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Abstract: Identifying all analytes in a natural product is a daunting challenge, even if fractionated by
volatility. In this study, comprehensive two-dimensional gas chromatography/mass spectrometry
(GC×GC-MS) was used to investigate relative distribution of volatiles in green, pu-erh tea from leaves
collected at two different elevations (1162 m and 1651 m). A total of 317 high and 280 low elevation
compounds were detected, many of them known to have sensory and health beneficial properties.
The samples were evaluated by two different software. The first, GC Image, used feature-based
detection algorithms to identify spectral patterns and peak-regions, leading to tentative identification
of 107 compounds. The software produced a composite map illustrating differences in the samples.
The second, Ion Analytics, employed spectral deconvolution algorithms to detect target compounds,
then subtracted their spectra from the total ion current chromatogram to reveal untargeted compounds.
Compound identities were more easily assigned, since chromatogram complexities were reduced.
Of the 317 compounds, for example, 34% were positively identified and 42% were tentatively
identified, leaving 24% as unknowns. This study demonstrated the targeted/untargeted approach
taken simplifies the analysis time for large data sets, leading to a better understanding of the chemistry
behind biological phenomena.

Keywords: tea; metabolomics; GC/MS; software; database; MS subtraction; spectral deconvolution;
2DGC; volatilomics

1. Introduction

Obtaining the total metabolome of a natural or biological sample is a significant challenge.
Even when analyzed by both gas and liquid chromatography (GC, LC), analyzing complex mixtures
results in the detection of hundreds, if not thousands, of compounds. For example, we found that
climate-induced tea plant (Camellia sinensis (L.) Kuntze) interactions cause significant differences in
both the presence and concentration of secondary metabolites [1–3]. Abiotic pressures alone influence
the relative distribution of more than 750 volatile compounds, with ~450 detected in any given sample.
Differences in elevation, seasonal temperature, and rainfall from 2013 to 2016 caused two-thirds of
the metabolites to either increase or decrease in concentration, one-third of them by more than 100%.
We also measured nonvolatile concentration differences, including the catechins (flavan-3-ol derivatives
with high antioxidant power). Only five days after the onset of the East Asian monsoon rains began,
catechin concentrations decreased while total polyphenols and antioxidant potential increased. In these
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studies, we consider the tea “environmental,” since we microwaved the leaves in the field to stop
enzymatic oxidation; they were not processed to produce commercial tea.

We previously relied on automated sequential, 2D gas chromatography/mass spectrometry
(GC-GC/MS) to build the environmental tea database and on GC/MS to quantify the analyte distribution
in the samples. In this study, we used comprehensive 2D GC/MS (GC×GC/MS) to accomplish both
tasks, building from the existing database. When comparing each technique, library-building by
GC-GC/MS relied upon fifty 1-min sample transfers (heart-cuts) from the first (polar) to the second
(nonpolar) column to obtain clean spectra. The total time to obtain 50 data files was 4.5 days. In contrast,
GC×GC/MS, produced one data file in one hour. Although runtimes significantly differed, data analysis
of the respective files for library-building purposes took about the same amount of time.

The terms targeted, untargeted, and feature detection are often applied to GC/MS and LC/MS
data. In targeted analysis, a predetermined list of compounds is selected for the analysis, whereas
untargeted involves the evaluation of all detectable compounds in the sample [4,5]. The following
criteria affirm compound identity [6–8]. Positive identification requires confirmation by at least two
independent measurements, such as sample and reference compound mass spectra and linear retention
indices (LRI). Tentative identification is based on an acceptable match between sample and commercial
library, database, or literature spectra. Because natural products and biological metabolomes contain
hundreds to thousands of compounds [9], it is impractical to purchase reference standards to confirm
all sample identities. Therefore, assignments are typically tentative for most compounds.

Given the numerous and diverse compounds in natural products and in metabolomic datasets,
feature-based peak detection algorithms have become popular. m/z peak-retention time pairs are used to
assess peak region commonalities and differences in large data sets to reduce data complexity. Because
feature-based peak detection is overly sensitive to algorithmic parameters, coelution and instrument
noise, it produces many more features than actual compounds [10–12], with less than 2% yielding
identifiable analytes [13]. Although peak detection tools can differentiate samples [11,14,15], identifying
why they differ is difficult, since features themselves provide no biological context [16,17]. Despite these
drawbacks, feature-based detection software is popular among the metabolomics community [15].

In this study, we used GC×GC/MS to reveal compositional differences in farmer-processed green,
pu-erh teas (herein called pu-erh), collected from the same farm, plants, elevations, and time-period as
environmental tea. 2D data were analyzed by GC Image and Ion Analytics. The first was adopted to
detect 2D-peaks and to delineate peak-regions covering the full chromatographic space. Similarities
and differences between high and low elevation samples were highlighted by both peak-region feature
distribution and visual feature rendering [18]. Additionally, we identified compounds where possible.
The second provided an untargeted/targeted workflow, based on spectral deconvolution and spectral
subtraction of analytes found in the sample, to produce clean mass spectra and quantifiable constituent
differences. New algorithms facilitated the annotation process.

2. Results

2.1. Molecular Feature Detection

Figure 1 shows a comparative visualization, based on a visual features approach [18], highlighting
compositional similarities and differences in the high (reference sample) and low (analyzed sample)
elevation pu-erh teas. This pair-wise comparison is done on a composite chromatogram obtained by
summing each sample’s 2D chromatograms (n = 2) after transformation and re-alignment. In total,
1450 peak-regions were delineated; 107 with spectra clean enough to make tentative compound
assignments, see Supplementary Table S1. Each pixel in Figure 1 corresponds to detector acquisition
points (scans) that show response differences. The algorithm subtracts the pixel value registered in
the reference image from the corresponding value in the analyzed image, with the difference divided
by the larger of the pixel values. The brighter the pixel, the larger the difference is relative to the
analyzed pixel value; the darker the pixel, the larger the difference is relative to the reference pixel
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value. Medium gray indicates the difference is small relative to the value. The hue of a pixel indicates
whether the analyzed image (green) or reference image (magenta) has the higher value. The saturation
(color vs. grey) of a pixel indicates the magnitude of the difference ratio between the analyzed and
reference images, with grey indicating equal pixel values and bold colors large differences.
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Figure 1. A comparative visualization between composite GC×GC/MS chromatograms of the high
(reference image) and low (analyzed image) elevation teas. The magenta and green peak regions show
the areas in the chromatogram where relative distribution of common analytes is higher in the high and
low elevation teas, respectively. Light grey peak regions correspond to analytes with similar percentage
response in the two chromatograms.

2.2. Untargeted/Targeted Analysis

Shown in Figure 2 are the (a) total and (b and c) reconstructed ion current (TIC and RIC)
chromatograms for high elevation tea. Using the environmental database as target compounds,
spectral deconvolution produced chromatogram (b), which reveals the 187 compounds in pu-erh
tea that survived farmer processing. After subtracting the target compound spectra from the TIC
chromatogram, untargeted analysis revealed another 130 compounds in the sample (c). Table 1
lists the breakdown of the number of compounds by their identification levels, showing 107, 132,
and 78 positively and tentatively identified compounds, and unknowns in the high elevation pu-erh
tea, respectively. Although 25% of the volatile constituents are unknowns, should statistical analysis
reveal their importance, we know where in the separation to collect the compound by GC-GC for
further analysis. In addition to retention and spectral information, the database includes sample type,
the sensory characteristics of the compound in the sample, and known health benefits.



Molecules 2019, 24, 3757 4 of 14
Molecules 2019, 24, x FOR PEER REVIEW 4 of 14 

 

 
Figure 2. The TIC (a) and RIC chromatograms of targeted (b, in environmental tea) and untargeted 
(c, due to farmer processing) compounds in high elevation pu-erh tea. 

Table 1. Targeted and untargeted compounds found by Ion Analytics. 

 High Elevation Low Elevation 
Identity Level Targeted Untargeted Targeted Untargeted 

Positive 92 15 82 13 
Tentative 78 54 69 43 

* Unknown 17 61 15 58 
Total 187 130 166 114 

* Unknowns are assigned a numerical identifier in the database. 

Compared to the 450 compounds we typically detect by stir bar sorptive extraction [19], head 
space solid phase microextraction (HS-SPME) produced a lower extraction yield, as expected, with 
317 and 280 compounds in the high and low elevation samples, see Table 1. The high elevation sample 
contained 42 unique compounds; whereas only five were found in the low elevation teas. Also listed 
in the table are the number of targeted and untargeted compounds, see Supplementary Table S2 for 
identities. Once the total, detectable profile was established, GC Image (by pattern recognition) 
confirmed 272 of the 322 (84%) assignments, see Supplementary Table S1. 

3. Discussion 

Supplementary Figure 1 illustrates the process we use to analyze complex natural products such 
as botanicals, essential oils, herbs, and spices caused by environmental and/or manufacturing 
perturbations. In this study, we were interested in learning how sensory-active and health beneficial 

Figure 2. The TIC (a) and RIC chromatograms of targeted (b, in environmental tea) and untargeted
(c, due to farmer processing) compounds in high elevation pu-erh tea.

Table 1. Targeted and untargeted compounds found by Ion Analytics.

High Elevation Low Elevation

Identity Level Targeted Untargeted Targeted Untargeted

Positive 92 15 82 13
Tentative 78 54 69 43

* Unknown 17 61 15 58

Total 187 130 166 114

* Unknowns are assigned a numerical identifier in the database.

Compared to the 450 compounds we typically detect by stir bar sorptive extraction [19], head space
solid phase microextraction (HS-SPME) produced a lower extraction yield, as expected, with 317 and
280 compounds in the high and low elevation samples, see Table 1. The high elevation sample contained
42 unique compounds; whereas only five were found in the low elevation teas. Also listed in the table
are the number of targeted and untargeted compounds, see Supplementary Table S2 for identities.
Once the total, detectable profile was established, GC Image (by pattern recognition) confirmed 272 of
the 322 (84%) assignments, see Supplementary Table S1.
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3. Discussion

Supplementary Figure S1 illustrates the process we use to analyze complex natural products
such as botanicals, essential oils, herbs, and spices caused by environmental and/or manufacturing
perturbations. In this study, we were interested in learning how sensory-active and health beneficial
compounds in pu-erh tea differ in plants grown at high (1651 m) and low (1162 m) elevations. Since the
leaves are processed in the same manner, differences in chemistry are primarily due to differences
in temperature (∆3 ◦C). Target compounds are leaf metabolites that survived farmer processing.
Untargeted compounds are those produced by the fire-heated kettle process when making pu-erh tea.
Spectral deconvolution of the target (environmental database) compounds, ~60% (187/317 and 166/280)
of the constituents in each sample, followed by subtraction of their spectra simplified the analysis.

Figure 3 shows the TIC peak of three coeluting target compounds (acetic acid, 2-methylfuran,
and hexane) in high elevation tea. Although the spectrum at each peak scan is different (Figure 3b),
Ion Analytics correctly identified each analyte by deconvolving their spectral signature. Shown in
the bottom panel are the RIC peaks for acetic acid (green), 2-methylfuran (pink), and hexane (blue),
whose identities were confirmed using reference standards. The RIC peaks provide the means to
measure the relative distribution of each analyte in the sample.
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Figure 3. (a) Targeted analysis example of high elevation tea. (b) Spectral deconvolution of acetic acid
(green), hexane (blue), and 2-methylfuran (pink) ions and relative abundances.

Figure 4 is an example of an untargeted analysis where the spectrum (c) for the target compound,
hexanal, is subtracted from the TIC (a), see example spectra (b), exposing the spectrum of an unknown.
Since spectrum (d) is constant at each peak scan, the MS subtraction algorithm reveals another
compound. The retention time and mass spectrum match mesityl oxide (e). Subtracting the mesityl
oxide reference spectrum from the remaining signal yields baseline noise (f and g), positively confirming
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the peak assignments and that no other compounds elute in the corresponding peak-region. Also shown
in (g) are the RIC peaks for both hexanal (blue) and mesityl oxide (green).Molecules 2019, 24, x FOR PEER REVIEW 6 of 14 
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Figure 4. Untargeted analysis example, high elevation tea. Spectral deconvolution and MS subtraction
of hexanal, the target compound, ions and relative abundances (c) from the TIC (a) peak spectra (b) yields
the residual spectrum (d) for mesityl oxide (e). Subtraction of the ions and relative abundances of both
compounds results in baseline noise (f,g). The RIC chromatograms for hexanal (blue) and mesityl oxide
(green) are also in (g). Experimental spectra were acquired in the range of 40–280 m/z, and therefore,
ions below 40 m/z are missing from spectra (b–d,f).

This approach reduces the complexity of each subsequent analysis by using the results of preceding
samples as target compounds. By annotating the database, analytes can be tracked independent
of sample type and from sample-to-sample, year-to-year. Both software provide data to analyze
statistically. How one starts depends on the goal of the investigation. How one ends depends on
whether speciation provides meaningful input into the system under investigation, see below.
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Effects of Processing and Elevation on Tea

The most flavorful teas in Yunnan, China, are those grown at the highest elevations [20,21]. Earlier,
we showed that high compared to low elevation “environmental” teas contained more and higher
concentrations of metabolites that exhibit sweet, floral notes [1]. We assumed, therefore, that the
farmer-processed pu-erh tea would as well. The results of this study support this finding. The high
elevation tea retained more of the sensory-pleasing environmental metabolites than the low elevation
tea, which possessed more of the earthy, harsher tasting aromatics. The comparative chromatogram,
depicted in Figure 1, shows more magenta peaks overall, indicating a decrease in volatiles in the
low elevation pu-erh compared to the high. Further examination with Ion Analytics showed that of
the 275 common analytes, 134 were higher and 19 were lower in abundance in the high elevation
tea at the 95% confidence interval of the average relative percent difference, namely, 23% ± 46%
(n = 2 samples), with 119 and 60 higher than 100% and 200%, respectively. We found substantial
concentration differences in the oxygenated monoterpenes. The high elevation tea contained more of
the trans- (14000%) and cis- (3400%) furanoid linalool oxides, compounds characterized as sweet and
floral, than the low elevation tea. Similarly, the cis- (700%) and trans- (750%) pyranoid linalool oxides,
which exhibit citrusy, woody notes, were also higher in concentration.

Table 2 lists the 42 compounds unique to high elevation pu-erh and the five compounds unique
to low elevation pu-erh, along with their sensory and/or health beneficial properties. Although high
elevation spring teas are higher in quality, the occurrence of the summer monsoon rains offsets the
elevational (temperature) effect, resulting in less desirable tea, as evidenced by farmers receiving 50%
less for the summer compared to spring teas [22]. These findings illustrate why it is important to
measure the total volatile profile, especially when evaluating the health benefits of green tea in clinical
trials [23–26].

Table 2. Unique compounds in high and low elevation pu-erh tea and their sensory active and/or
health beneficial properties.

High Elevation Compounds Aroma * Health Benefits

furfural woody, almond, baked bread —
18 — —

(2E)-hexenal green, banana, aldehydic antimicrobial [27]
2-furanmethanol sweet, caramel, burnt —

(2E)-hexenol leafy, fruity, unripe banana —
2-heptanol fruity, oily, fatty —

2,5-dimethylpyrazine cocoa, roasted nuts —
2(5H)-furanone buttery —

heptanol musty, leafy, herbal, peony cardioprotective [28]
(3E)-hexenoic acid fruity, honey, acidic —

101 — —
(3Z)-hexenyl acetate green, banana, apple —

heptanoic acid rancid, sour, sweat —
2-methoxyphenol phenolic, smoke, spice —

maltol caramel, cotton candy, fruity antianxiety [29], antioxidant [30]
114 — —
511 — —

(3Z)-hexenyl butyrate green apple, fruity, wine —
(2E)-hexenyl butyrate green, apricot, ripe banana —

hexyl butyrate fruity, apple, waxy —
512 — —
514 — —

nerol neroli, citrus, magnolia antibacterial [31], antifungal [32],
antinociceptive/anti-inflammatory [33]

(3Z)-hexenyl valerate apple, kiwi, unripe banana, tropical —
(3Z)-hexenyl isovalerate green apple, tropical, pineapple —

phenylethyl acetate rose, fruity —
pentyl hexanoate pineapple, apple, pear —

1-nitro-2-phenyl ethane floral, spice cardioprotective [34]
γ-nonalactone coconut, creamy, waxy, buttery —
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Table 2. Cont.

High Elevation Compounds Aroma * Health Benefits

(3Z)-hexenyl hexenoate waxy, pear, winey, grassy, pineapple —
hexyl hexanoate fresh cut grass, vegetable —

(2E)-hexenyl caproate cognac, herbal, waxy —
(Z)-jasmone floral, woody, herbal, spicy antibacterial [35], anticancer [36]

(E,E)-α-farnesene citrus, lavender, bergamot, —
2,4-di-tert-butylphenol phenolic antioxidant [37]

δ-cadinene thyme, woody —
(Z)-calamenene herb, spice antimalarial [38], antitumor [39]
dodecanoic acid fatty, coconut, bay oil cardioprotective [40],

antibacterial/anti-inflammatory [41]
caryophyllene oxide woody, spicy anticancer/analgesic/anti-inflammatory [42]

τ-muurolol herbal, spicy, honey antibacterial [43], antioxidant [44]
α-cadinol herbal, woody antibacterial/antioxidant [43], anticancer [45],

anti-inflammatory [45]
bancroftinone — —

Low Elevation Compounds Aroma * Health Benefit
ethyl acetate weedy, green —

isoamyl alcohol alcoholic, banana antifungal [46]
(2E)-pentenal pungent, green apple, orange, tomato —

m-ethyltoluene — —
118 — —

* Aroma information was obtained from The Good Scents Company (http://thegoodscentscompany.com/).

4. Materials and Methods

4.1. Sample Collection

Tea samples (var. assamica) were collected from Nannuo Mountain, Menghai County in Yunnan
Province, China, in 2014. Low elevation teas, grown at 1162 m, were collected from Xiang Yang Village
from June 8—10. High elevation teas, grown at 1651 m, were collected from Ya Kou Old Village
from June 10—12. Elevation differences correspond to a 3 ◦C cooler temperature at high elevation
(https://www.spc.noaa.gov/exper/soundings/help/lapse.html). Farmers at the study site processed the
samples as green, pu-erh tea [2,22].

4.2. Sample Preparation and HS-SPME

Added to a 20 mL glass vial, thermostatted at 50 ◦C, were 1.5 g of dried plant material and
2 mL of ultrapure water. Volatiles were sampled in the headspace of the vial by solid phase
microextraction (SPME) for 50 min. The fibers were coated with 50/30µm thick divinylbenzene/carboxen
on polydimethyl siloxane (PDMS), which was 2 cm long (Supelco, Bellefonte, PA, USA). Fibers were
preconditioned according to the manufacturer before the addition of internal standards, α- and
β-thujone, which were sampled by exposing the SPME to 5 µL of a stock solution at 1000 mg/L for
20 min at 50 ◦C. The internal standards were used to normalize the GC×GC/MS peak responses.
Two replicates were prepared per sample.

4.3. GC×GC/MS Instrumentation

Tea samples were analyzed using a Gerstel (Mülheim an der Ruhr, Germany) MPS-2 multipurpose
sampler and Agilent (Santa Clara, CA, USA) models 6890 GC and 5975C MS. The MS, operated in
electron ionization mode at 70 eV, scanned from 40 to 280 m/z at 30 Hz. The GC×GC was equipped with
a two-stage KT 2004 loop thermal modulator (Zoex Corporation, Houston, TX, USA), which was cooled
by liquid nitrogen. The hot jet pulse time was 250 ms. The modulation period was 4 s. A mass flow
controller linearly reduced the cold-jet total flow from 40% to 8% by the end of the run. A deactivated
fused silica capillary loop (1 m × 0.1 mm dc) transferred sample portions from the first to the second
column. The first column was an SE52 column (95% PDMS, 5% phenyl, 30 m × 0.25 mm × 0.25 µm),
which was coupled to an OV1701 column (86% PDMS, 7% phenyl, 7% cyanopropyl, 1 m × 0.1 mm ×

http://thegoodscentscompany.com/
https://www.spc.noaa.gov/exper/soundings/help/lapse.html
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0.10 µm) as the second column. Both columns were purchased from Mega (Legnano, Milan, Italy).
The temperature program was 50 ◦C (1 min) to 210 ◦C at 3 ◦C/min, then at 280 ◦C (10 min) at 10 ◦C/min.
The SPME fiber was thermally desorbed into the split/splitless injector for 5 min using a split ratio
of 1:5. Helium served as the carrier gas, operating at constant flow (1.3 mL/min) with an initial head
pressure of 298 kPa.

4.4. GC-GC/MS Instrumentation

Heart-cutting GC-GC/MS instrumentation and parameters for tea library-building have been
described in detail in our previous works [1–3,19]. Briefly, PDMS-coated stir bars (Gerstel, Mülheim an
der Ruhr, Germany) were used to extract volatiles from aqueous tea infusions. A thermal desorption
unit (TDU, Gerstel) was used to provide splitless transfer of the sample into the programmable
temperature vaporization inlet (CIS, Gerstel), held at −100 ◦C. The TDU was heated from 40 ◦C
(0.70 min) to 275 ◦C (3 min) at 600 ◦C/min under 50 mL/min helium gas flow. After 0.1 min, the CIS
was heated to 275 ◦C at 12 ◦C/min and held for 5 min. The first GC (Agilent 6890, Santa Clara, CA,
USA) housed column 1 (C1, 30 m × 250 µm × 0.25 µm Rtx-Wax, Restek, Bellefonte, PA, USA) and was
equipped with a flame ionization detector. The temperature of C1 was programmed from 40 ◦C (1 min)
to 240 ◦C at 5 ◦C/min. C1 was connected to the CIS with a TDU on one end and to a five-port crosspiece
(Gerstel) on the other. The second oven (Agilent 6890) housed column 2 (C2, 30 m × 250 µm × 0.25 µm
Rxi-5MS, Restek), which was connected to the crosspiece through a cryogenic freeze trap (CTS1,
Gerstel) on one end and to the MS (Agilent 5975) on the other. The oven temperature was held at 40 ◦C
for 1 min, and then increased to 280 ◦C at a rate of 5 ◦C/min. Both columns operated at 1.2 mL/min
constant helium flow. The MS operating conditions were: 70 eV electron ionization source, 230 ◦C ion
source, 150 ◦C quadrupole, and 40 to 250 m/z scan range. A multipurpose autosampler (MPS, Gerstel)
was used for automated sample injection, and a multicolumn switching device (MCS, Gerstel) supplied
countercurrent flow to the crosspiece. A heart-cut was made each minute for a total of 40 heart-cuts
per sample.

4.5. Data Analysis

GC Image v 2.8 (LLC, Lincoln, NE, USA) was used for untargeted/targeted fingerprinting based
on peak-region features and for comparative visualization of composite chromatogram pairs for high
and low elevation tea samples. Two replicate preparations of each sample were used in this approach.
The software identified compounds when the LRI match was within ± 10 units of published values and
the NIST spectral match for that compound was >950. After the analysis, positively matched peaks
were used to re-align chromatograms [47,48] and combined into a single, composite chromatogram.
2D-peak detection was performed on the composite chromatogram with peak outlines recorded as
peak-region objects in the chromatographic plane. Then, all metadata belonging to positively matched
peaks and peak-region objects (chemical names, retention times, m/z fragmentation pattern, retention
index, and additional information about matching results) were combined into a template of features.

We used the Ion Analytics software (Gerstel, Mülheim an der Ruhr, Germany and Andover,
MA, USA) as follows. First, we selected the environmental tea database to target known compounds
in unprocessed tea by spectral deconvolution of the chromatogram. For each target compound,
the normalized ion intensity, Ii(t) (relative to the user-defined main ion, usually the base ion, specified
by i = 1), at scan (t) is

Ii(t) =
Ai(t)
RiA1

, (1)
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where Ai(t) is the i-th qualifier ion intensity at scan (t) and Ri is the expected relative ion abundance
ratio obtained from reference standards or NIST, Wiley, Adams, etc. All qualifier ions are normalized
to the main ion (I1 = 1). The spectral match, ∆I, is calculated as:

∆I =

∑N−1
i=1

∑N
j=i+1 Abs

(
Ii − I j

)
∑N−1

i=1 i
, (2)

where ∆I is the average normalized ion intensity deviation of each of the N specified qualifier ions.
As ∆I approaches zero, the quality of the match increases. Between three to five ions, including the
main ion, were used for each compound. Another constraint is that the scan-to-scan variance, ∆E,
must be ≤ 7, and is calculated as:

∆E = ∆I · log A1, (3)

Additive ion signal due to coelution is eliminated by comparing all ion ratios against each other.
The relative error is computed at each scan. If the ion ratio exceeds the expected ratio, and if all other
ions are in agreement, the residual signal is subtracted from the matrix-affected ion. An acceptable
match fits the criterion:

∆I ≤ K +
∆0

A1
, (4)

where K is the adjustable percentage difference and ∆0 is the cumulative error from background signal
and/or instrument noise. Target compound identification occurs when ∆E or ∆I is ≤7 in at least three
consecutive peak scans. Additionally, the qualifier ion ratio deviation must be ≤ 20% at each scan
across the peak to ensure consistency across the peak. The Q-value must be ≥90. The Q-value measures
compound hit quality on a scale of integers 1 to 100, where a higher value indicates a higher quality
match between sample and library spectra. The Q-value is determined as the maximum of either
100−D or 1, where D is calculated as:

D =
100

∑N
i=1

∣∣∣re
i − r0

i

∣∣∣ · (log
(
100 · re

i + 1
)
)

2

21.3
∑N

i=0 re
i

, (5)

where re
i is the expected qualifier ion ratio for the i-th qualifier ion, r0

i is the observed qualifier ion ratio
for the i-th qualifier ion, and N is the number of qualifier ions. The Q-ratio must also be within ≤
20% of the relative abundance. The Q-ratio is the peak area ratio of the extracted i-th and main ions,
calculated as:

D =
100

∑N
i=1

∣∣∣re
i − r0

i

∣∣∣ · (log
(
100 · re

i + 1
)
)

2

21.3
∑N

i=0 re
i

, (6)

where Si is the peak area extracted for the i-th common ion over the hit and S1 is the peak area
for the main ion over the hit. Since GC×GC produces multiple modulated peaks per compound,
the deconvolution algorithm searches for up to five peaks per compound by default, which can be
increased when high concentration analytes are found in the sample.

Then, the mass spectrum of each target compound was subtracted from corresponding peak
scans to reveal untargeted compounds. Peak assignments were made by matching sample and
library spectra and retention indices, which were then confirmed using available reference standards.
If assignments were not possible, numerical identifiers were used to assign peak names. Finally,
once all peak assignments were made, the mass spectrum for each compound was subtracted from the
TIC chromatogram to reveal missed peaks. This was established when residual signals approximated
the baseline (background noise) of the chromatogram.



Molecules 2019, 24, 3757 11 of 14

5. Conclusions

Our overall objective is to demonstrate two complimentary data analysis approaches to
differentiating complex samples using tea as the model system. First, we used molecular feature
detection to show which regions of the chromatograms differed, then untargeted/targeted analysis to
identify all compounds in the sample, both in regions of the chromatogram that differed significantly
and where it did not. The latter showed the quantifiable differences at the molecular level in high and
low elevation tea. From a sensory perspective, our findings point to compounds consistent with local
perspectives of quality in high and low elevation green tea. In this paper, we used comprehensive
GC×GC/MS, rather than GC/MS or GC-GC/MS, to produce data on the same time scale as GC/MS with
the resolution of GC-GC/MS, without taking days to produce data on one sample. The technology and
approach taken differentiates complex samples at the molecular level, critically important to the study
of systems biology.

Supplementary Materials: The following are available online, Figure S1: Ion Analytics and GC Image workflow
schematic for the analysis of targeted and untargeted compounds, Table S1: Features detected by GC Image and
confirmatory analysis, Table S2: Compounds identified by Ion Analytics. The unprocessed GC×GC /MS data can
be found at: http://dx.doi.org/10.25833/jxyj-8w58.
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Krasulová, K.; Anzenbacher, P.; Skálová, L. The inhibitory effects of β-caryophyllene, β-caryophyllene oxide
and α-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro.
Chem. Biol. Interact. 2017, 278, 123–128. [CrossRef] [PubMed]

43. Guerrini, A.; Sacchetti, G.; Grandini, A.; Spagnoletti, A.; Asanza, M.; Scalvenzi, L. Cytotoxic Effect and TLC
Bioautography-Guided Approach to Detect Health Properties of Amazonian Hedyosmum sprucei Essential
Oil. Evid. Based Complement. Altern. Med. 2016, 8. [CrossRef]

44. Rossi, D.; Guerrini, A.; Maietti, S.; Bruni, R.; Paganetto, G.; Poli, F.; Scalvenzi, L.; Radice, M.; Saro, K.;
Sacchetti, G. Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Mull. Arg.
(Euphorbiaceae) stem bark essential oil: A new functional food ingredient? Food Chem. 2011, 126, 837–848.
[CrossRef]

45. Tung, Y.T.; Yen, P.L.; Lin, C.Y.; Chang, S.T. Anti-inflammatory activities of essential oils and their constituents
from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharm. Biol.
2010, 48, 1130–1136. [CrossRef] [PubMed]

46. Pimenta, R.S.; Silva, J.F.M.D.; Buyer, J.S.; Jansiewicz, W.J. Endophytic Fungi from Plums (Prunus domestica)
and Their Antifungal Activity against Monilinia fructicola. J. Food Prot. 2012, 75, 1883–1889. [CrossRef]
[PubMed]

http://dx.doi.org/10.1007/s11094-017-1583-6
http://dx.doi.org/10.1016/j.bjp.2014.10.014
http://dx.doi.org/10.1016/j.ejphar.2016.02.036
http://www.ncbi.nlm.nih.gov/pubmed/26875635
http://dx.doi.org/10.1016/j.phymed.2008.10.007
http://www.ncbi.nlm.nih.gov/pubmed/19103477
http://dx.doi.org/10.1021/jf00031a017
http://dx.doi.org/10.1111/j.1745-7254.2008.00814.x
http://dx.doi.org/10.1089/jmf.2012.2739
http://dx.doi.org/10.3390/molecules16108273
http://dx.doi.org/10.1016/j.ejphar.2006.02.047
http://dx.doi.org/10.1111/bcpt.12700
http://dx.doi.org/10.1016/j.intimp.2018.03.014
http://dx.doi.org/10.1016/j.cbi.2017.10.021
http://www.ncbi.nlm.nih.gov/pubmed/29074051
http://dx.doi.org/10.1155/2016/1638342
http://dx.doi.org/10.1016/j.foodchem.2010.11.042
http://dx.doi.org/10.3109/13880200903527728
http://www.ncbi.nlm.nih.gov/pubmed/20815702
http://dx.doi.org/10.4315/0362-028X.JFP-12-156
http://www.ncbi.nlm.nih.gov/pubmed/23043843


Molecules 2019, 24, 3757 14 of 14

47. Reichenbach, S.E.; Tian, X.; Boateng, A.A.; Mullen, C.A.; Cordero, C.; Tao, Q.P. Reliable Peak Selection for
Multisample Analysis with Comprehensive Two-Dimensional Chromatography. Anal. Chem. 2013, 85,
4974–4981. [CrossRef]

48. Rempe, D.W.; Reichenbach, S.E.; Tao, Q.P.; Cordero, C.; Rathbun, W.E.; Zini, C.A. Effectiveness of Global,
Low-Degree Polynomial Transformations for GCxGC Data Alignment. Anal. Chem. 2016, 88, 10028–10035.
[CrossRef]

Sample Availability: Samples of the compounds are not available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ac303773v
http://dx.doi.org/10.1021/acs.analchem.6b02254
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Molecular Feature Detection 
	Untargeted/Targeted Analysis 

	Discussion 
	Materials and Methods 
	Sample Collection 
	Sample Preparation and HS-SPME 
	GCGC/MS Instrumentation 
	GC-GC/MS Instrumentation 
	Data Analysis 

	Conclusions 
	References

