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Introduction
Over the past decade, there has been a significant 
increase in the understanding of the genetic and 
molecular mechanisms underlying lung cancer, 
causing a paradigm shift in the diagnosis and 
management of non-small cell lung cancer 
(NSCLC). All patients with advanced NSCLC 
undergo routine genomic testing for clinically 
actionable genomic alterations.1 The success of 
genotype-directed therapies particularly for epi-
dermal growth factor receptor (EGFR) mutated 
and anaplastic lymphoma kinase (ALK) rear-
ranged NSCLC patients has made the identifica-
tion of these clinically actionable alterations 
imperative.2,3 Several such potentially actionable 
genomic alterations like BRAF, MET exon 14 
skipping mutations, HER2, RET and NTRK 
gene rearrangements are now identified through 

more frequent clinical use of comprehensive 
genomic sequencing. In patients with NSCLC, 
BRAF mutations occur in approximately 2–4% of 
patients with lung adenocarcinoma.4–7 More than 
50% of mutations in the BRAF oncogene are 
associated with substitution of glutamate-to-
valine amino acid at codon 600 position (V600E, 
i.e. Val600Glu) within exon 15 of the kinase 
domain that leads to a 500-fold increase in the 
kinase activity of BRAF as compared with its wild 
type.8 Recently the European Medicines Agency 
and United States Food and Drug Administration 
(US FDA) approved the use of B-Raf proto-
oncogene, serine/threonine kinase (BRAF) inhib-
itor, dabrafenib in combination with a 
mitogen-activated protein kinase (MEK) inhibi-
tor, trametinib in patients with NSCLC harbor-
ing a BRAF V600E mutation.
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BRAF V600E mutation occurs in equal frequency 
in both men and women, however, is more com-
mon in older patients (age > 60 years), adenocar-
cinoma and current and former smokers.9–13 This 
contrasts with EGFR mutation and ALK rear-
rangement, which tend to be more prevalent in 
younger patients and lifetime nonsmokers.14–16 
However, a few studies indicate no significant 
influence of smoking habits or sex on BRAF 
mutation.17,18 In addition, clinical outcomes asso-
ciated with BRAF V600E and non-V600E muta-
tions are not clearly understood. Due to paucity 
of clinical studies in BRAF-mutant NSCLC, clin-
ical characteristics of patients harboring BRAF 
mutations are not well defined and should not be 
used as a guide for selection of patients to undergo 
mutational screening.

Biology of BRAF-mutant NSCLC
The mitogen-activated protein kinase (MAPK) 
pathway (also commonly referred to as the Ras-
Raf-MEK-ERK pathway) is a group of signal 
transducer kinases involved in promoting cell 
growth, proliferation and inhibition of apoptosis. 
In normal conditions, growth factor ligands bind 
to the cell surface tyrosine kinase receptors, lead-
ing to its dimerization and autophosphorylation. 
This leads to subsequent phosphorylation of 
downstream adaptor proteins that ultimately 
causes activation of Ras GTPase. Activation of 
Ras protein induces downstream activation of the 
RAF oncogene. BRAF is a member of RAF family 
of serine/threonine protein kinase with two other 
isoforms, ARAF and CRAF. Activation of BRAF 
activates a second protein kinase called MEK 
(dual specificity MAPK 1; MAP2K1). MEK 
causes phosphorylation and activation of extracel-
lular signal-regulated kinase (ERK), which get 
translocated into nucleus, bind and phosphorylate 
transcription factors, thereby leading to gene 
expression19,20 (Figure 1). In BRAF-mutant 
NSCLC, the Ras-Raf-MEK-ERK pathway is ren-
dered constitutively active by V600E mutation in 
the BRAF oncogene, leading to uncontrolled sign-
aling and tumor growth.8

BRAF and MEK inhibitors in melanoma
BRAF mutations are found in approximately 
50% patients with melanoma, with BRAF V600 
mutation being the most common.21,22 Thus, the 
early preclinical and clinical evidence of BRAF 
and MEK inhibition was first developed in the 

context of BRAF-mutant melanoma. In BRAF 
V600E melanoma cell lines and patient-derived 
xenograft models’ inhibition of both BRAF and 
MEK with small molecule tyrosine kinase inhibi-
tors reduce ERK signaling, resulting in cell cycle 
arrest and decreased cell proliferation.23,24

Vemurafenib was the first BRAF inhibitor to be 
approved by the US FDA in 2011 for metastatic 
BRAF V600E-mutant melanoma. It was based on 
the results of a phase III study which showed 
superior progression-free survival (PFS) of 5.3 
months and overall survival (OS) of 13.6 months 
with vemurafenib as compared with 1.6 months 
PFS and 9.7 months OS with dacarbazine in 
patients with BRAF V600E-mutated metastatic 
melanoma.25 In 2013, a second BRAF inhibitor, 
dabrafenib was approved by the US FDA after the 
results of a phase III trial with dabrafenib, in 
BRAF V600E-mutated melanoma patients.26 
Dabrafenib had longer PFS of 5.1 months as com-
pared with 2.7 months with dacarbazine, further 
establishing the superiority of BRAF inhibitors as 

Figure 1. Mechanism of action of dabrafenib and 
trametinib: binding of BRAF and MEK inhibitors 
generates a blockade point in MAPK pathway at two 
different levels, inhibiting oncogenic downstream 
signaling and causing cell cycle arrest.
MAPK: mitogen-activated protein kinase.
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compared with chemotherapy. Both vemurafenib 
and dabrafenib were well tolerated with only mild 
toxicities in both these clinical trials. However, 
longer follow up suggested that patients treated 
with BRAF inhibitors developed disease progres-
sion within 6 months of initiation of treatment due 
to development of resistance.26,27 Also, a consider-
able number of patients developed secondary skin 
cancers, including squamous cell carcinoma and 
keratoacanthoma, mainly due to paradoxical acti-
vation of the MAPK pathway in BRAF nonmu-
tant cells.28

Trametinib is a MEK1/2 inhibitor which blocks 
MEK1/2 kinase activity and prevents RAF-
dependent MEK phosphorylation.29 It was 
approved initially as a monotherapy in treatment 
of advanced BRAF V600-mutant melanoma in 
2013 based on the results of the phase III METRIC 
study.30 In this study, 322 patients with BRAF 
V600E or V600K-mutated advanced or metastatic 
melanoma who had no more than one prior chem-
otherapy regimen and no prior BRAF or MEK 
inhibitor drugs, were randomized to trametinib 2 
mg once daily or chemotherapy with dacarbazine 
or paclitaxel. Trametinib was associated with sta-
tistically significant improvement in response rate 
(22% versus 8%) and median PFS of 4.8 months 
as compared with 1.5 months with chemotherapy. 
However, a later study by Kim and colleagues 
noted no statistically significant response of 
trametinib in patients who were previously treated 
with a BRAF inhibitor, indicating that BRAF 
inhibitor resistance mechanisms also confer resist-
ance to MEK inhibitor monotherapy.31

Although BRAF-mutant cancers responded well 
to initial therapy, acquired resistance to BRAF 
inhibitors was inevitable in the majority of patients 
leading to treatment failure.32 Also, studies dem-
onstrated that isolated BRAF inhibition led to the 
development of Ras-driven secondary tumors, so it 
was imperative to use combination therapies.33,34

In preclinical models of BRAF-mutant mela-
noma, synergistic antitumor activity and delay in 
emergence of acquired resistance was noted with 
combination of BRAF inhibitors with MEK 
inhibitors.35–37 This established the need for 
simultaneous inhibition of the MAPK pathway 
with the use of BRAF inhibitors. A randomized, 
open-label, phase III study by Long and col-
leagues in BRAF V600-mutant melanoma 
patients showed superiority of the dabrafenib plus 

trametinib compared with dabrafenib alone.38 
Patients in the combination arm had a median 
PFS of 11 months and OS of 25.1 months as 
compared with PFS of 8.8 months and OS of 
18.7 months in dabrafenib-only treated patients. 
Also, the incidence of secondary skin cancers was 
lower in the combination arm (2%) as compared 
with the dabrafenib-only arm (9%). Based on 
these promising results, combination of dab-
rafenib plus trametinib was approved by the US 
FDA in patients with metastatic melanoma with 
BRAF V600E mutation.

BRAF and MEK inhibitors in NSCLC
Based on the experience and success of BRAF 
inhibitors in melanoma, similar studies were per-
formed in BRAF-mutated NSCLC. Early in vitro 
studies demonstrated considerable efficacy in 
treatment of BRAF V600-mutated NSCLC using 
a single-agent BRAF inhibitor.39 In addition, var-
ious preclinical studies also demonstrated that 
BRAF mutations predicted sensitivity of NSCLC 
cells to MEK inhibitors.40,41 Like melanoma 
models, a combination of BRAF and MEK inhi-
bition was synergistic and delayed emergence of 
acquired resistance in NSCLC harboring BRAF 
V600E mutation.39

Early case reports documented a partial response 
(PR) to the isolated use of BRAF inhibitors in 
BRAF V600E-mutated NSCLC patients.42–44 
Similarly, durable response was noted in a case 
report, which employed combination therapy of 
BRAF and MEK inhibitors.45 In the retrospective 
EURAF study, 35 patients with advanced 
NSCLC harboring BRAF mutations were treated 
with different BRAF inhibitors including vemu-
rafenib, dabrafenib, or sorafenib as a single agent, 
outside of a clinical trial setting.46 Rapid tumor 
response was observed, with 2 patients noted to 
have complete response, 16 patients had a PR 
and 11 patients achieved stable disease. Only four 
patients were reported to have progressive disease 
after treatment. Overall, for BRAF inhibition 
therapy, PFS was 5 months and median OS was 
10.8 months. Overall, six patients harboring non-
V600E mutations were noted to have poor 
response rate to BRAF inhibitor therapy as com-
pared with patients harboring V600E mutation, 
and only one out of the six patients having a 
G596V mutation experienced a PR with vemu-
rafenib therapy. The phase II VE-BASKET trial 
was an initial prospective study which assessed 

https://journals.sagepub.com/home/tar


Therapeutic Advances in Respiratory Disease 12

4 journals.sagepub.com/home/tar

response to vemurafenib monotherapy in BRAF 
V600-mutated nonmelanoma solid tumors, 
including NSCLC.47 A total of 20 patients with 
BRAF-mutant NSCLC (90% BRAF V600E) 
were enrolled and almost all had received one or 
more prior systemic chemotherapy. It was 
observed that 42% of patients had a PR and 
median PFS was 7.3 months. Also, 12-month 
PFS and OS was 23% and 66% respectively.

In a multicenter, single arm, nonrandomized 
phase II study (BRF113928; ClinicalTrials.gov 
identifier: NCT01336634), potential efficacy and 
safety of dabrafenib was sequentially evaluated in 
patients with BRAF V600E-mutant NSCLC, 
both as a single agent and in combination with 
trametinib. In cohort A of this trial, dabrafenib 
was given as a monotherapy in a population of 
predominantly pretreated patients.48 A total of 84 
patients were incorporated into this cohort. 
Notable inclusion criteria was presence of a BRAF 
V600E mutation and an Eastern Cooperative 
Oncology Group performance status of 0–2. 
Patients with brain metastases that were <1 cm in 
size, untreated, and asymptomatic were allowed 
enrollment. By investigator assessment, the pri-
mary endpoint of objective response rate (ORR) 
was 33% and the disease control rate (DCR) was 
58%. Median PFS and OS were 5.5 months and 
12.7 months respectively. Adverse effects most 
commonly reported were pyrexia (36%), asthenia 
(30%), hyperkeratosis (30%) and decreased appe-
tite (28%). Most common grade 3–4 adverse 
events were cutaneous squamous cell carcinoma 
observed in 10 patients (12%) and basal cell carci-
noma in 4 patients (5%).

In cohort B of this trial, dabrafenib was adminis-
tered in combination with trametinib in previ-
ously treated patients with BRAF V600E-mutant 
NSCLC.49 Dabrafenib (150 mg twice daily) with 
trametinib (2 mg once daily) combination resulted 
in an ORR of 63.2% and DCR of 79%. Median 
PFS was 9.7 months and 65% of the patients 
achieved >6-month PFS. Serious adverse effects 
were noted in 32 patients (>50%) and included 
pyrexia (16%), anemia (5%), decreased appetite 
(4%), and squamous cell carcinoma (4%). 
However, it was noted that 33 patients (58%) 
received at least 80% of the planned dose of dab-
rafenib and 43 (75%) received at least an 80% of 
the planned dose of trametinib suggesting that 
combination therapy had a manageable adverse 

effect profile. Importantly, secondary squamous 
cell carcinoma and basal cell carcinoma devel-
oped in only two patients each (Table 1).

Though there are no studies directly comparing 
dabrafenib monotherapy with dabrafenib and 
trametinib combination therapy, the two cohorts 
in this study had similar inclusion criteria, meth-
odology and duration of follow up. Across all met-
rics, dabrafenib plus trametinib was superior with 
a higher ORR and longer PFS compared with 
dabrafenib monotherapy. Updated analysis pre-
sented at a median follow up of 16.2 months also 
demonstrated superior OS of combination ther-
apy over dabrafenib monotherapy (18.2 months 
versus 12.7 months respectively).50 However, it 
has to be noted that among the two cohorts, 
patients receiving dabrafenib plus trametinib com-
bination therapy compared with those receiving 
dabrafenib monotherapy had higher rates of 
adverse events leading to drug discontinuation 
(12% versus 6%), drug interruption (61% versus 
43%), and dose reduction (35% versus 18%), 
which has been similarly reported in comparisons 
of BRAF monotherapy and BRAF-MEK combi-
nation therapy in melanoma. However, squamous 
cell carcinoma was much less common, occurring 
in only 4% of patients in the combination arm as 
compared with 12% in the dabrafenib monother-
apy arm. In June 2017, the US FDA approved the 
combination therapy of dabrafenib and trametinib 
for patients with metastatic NSCLC with BRAF 
V600E mutation.

Recently, Planchard and colleagues reported the 
results of cohort C of this phase II study, evaluat-
ing the clinical efficacy of dabrafenib plus 
trametinib combination in 36 treatment-naïve 
patients with BRAF V600E-mutant NSCLC.51 
The study demonstrated promising results with 
ORR of 64% and DCR of 75%, further confirming 
the durable clinical activity of dabrafenib and 
trametinib combination in BRAF-mutant NSCLC. 
The median PFS and OS were 10.9 months and 
24.6 months respectively, slightly improved as 
compared with the previously treated cohort 
(cohort B) of this trial. Also, the side effect profile 
was largely similar to that recorded in cohort B of 
the study, with adverse events leading to perma-
nent discontinuation, dose interruption and dose 
reduction in 22%, 75% and 39% of the patients 
respectively. Thus, it could be reasonably con-
cluded that these results offer a level of flexibility to 
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Table 1. Summary of results of all studies in BRAF-mutated NSCLC patients treated with a BRAF or MEK inhibitor.

Study results EURAF 
study46

(n = 35)

VE-BASKET 
study, Hyman and 
colleagues.47

(n = 20)

Planchard and 
colleagues.48

Patients receiving 
dabrafenib 150 mg 
BD PO as second-
line or later 
treatment
(n = 78)

Planchard and 
colleagues.49

Patients receiving 
dabrafenib (150 mg BD 
PO) plus trametinib (2 
mg OD PO) as second-
line or later treatment 
(n = 57)

Planchard and 
colleagues.51

Patients receiving 
dabrafenib (150 
mg BD PO) plus 
trametinib (2 mg 
OD PO) as first-line 
treatment (n = 36)

Age (years) 63 (42–85) 61 (48–83) 66 (28–85) 64 (58–71) 67 (62–74)

Male 18 (51%) 14 (70%) 39 (50%) 29 (51%) 14 (39%)

Smoking history  

Never smoker 14 (40%) 7 (35%) 29 (37%) 16 (28%) 10 (28%)

Smoker ⩽30 pack-
years

- - 25 (32%) 22 (54%) 17 (47%)

Smoker >30 pack-
years

- - 24 (31%) 19 (46%) 7 (19%)

Overall response 
rate (complete 
response + partial 
response)

18 (53%; 
35–70%)

8 (42%; 20–67%) 26 (33%; 23–45%) 36 (63.2%; 49.3–75.6%) 23 (64%; 46–79%)

Disease control rate 
(complete response 
+ partial response 
+ stable disease)

29 (85%; 
69–95%)

16 (84%; 60–97%) 45 (58%; 46–67%) 45 (78·9%; 66.1–88.6%) 27 (75%; 58–88%)

Progression-free 
survival (months)

5.0 7.3 (3.5–10.8) 5.5 (3.4–7.3) 9.7 (6.9–19.6) 10.9 (7.0–16.6)

Duration of 
response (months)

- - 9.6 (5.4–15.2) 9.0 (6.9–18.3) 10.4 (8.3–17.9)

Overall survival 10.8 Not estimable 12.7 (7.3–16.3)50 18.2 (14.3–not 
estimable)50

24.6 (12.3–not 
estimable)

Adverse effects 
(grade 3–4)

- Pyrexia - 0 (0%)
Asthenia - 4 (20%)
Anemia - N/A
Squamous cell 
carcinoma - 7 
(35%)
Dyspnea - 3 (15%)
Rash - 1 (5%)
Hypertension - 3 
(15%)

Pyrexia - 2 (2%)
Asthenia - 5 (6%)
Anemia - 2 (2%)
Squamous cell 
carcinoma - 10 
(12%)
Dyspnea - 2 (2%)
Rash - 1 (1%)
Hypertension - 1 
(1%)

Pyrexia - 1 (2%)
Asthenia - 2 (4%)
Anemia - 3 (5%)
Squamous cell 
carcinoma - 2 (4%)
Dyspnea - 2 (4%)
Rash - 1 (2%)
Hypertension - 0 (0%)

Pyrexia - 4 (11%)
Asthenia - 1 (3%)
Anemia - 1 (3%)
Squamous cell 
carcinoma - 1 (3%)
Dyspnea - 2 (6%)
Rash - 1 (3%)
Hypertension - 4 
(11%)

BD, twice daily; MEK, mitogen-activated protein kinase; N/A, not applicable; PO, orally; NSCLC, non-small cell lung cancer.

physicians to give the combination therapy either 
as first-line or following chemotherapy, tailored to 
individual patient needs.

There remain several unanswered questions for 
the dabrafenib and trametinib combination, par-
ticularly pertaining to the resistance mechanisms 
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to BRAF and MEK inhibition. For instance, in 
melanoma, it has been noted that acquired resist-
ance to BRAF and MEK inhibitors is frequently 
associated with persistence of ERK signaling, and 
the use of competitive ERK inhibitor, SCH772984 
has demonstrated significant activity in cells that 
became resistant to combination of BRAF and 
MEK inhibitors.52 SCH772984 prevents phos-
phorylation and activation of ERK1 and ERK2 
by MEK1/MEK2 kinase and sensitizes resistant 
tumor cells to BRAF-MEK combination therapy. 
Use of this selective ERK inhibitor in combina-
tion therapy can add a new weapon to the arsenal 
of drugs against BRAF V600E-mutant NSCLC.

Another critical area that demands attention 
from oncology community is the exploration of 
BRAF pathway inhibitors in patients with non-
V600E mutant NSCLC, which make up almost 
half of the total patient population with BRAF-
mutant NSCLC.4,5 Unlike the BRAF V600E 
mutation, biochemistry of the various altered 
BRAF proteins in non-V600E mutations varies 
substantially. It has been observed that BRAF 
non-V600E mutations that are located outside 
the activation segment of BRAF kinase domain 
are refractory to BRAF kinase inhibitors.46 Also, 
a number of BRAF non-V600E mutations are 
kinase inactivating or are kinase dead (D594G, 
G466V), but are still capable of activating the 
MAPK/ERK pathway through transactivation of 
CRAF.53 Since the majority of BRAF non-V600E 
mutant cells drive hyperactivation of ERK, it has 
been postulated that cells resistant to BRAF 
kinase inhibitors may be sensitive to downstream 
inhibition of MAPK signaling using MEK inhibi-
tors or ERK inhibitors. A clinical trial testing 
trametinib alone in BRAF non-V600E tumors, 
including lung cancer is currently ongoing (NCI-
MATCH trial; ClinicalTrials.gov identifier; 
NCT02465060). Also, a preclinical study has 
shown that combination of dabrafenib and 
trametinib possess antiproliferative effects against 
BRAF non-V600 mutant NSCLC cell lines, hav-
ing either impaired or elevated kinase activity.54 
However, no clinical study testing the combina-
tion in this target population has been conducted 
as of yet. Other treatment strategies that are cur-
rently being investigated include concurrent use 
of an EGFR inhibitor with a MEK inhibitor and 
the use of a next-generation BRAF inhibitor 
PLX8394 to achieve sustainable suppression of 
downstream MEK-ERK signaling in non-V600E 
BRAF mutations.55,56

Over the past decade, molecular diagnostic test-
ing has become a critical component for evalua-
tion of patients with NSCLC. Technological 
advances have led to the integration of next-gen-
eration sequencing platforms into routine clinical 
practice, thus providing a powerful tool to detect 
multiple actionable driver mutations using a sin-
gle sample. In addition, several advances have 
been made in ctDNA and circulating tumor cell 
(CTC)-based tests offering a potential alternative 
for detection of BRAF V600E mutation, however 
tissue based testing for BRAF is still considered 
the gold standard.57,58 A joint guideline from the 
College of American Pathologists, International 
Association for the Study of Lung Cancer, and 
Association for Molecular Pathology currently 
recommends inclusion of BRAF molecular test-
ing as part of expanded testing panel but it did 
not recommend genetic testing of BRAF as a rou-
tine stand-alone assay.59

In conclusion, the recent studies by Planchard and 
colleagues have established the clinical efficacy of 
dabrafenib and trametinib combination in patients 
with stage IV BRAF V600E-mutant NSCLC and 
have added another milestone towards personal-
ized and precision medicine. This treatment 
approach offers higher response rates and longer 
PFS along with improved tolerability and toxicity 
profile as compared with cytotoxic chemotherapy. 
Opportunities for future research include evalua-
tion of intracranial activity of dabrafenib and 
trametinib combination in the target population 
with brain metastasis, and exploration of treatment 
options for patients who develop resistance to 
treatment or who harbor BRAF mutations other 
than the V600E mutation.

Clinical practice points
1. BRAF mutations occur in approximately 

2–4% of patients with stage IV NSCLC 
and they tend to be mutually exclusive of 
other major driver gene mutations such as 
EGFR and KRAS oncogenic mutations.

2. Prognostic impact of BRAF mutation is not 
clearly defined, mainly due to small patient 
numbers and patient heterogeneity across 
various studies.

3. Combination of dabrafenib and trametinib 
has higher response rate and more durable 
responses as compared with chemotherapy 
in both first-line and second-line treatment 
of NSCLC.
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4. Adverse effects of the combination therapy 
can be managed through dose reduction or 
interruption without permanent discontin-
uation of therapy, as derived from experi-
ences from melanoma.
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