et al., 2001) and sealed pulled straw (Chen

et al., 2001). Conventional disposable plastic tools were successfully

used for the MVC vitrification of bovine oocytes, as reported with the

gel-loading tip (Tominaga et al., 2005) or flexipet-denuding pipette

(Morat�o et al., 2008). Because of the big market for human ART, a

closed system using CryoTip® (Fujifilm Irvine Scientific) has been com-

mercialized and is widespread in infertility clinics (Kuwayama, Vajta,

Ieda, et al., 2005; VerMilyea & Brewer, 2017). Sanitary cryopreserva-

tion by the closed system is desired to avoid the possible cross-

contamination of vitrified oocytes with pathogens within the LN2

tank, but its importance may be dependent of the target animal spe-

cies. Recently, hollow fiber vitrification (HFV) has been applied to

bovine mature oocytes, with a 23% blastocyst yield from post-

warmed oocytes (Kornienko et al., 2020). The triacetate cellulose hol-

low fibers (HF; 200-μm inner diameter, 15-μm-thick) used in the

above study are enriched with 7-nm pores in the walls. The HFV sys-

tem is attractive in terms of increased sample number per device and

medium exchange without aspiration-based collection of the oocytes

(Maehara et al., 2012; Matsunari et al., 2012).

Surface device: Oocytes are placed on the surface of a cryodevice

with a minimal volume of VS. The presence of excess VS around

oocytes adversely affects the ultra-rapid cooling rate when oocytes

are immersed into LN2. In addition to the classical EM grid (3-mm

diameter, 37-μm-thick, 100-μm diagonal diameter of square; Martino

et al., 1996), several surface-type cryodevices, including Cryoloop

(Checura & Seidel, 2007; Lane & Gardner, 2001; Mavrides &

Morroll, 2002), hemi-straw (Liebermann & Tucker, 2002), and Cryotop

(Chian et al., 2004; Kuwayama, Vajta, Kato, et al., 2005), have been

reported for the MVC vitrification of mammalian oocytes (more deriv-

atives; Cryoleaf, Cryolock, Vitri-Inga, and stainless MVAC). Among

them, Cryotop combined with a hermetically protective container

(Cryotop®; Kitazato Corporation, Shizuoka, Japan) is likely the most

convenient surface-type cryodevice for oocytes/embryos from both

domestic animals and humans (Kuwayama, 2007). Cooling and

warming rates in Cryotop vitrification were estimated as 69,000 and

118,000�C/min, respectively (Mazur & Seki, 2011). It should not be

technically difficult for well-trained lab technicians (who easily handle

oocytes with capillary pipetting) to collect 10–12 oocytes floating in

VS and place them onto the surface of a polystyrene or polypropylene

strip (0.1 � 0.7 � 20 mm) of the device within 1 min. In our labora-

tory, standard Cryotop vitrification of bovine MII oocytes resulted in

blastocyst yields of 13–16% using 1-day stored ovaries (Hara

et al., 2014; Hwang et al., 2013) and 19–32% using fresh ovaries

(Chinen et al., 2019, 2020; Nakayama et al., 2020; Yashiro

et al., 2015). Blastocyst yields were further improved by a short-term

recovery culture of post-warmed oocytes in the presence of a Rho-

associated coiled-coil kinase inhibitor (Y-27632, blastocyst yield 18%;

Hwang et al., 2013), α-tocopherol (35%, Yashiro et al., 2015), and res-

veratrol (39%, Chinen et al., 2020).

3 | SMART DEVICES FOR BULK OOCYTES
AND SELF-VS ABSORPTION

Oocyte numbers loaded per cryodevice are limited because of the

strict requirement in minimizing the VS volume in a tight timetable

(recommended quantity 10, possible upper limit 20, in MVC vitrifica-

tion). Even in the HFV system, the maximum number per single HF

was reported to be 12–17 in bovine oocytes (Kornienko et al., 2020)

and 20 and 40 in porcine and murine oocytes, respectively (Matsunari

et al., 2012). Such a limitation does not cause inconvenience in the

clinical cryopreservation of human oocytes, because one to three

oocytes are routinely loaded per cryodevice. For bovine species, all

oocytes retrieved from a single donor (a pair of ovaries) may be

T AB L E 1 MVC vitrification of bovine mature (MII) oocytes using different cryodevices and blastocyst generation following IVF

Cryodevice (tubing [T]/surface [S]) CPA in VS Blastocyst yield (%)a Reference

Straw [T] DMSO + PG + AA 9 Hamano et al. (1992)

EM grid [S] EG + Suc 15 Martino et al. (1996)

OPS [T] DMSO + EG + Suc 13 Vajta et al. (1998)

SSV [device-less] EG + PVP + Tre 9 Dinnyés et al. (2000)

MD [device-less] EG + Suc 30 Papis et al. (2000)

Cryotop [S] EG + PG + Suc 8 Chian et al. (2004)

Cryoloop [S] DMSO + EG + Suc 11 Checura and Seidel (2007)

Tracing paper [S] DMSO + EG + Suc 8 Paul et al. (2018)

NM [S] DMSO + EG + Suc 35 Chinen et al. (2019)

HF [T] EG + Suc 23 Kornienko et al. (2020)

SF [S] DMSO + EG + Suc 25 Nakayama et al. (2020)

Abbreviations: AA, acetamide; CPA, cryoprotective agent; DMSO, dimethylsulfoxide; EG, ethylene glycol; EM grid, electron microscope grid; Gal,

galactose; HF, hollow fiber; MD, microdrop; NM, nylon mesh; OPS, open pulled straw; PG, propylene glycol; PVP, polyvinyl-pyrrolidone; SF, silk fibroin;

SSV, solid surface vitrification; Suc, sucrose; Tre, trehalose; VS, vitrification solution.
aBlastocyst yields were calculated from the total number of cryopreserved oocytes.
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cryopreserved in a single operation if oocyte numbers loaded per

cryodevice can be increased. Matsumoto et al. (2001) first reported

that as many as 65 bovine immature oocytes can be vitrified-warmed

in bulk using nylon mesh (NM) as a cryodevice. Although no blasto-

cysts were obtained in this early study, the same group achieved an

8% blastocyst yield and a live calf from post-warmed immature

oocytes after a few modifications of the equilibration treatment (Abe

et al., 2005).

Our laboratory designed a triangle NM sheet (52-μm diagonal

diameter of square) folded one fourth to generate a developed figure

of triangular pyramid, originally for the vitrification of large quantities

of pancreatic islets (Yamanaka et al., 2017). By applying the triangle

NM device, more than 40 bovine mature oocytes were vitrified-

warmed in bulk, resulting in a cooling rate of 29,000�C/min, a

warming rate of 81,000�C/min, and a blastocyst yield of 31% (Chinen

et al., 2019). This NM device also allowed the removal of excess VS

volume before immersion into LN2 and facilitated the CPA dilution

process without skillful capillary pipetting; sterilized paper towel

placed beneath the NM device absorbed the excess VS and sucrose

diluents. Post-warming treatment with resveratrol further rescued vit-

rified oocytes on the NM device (blastocyst yield 42%; Chinen

et al., 2020). Direct LN2 immersion of an NM device with a smaller

pore size compared with larger pore size counterparts (52 μm

vs. 81 or 109 μm) resulted in a comparable cooling rate but a faster

warming rate and higher blastocyst yield from post-warmed bovine

oocytes (Chinen et al., 2019). As Seki and Mazur (2008, 2009) first

noted in the MVC vitrification of mouse oocytes, more attention

should be paid to the acceleration of the warming rate, rather than

the cooling rate, to improve cryosurvival. Minimized volume of the VS

surrounding the oocytes on a cryodevice with high thermal conductiv-

ity would be associated with the accelerated warming rate.

The minimized volume of the VS may be largely dependent on

the skill of the technician and/or the type of cryodevice. Silk fibroin

(SF), a biocompatible structural protein extracted from the cocoon of

the silkworm Bombyx mori, can be easily processed into multiporous

hydrogels, films, or sponges (Altman et al., 2003) and has been used as

scaffold in the field of tissue engineering or regenerative medicine

(Davis et al., 2012; Kasoju & Bora, 2012). For example, a wet sheet

fabricated from 1.5% SF solution was wound five times around the

plastic strip of a Cryotop device and then air-dried (Nakayama

et al., 2020). A few microliters of VS were absorbed into the multilayer

SF sheet within a few seconds, leaving 10–12 bovine oocytes on the

surface containing numerous 100-μm-scale pores. After multilayer SF

sheet vitrification, 25% of the post-warmed oocytes developed into

blastocysts, comparable with the blastocyst yields (22–25%) after

Cryotop vitrification and triangle NM vitrification. A similar strategy

used a high-absorption material (membrane filter) attached to the

plastic tip of a surface-type cryodevice, described as the Kitasato Vit-

rification System (KVS) for the MVC vitrification of mouse embryos

(Momozawa et al., 2017, 2019). Tracing paper was also used as the

VS-absorbable cryodevice in the MVC vitrification of bovine oocytes

(Paul et al., 2018). Further improvement of the high absorption mate-

rial and holding tool would help its practical application, such as the

commercial KVS product Diamour (Mitsubishi Paper Mills Ltd, Tokyo,

Japan).

4 | APPLICATION TO IMMATURE
OOCYTES

Research for the cryopreservation of immature oocytes is important

because of the increasing demands to retrieve human immature

oocytes in cases of ovarian hyper-stimulation syndrome or cancer in

young patients (Yamanaka et al., 2007). In cattle, the ovum pick-up

technique for genetically elite donors often results in the recovery of

immature oocytes. Because the chromosomes of immature oocytes

are packed in a GV without a spindle apparatus, GV-stage oocytes

provide an alternative source of oocytes for MVC vitrification to avoid

chromosomal misalignment due to microtubule depolymerization,

which is observed in cryopreserved MII oocytes. The GV-stage

oocytes also avoid the possible risk of zona hardening due to the pre-

mature release of cortical granules. However, efficient cryopreserva-

tion of GV-stage oocytes remains to be established, even for humans

or small rodents (Brambillasca et al., 2013). Blastocyst yields from GV-

stage bovine oocytes after MVC vitrification are summarized in

Table 2. The OPS tubing device or Cryotop surface device seems to

be the most suitable for MVC vitrification of bovine immature

oocytes.

Bovine MII-stage oocytes after ovulation or retrieved immedi-

ately before ovulation by ovum pick-up or oocytes matured in vitro

(IVM) have been cryopreserved with or without the surrounding

cumulus cell layers (Figure 2). The GV-stage oocytes are connected

with the surrounding cumulus cell layers (cumulus-oocyte complexes

[COCs]) via gap junctions across the zona pellucida, involving proteins

such as connexin-37. Disruption of gap junction communications

between the oocytes and surrounding cumulus cells is initiated imme-

diately after IVM (Modina et al., 2004). The presence of several layers

of cumulus cells in COCs may result in a delayed exchange between

intracellular free water and permeating CPAs during equilibration and

dilution phases of cryopreservation (Hyttel et al., 2000). Transmission

EM observation indicated that hyperosmotic VS conditions and ultra-

rapid cooling during vitrification procedures had a detrimental impact

on the functional integrity of gap junctions in domestic species (Fuku

et al., 1995; Hochi et al., 1996). Some reports described the effect of

full or partial denuding of bovine COCs on their cryotolerance

(Figure 2). After Cryotop vitrification at the GV stage, Zhou et al. (2010)

found 11% and 4% blastocyst yields from bovine full-size COCs and

partially denuded COCs, respectively. In contrast, we showed a posi-

tive effect of downsizing cumulus cell layers on cryotolerance after

Cryotop vitrification, with 14%, 18%, and 8% blastocyst yields from

bovine full-size COCs, downsized COCs, and denuded oocytes,

respectively (Tashima et al., 2017).

Ultra-rapid cooling rates have been achieved by direct immersion

of oocytes/cryodevice into cryogenic LN2 (�196�C) with a little boil-

ing at first contact. A physical phenomenon “Leidenfrost effect,”
which refers to the quick development of nitrogen gas bubbles,
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generates a pocket of nitrogen vapor around oocytes and results in

delay of heat transfer through its insulator-like action. Vitrification in

N2 slush (a mixture of solid and liquid nitrogen) has been considered

as a new strategy to increase the cooling rate of oocytes (Santos

et al., 2012), because it can avoid the Leidenfrost effect. However,

Martino et al. (1996), the pioneers of oocyte EM grid vitrification,

reported a comparable or rather inferior blastocyst yield from bovine

MII oocytes vitrified in N2 slush (�207�C) versus LN2 (�196�C). In

OPS vitrification of bovine immature oocytes, one Chinese group

published the suitability of liquid helium (�269�C) as an alternative to

conventional LN2 (blastocyst yield 10% vs. 5%, Yu et al., 2016; 13%

vs. 9%, Xu et al., 2017; 13% vs. 1%, Zhang et al., 2020). Interestingly,

the immature oocytes vitrified in liquid helium had fewer

intracytoplasmic lipid droplets after IVM compared with those vitrified

in LN2 (Xu et al., 2017). Our laboratory also observed unique kinetics

of intracytoplasmic lipid droplets (distribution and size variation) in

bovine oocytes after the downsizing of cumulus layers, Cryotop vitrifi-

cation, and IVM (Tashima et al., 2017). Another challenge for

T AB L E 2 MVC vitrification of bovine immature (GV) oocytes surrounded with cumulus cells and blastocyst generation following IVM and IVF

Cryodevice (tubing [T]/surface [S]) CPA in VS Blastocyst yield (%)a Reference

OPS [T] DMSO + EG + Suc 6 Vieira et al. (2002)

OPS [T] DMSO + EG + Suc 4 Modina et al. (2004)

NM [S] EG + Ficoll + Suc 8 Abe et al. (2005)

MD [device-less] DMSO + EG + Suc 2 Kim et al. (2007)

OPS [T] EG + CD 18 Magnusson et al. (2008)

Cryotop [S] DMSO + EG + Suc 11 Zhou et al. (2010)

MD [device-less] EG + Suc 8 Papis et al. (2013)

Cryotop [S] DMSO + EG + Suc 3 Sprícigo et al. (2014)

Cryotop [S] DMSO + EG + Suc 19 Ezoe et al. (2015)

OPS [T] DMSO + EG + Suc 12 Yu et al. (2016)

Cryotop [S] DMSO + EG + Suc 18 Tashima et al. (2017)

Cryotop [S] EG + PG + PVP + Suc 15 Somfai and Hirao (2021)

Abbreviations: CD, cytochalasin-D; CPA, cryoprotective agent; DMSO, dimethylsulfoxide; EG, ethylene glycol; MD, microdrop; NM, nylon mesh; OPS,

open pulled straw; PG, propylene glycol; PVP, polyvinyl-pyrrolidone; Suc, sucrose; VS, vitrification solution.
aBlastocyst yields were calculated from the total number of cryopreserved oocytes.

F I GU R E 2 Bovine COCs
before and after IVM. Immature
GV-stage oocytes are vitrified in
the form of COCs, while mature

MII-stage oocytes can be vitrified
after partial or full removal of
cumulus layers (depending on the
type of subsequent IVF system
employed). The metaphase plate
is concealed under ooplasmic lipid
droplets, but the first polar body
can be detected in the
perivitelline space of fully
denuded oocytes (arrows)
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improving the cryotolerance of bovine immature oocytes is to elimi-

nate DMSO from the VS, because this traditional CPA has a higher

chemical toxicity than EG or propylene glycol (PG) (Awan et al., 2020).

An equal proportion of EG and DMSO has been long considered the

most efficient combination of permeating CPA in VS. The membrane

permeability of DMSO is lower than that of EG, probably because of

the involvement of different aquaporin channels (Edashige, 2016). In

Cryotop vitrification of bovine immature oocytes, the use of EG/PG-

based VS instead of EG/DMSO-based VS resulted in a higher IVM

outcome (90% vs. 76%), but a comparable blastocyst yield (10%

vs. 14% per matured oocytes; Faheem et al., 2015). Recently, Somfai

and Hirao (2021) reported that the replacement of DMSO with PG in

protein-free VS with a few additional modifications resulted in a sta-

tistically comparable blastocyst yield from post-warmed bovine imma-

ture oocytes (12% vs. 8%). In the above experiment, the positive

effect of the EG/PG-based protein-free VS was clearly demonstrated

in the total cell number of resulting blastocysts (118.1 vs. 56.5 cells).

5 | CONCLUSIONS

This article focused on providing an up-to-date review of cryodevices

used for MVC vitrification of bovine mature/immature oocytes in the

past two decades, noting that a recent article has comprehensively

summarized the bovine oocyte vitrification (Dujíčková et al., 2021).

Various types of cryodevices (tubing-type and surface-type) have

been developed to accelerate the cooling rate in oocyte MVC vitrifica-

tion. A triangle NM sheet and HF with nano-scale pores allowed the

loading of large quantities of oocytes and the easy exchange of

medium without complicated capillary operations. A multilayer SF

sheet, another multiporous surface device, facilitated the minimization

of oocyte-surrounding VS volume through its high-absorption prop-

erty. Some of the cryodevices are commercially available as an open

and/or closed system (e.g., Cryotop®/Cryotop®CL, CryoTip®, and

Diamour-op/Diamour-cs). Cryodevices, such as OPS and Cryotop,

have been used for the MVC vitrification of immature COCs with

moderate or poor success, and await further cutting-edge develop-

ments. Understanding and further improvement of cryodevice-

dependent performance for oocyte survivability will significantly con-

tribute to efficient embryo production by IVM/IVF, in cattle breeding

industries and also in human ART.
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