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Abstract: Tight regulation of gene transcription is essential for normal development, tissue
homeostasis, and disease-free survival. Enhancers are distal regulatory elements in the genome
that provide specificity to gene expression programs and are frequently misregulated in cancer.
Recent studies examined various enhancer-driven malignant dependencies and identified different
approaches to specifically target these programs. In this review, we describe numerous features that
make enhancers good transcriptional targets in cancer therapy and discuss different approaches to
overcome enhancer perturbation. Interestingly, a number of approved therapeutic agents, such as
cyclosporine, steroid hormones, and thiazolidinediones, actually function by affecting enhancer
landscapes by directly targeting very specific transcription factor programs. More recently, a broader
approach to targeting deregulated enhancer programs has been achieved via Bromodomain and
Extraterminal (BET) inhibition or perturbation of transcription-related cyclin-dependent kinases
(CDK). One challenge to enhancer-targeted therapy is proper patient stratification. We suggest that
monitoring of enhancer RNA (eRNA) expression may serve as a unique biomarker of enhancer
activity that can help to predict and monitor responsiveness to enhancer-targeted therapies. A more
thorough investigation of cancer-specific enhancers and the underlying mechanisms of deregulation
will pave the road for an effective utilization of enhancer modulators in a precision oncology approach
to cancer treatment.

Keywords: enhancers; BET inhibitors; CDK7 inhibitors; HDAC inhibitors; transcription factors;
eRNAs; cancer

1. Introduction

Cancer is a disease of aberrant transcription which is dependent on mechanisms enabling
deregulated gene expression [1–3]. Enhancers are short genomic elements or clusters of elements,
which are bound by tissue- or cell type-specific transcription factors (TFs) that activate target gene
transcription in a distal and autonomous manner [4]. Soon after their discovery, enhancers were
reported to drive differential transcriptional regulation in a more diverse and versatile manner compared
to transcriptional regulation occurring (primarily) at proximal promoter regions [5]. Accordingly, it is
not surprising that misregulation of these transcriptional hubs was linked to various diseases, including
cancer [6–8]. For example, a chromosomal rearrangement in acute myeloid leukemia (AML) was found
to bring an enhancer into the proximity of the oncogenic MDS1 and EVI1 complex locus (MECOM),
precipitating the malignancy [9]. The amplification of enhancers was also shown to play a role in the
pathophysiology of prostate cancer and neuroblastoma [10,11]. Furthermore, hijacking of enhancers
led to the activation of the oncogenic Growth Factor Independent 1 family in medulloblastoma [12].
Additionally, reprogramming of the enhancer landscape in pancreatic cancer was reported to play
a significant role in promoting a more aggressive phenotype [13–15]. Moreover, enhancers were
implicated in therapy resistance in leukemia [16]. Accordingly, the eminent implication of enhancers
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in diseases led to the development of the term “enhanceropathies” and enhancer biology has become
a focal point of interest when investigating novel therapeutic targets in cancer [17]. In this report,
we review recent studies supporting the rationale of targeting enhancers in cancer. Additionally,
we summarize the reported use of enhancer modulators in different cancer types. Finally, we discuss
the challenges facing the use of enhancer modulators in the clinical setting.

2. Targeting Transcription Factor-Related Programs in Cancer

Sequence-specific binding of transcription factors (TF) underlies the selective activation of
enhancers in different systems [18]. TFs provide a high degree of specificity in gene regulation by
binding to their cognate DNA sequences across the genome to activate (or repress) transcription via
recruitment of various co-activators, such as chromatin remodeling proteins and histone modifying
enzymes [19,20]. Certain TFs have been identified to be lineage-specific and drive the differentiation of
certain cellular states through the activation of different enhancer repertoires [19,21]. Moreover, it was
reported that certain TFs, including the majority of tissue-specific TFs, display a larger number of
binding sites at distal enhancers compared to proximal promoters [22]. Accordingly, agents specifically
targeting the function of such transcription factors will, in turn, perturb the activity of the select set of
enhancers controlled by the given TF.

Notably, direct manipulation of individual enhancer activity has recently been achieved via gene
editing approaches such as CRISPR-Cas9. For example, fetal hemoglobin was effectively induced by
disrupting the binding site of the TF GATA binding protein 1 (GATA1) at the upstream enhancer of
the fetal hemoglobin repressor BAF chromatin remodeling complex subunit BCL11A (BCL11A) [23].
Additionally, using catalytically dead Cas9-Krüppel-associated box domain (dCas9-KRAB) to silence
various enhancer constituents of the oncogenic sphingosine kinase 1 (SPHK1) led to a decrease
in its levels, which was associated with attenuated proliferation and migration in hepatocellular
carcinoma [24,25]. Recruitment of a trans-enhancer by a customized dCas9 was more recently shown
to activate target gene transcription in various cancer cell lines [26]. While these approaches illustrate
examples of direct manipulation of enhancers in certain contexts, they have limited applications as
therapeutic options due to various reasons. Firstly, the lack of effective, safe and specific delivery
options of the Cas9 system remains a major challenge in applying these machineries in therapy. One of
the novel approaches currently under study to deliver the Cas9 system includes multistage delivery
nanoparticle (MDNP), which still requires further validation [27]. Additionally, the use of permanent
gene editing in humans faces numerous ethical complications. Most importantly, these approaches can
only affect a single target, which is rarely sufficient to combat highly plastic malignancies. Furthermore,
the ramifications of permanent changes in the genome sequence are poorly understood and may lead
to irreversible adverse events.

While genetic manipulation of enhancer function remains challenging, an established clinically
relevant approach to modulate enhancer activity is the perturbation or activation of the sequence-specific
transcription factor(s) that are required for enhancer function. A primary example of such targeting
is the perturbation or activation of steroid hormone receptors in various cancers, such as breast
cancer [28–30], prostate cancer [31–33], and lymphomas [34,35]. For example, 70% of breast cancers are
estrogen receptor-positive (ER+) and are, at least initially, highly responsive to endocrine therapy [36].
Estrogen receptor-alpha (ERα) is a master transcription factor in breast cancer which can be activated
by estradiol. Estrogen binding to the ligand-binding domain of ERα leads to conformational changes
which promote dimerization, subsequent binding to specific targets in the genome called estrogen
response elements (EREs), and recruitment of co-activator proteins [37]. When ERα localization
was investigated throughout the genome, it was quickly recognized that it rarely binds to promoter
regions, but rather shows a tendency to localize to enhancer regions [38]. Interestingly, ERα was
recently reported to nucleate phase-separated condensates at highly active enhancers [39], thereby
promoting transcription at these extremely active hubs [40]. Thus, while endocrine therapy has been
a central approach for treating a large number of breast cancer patients for over four decades, it has
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only recently been appreciated that the main molecular mechanisms by which tamoxifen and similar
steroid hormone receptor antagonists exert their effects is by the modulation of enhancer activity.
This principle is also applicable to other steroid hormone receptors, where (positively or negatively)
targeting the enhancer function of the androgen receptor (AR) [41–43] or glucocorticoid receptor [44]
has been shown to be very effective in other malignancies.

Other therapeutic agents that are used for other indications, such as the insulin sensitizing
thiazolidinediones, also modulate the enhancer landscape by acting as agonists for the nuclear receptor
Peroxisome Proliferator-Activated Receptor-γ (PPARG) [45]. In this case, treatment with rosiglitazone
leads to the selective activation of PPARG-occupied enhancers. While thiazolidinediones were
reported to have an inhibitory proliferative effect in hepatocellular and esophageal cancers, enhancer
modulation by glitazones in cancer is still not very well studied [46–48]. Interestingly, a retrospective
study observed a significant negative correlation of administration of thiazolidinediones and colorectal
cancer, suggesting these agonists may have a protective role in preventing cancer [49]. Accordingly,
those drugs which were originally developed for other indications may have a potential unlocked
utility in some cancers. However, further investigation is needed to confirm the efficacy of these agents
in this context.

While targeting nuclear receptors is one of the best examples of how directly perturbing
transcription factor activity can be achieved, other frequently utilized therapeutic agents have a similar
mechanism of action. For example, calcineurin inhibitors, which attenuate the calcium-dependent
translocation of the Nuclear Factor of Activated T cells (NFAT), were shown to have growth
inhibitory effects in various types of cancer, such as hepatocellular carcinoma, melanoma,
and retinoblastoma [50–52]. NFAT was shown to elicit its effects at enhancer regions in blood
vessel maturation [53] and function together with STAT3 at enhancers downstream of KRAS signaling
in pancreatic cancer [54]. Thus, the use of calcineurin inhibitors will directly impact the activity of
NFAT-driven enhancer programs and can be a promising approach in cancer therapy, especially in cases
such as breast and pancreatic cancer where the NFAT pathway has been shown to be activated [45,55].
Conversely, cyclosporine has been implicated in increased risk for squamous cell carcinoma due to an
increase of Activating Transcription Factor 3 (ATF3), which suppresses p53-induced senescence [56].
Thus, the context-specific effects of this drug should be closely considered before harnessing its
enhancer-perturbing activity. Another approach to modulate the effects of a transcription factor can
be by targeting its stability. For example, the Hypoxia Inducible Factor Alpha subunit (HIF1A) is a
transcription factor that is known for its role in mediating the hypoxic response and it was shown to
correlate with poorer prognosis in various types of cancer [57,58]. Enhancers also underlie the activity
of HIF1A in modulating target gene expression [15,59–61]. Interestingly, topoisomerase I inhibitors
were observed to inhibit the translation of HIF1A and may therefore function in part by this mechanism
in the case of cancers where this factor plays a significant role [62].

As these drugs target particular transcriptional programs driven by the activity of a highly specific
group of enhancers, their effectiveness has shed light on the benefits of targeting deregulated enhancer
programs in specific disease contexts. Accordingly, targeting deregulated enhancer activity is, in fact,
already an established paradigm and mainstay in the clinical treatment of cancer.

3. Perturbing Enhancer Activity by Therapeutic Agents and Inhibitors

Expansion of our understanding of complex processes controlling gene regulation has uncovered
numerous novel targets that can (potentially) be therapeutically modulated in cancer. However,
such exponential growth in knowledge rendered the task of identifying and investing in a select few
effective and relatively safe transcriptional targets immensely challenging. An ideal transcriptional
target in cancer therapy would necessarily exhibit certain attributes which can lead to a perceptible
change in the quality of life, prognosis, and the therapeutic management of patients. To achieve
this, such a target must be amenable to inhibition, preferably by small molecules that have
good bioavailability at the target site with an acceptable half-life (i.e., good pharmacokinetic and
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pharmacodynamics properties). Importantly, the ideal target should also have a specificity that spares
non-transformed cells, thereby avoiding or minimizing any potential unwanted side effects caused
by perturbations of normal cellular processes in healthy tissue (adverse or severe adverse events).
Additionally, this target should be indispensable (non-redundant) to cancer cells, rendering them
highly dependent on such a target. Finally, this dependence should ideally be shared by all or a
high percentage of the malignant cell population in a given patient. As some enhancers or enhancer
programs exhibit these characteristics, they provide promising transcriptional targets (Figure 1).
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Figure 1. Positive features rendering enhancers good transcriptional targets. (a) Enhancers can be
pharmacologically manipulated using different small molecule inhibitors (indicated by green dots).
They are also indispensable for cancer cells as they activate important oncogenes. (b) Enhancers are
also context-specific. In this example, enhancers are activated by different transcription factors (TFs) in
various tissues (A–C). The same inhibitor affects only a specific enhancer in a tissue if it is activated
by a certain TF. Thus the illustrated inhibitor only affects Enhancer 1 in tissue A but not C. It also has
no effect on the other active enhancers in tissue B. Gray enhancers are inactive, while orange ones are
active. Bold arrows represent active transcription.

3.1. Enhancers Are Context-Specific and Indispensable for Cancer Cells

One of the major characteristics of a subgroup of enhancers is context-specificity. In general,
enhancers direct lineage-specific transcriptional programs in a more predominant manner compared
to promoters [63]. Around half of the enhancers identified in different tissues including brain, heart,
ovaries, and placenta were tissue-specific [64]. Consistently, enhancers were the most distinctive
identifying feature of tissue of origin upon analysis of hundreds of patient samples and human cell
lines [65]. Interestingly, not only is there a distinct pattern of enhancer activation through tissues,
but it was also observed that the interaction between active enhancers and their target genes are highly
variable in various tissues as well [66]. Notably, interactions between enhancers and their target genes
are variable in different systems and show even more tissue-specificity than differential activation of
enhancers themselves, thus providing an additional layer of complexity.
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In addition to having tissue-specificity, in order to be safely targetable, enhancers must exhibit
specific activation in malignant cells compared to the tissue of origin. In this case, this activation
should represent a new cancer cell-specific dependence that is not shared by healthy cells from the
same tissue. Consistently, aberrant hypermethylation of enhancers in renal cancer cells led them to
be more sensitive to the DNA methyltransferse (DNMT) inhibitor, decitabine, compared to healthy
renal tissue [67]. More specifically, loss of the X-linked gene Lysine Demethylase 6A (KDM6A) resulted
in a gender-specific aberrant activation of a set of enhancers leading to an aggressive phenotype of
pancreatic cancer [68]. Importantly, inactivation of enhancers through Bromodomain and Extraterminal
(BET) inhibitor treatment was effective in targeting this specific subtype of pancreatic cancer compared
to other subtypes. This shows that enhancer specificity can extend to certain subtypes of cancer, adding
a further layer of specificity and potentially increasing safety in targeting those elements.

3.2. Activity of Enhancers Can Be Pharmacologically Perturbed

Enhancers were shown to be specifically targetable by various small molecule inhibitors.
Preferential dependence of enhancers on Bromodomain and Extraterminal (BET) proteins has been
consistently reported in various cancer types such as lymphoma [69], ovarian cancer [70], breast
cancer [71,72], pancreatic cancer [68,73], leukemia [74], multiple myeloma, and glioblastoma [74,75].
Other modulators with reported efficacy on enhancers include inhibitors of the transcriptional cyclin
dependent kinases-7 (CDK7) and -9 (CDK9).

3.2.1. Epigenetic Modulators

Epigenetic regulation enables cells to control gene transcription in a manner complementary
to sequence-specific transcription factor-based mechanisms. Such regulatory mechanisms include
post-translational modification of histones, DNA methylation, nucleosome remodeling, and non-coding
RNAs (ncRNAs) [76]. Histone marks do not act independently of one another, but rather cooperate
to control gene transcription in what is referred to as “histone crosstalk” [77]. Eminent factors in
the epigenetic machinery are so-called epigenetic “readers”, which recognize specific histone marks
and recruit additional effectors [78]. An extensively studied example is the BET family of proteins,
which each contain two bromodomains that can interact with acetylated lysine residues on target
proteins via a hydrophobic pocket, thereby endowing BET proteins with the ability to recognize acetyl
marks on chromatin [79]. JQ1 is a thienodiazepine that displaces the BET family member Bromodomain
containing 4 (BRD4) from acetylated lysines by forming hydrogen bonds with a conserved asparagine
residue that is situated in the hydrophobic pocket of BRD4 [80]. Many other BET inhibitors have also
been developed, such as I-BET151, I-BET762, and OTX-015 [80–82]. In Diffuse Large B-Cell Lymphoma,
BET inhibitors showed a marked effect on a subset of enhancers, termed super enhancers, that are
highly enriched with BRD4 [69]. Super enhancers (SEs) were first identified as major drivers of gene
expression that are highly enriched with transcription factor binding sites and include clusters of highly
active distal regulatory elements [75,83]. SEs were observed to drive lineage-specific programs in
various systems, such as epithelial differentiation, mesenchymal multipotency, and estrogen-dependent
mammary gland malignancy, and showed sensitivity to BET inhibition [75,84–86]. Consistently,
treating ovarian cancer cells with BET inhibitors diminished the activity of a super enhancer activating
the chemoresistance-related aldehyde dehydrogenase and led to increased sensitivity to cisplatin
treatment [70]. Additionally, treating various sensitive colorectal cancer cells with BET inhibitors
attenuated the activity of enhancers gained in cancer compared to normal crypts [87]. While different
super enhancer programs were identified in various subtypes of ependymomas, a general sensitivity
to BET inhibition was reported in ependymoma cells [88]. The same pattern of activation of distinct
BET-dependent super enhancers was also reported in chronic lymphocytic leukemia [89]. Enhancers
driving the transcription of receptor tyrosine kinases that play a fundamental role in gastrointestinal
stromal tumors have also shown dependence on BET family members [90].
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Other important members of the epigenetic machinery include writers which act by selectively
adding chemical moieties to a specific histone residue. Histone acetyltransferases (HATs), such as
p300 and CREB-binding protein (CBP), transfer an acetyl group from acetyl-CoA to histone tails [91].
Inhibiting HATs in pancreatic cancer affected the activation of a certain subset of enhancers that
are enriched by the Wnt-signaling transcription factor, Transcription Factor 7 Like 2 (TCF7L2) [86].
Furthermore, the Polycomb Repressive Complex-1 (PRC1) and -2 (PRC2) are extensively studied
complexes which mediate monoubiquitination of H2A at lysine 119 (H2Aub1) and tri-methylation
of histone 3 lysine 27 (H3K27me3), respectively [92]. As H2K27me3 is a histone mark which is
highly associated with gene inactivation [93,94], targeting constituents of the PRC complex led to
a specific de-depression of a specific set of enhancers in leukemia [95]. Consistently, targeting the
catalytic subunit of the PRC2 complex, Enhancer of Zeste Homolog 2 (EZH2), led to the de-depression of
enhancers controlling the pro-apoptotic B cell lymphoma-2 like 11 (BIM), thereby mediating apoptosis
in breast cancer cells [96].

Other classes of important epigenetic factors include “erasers”, enzymes that remove histone
marks [97]. This includes histone deacetylases (HDACs), which mediate the removal of lysine
acetylation and consist of multiple classes that can also mediate de-acetylation of non-histone
proteins [98]. HDAC inhibitors were found to affect the enhancer landscape in colorectal, pancreatic,
and breast cancer [96,99,100]. While methylation was previously considered to be an irreversible
modification, Lysine-Specific Demethylase 1 (LSD1, also called KDM1A) was identified in 2002 as
a selective mediator of the de-methylation of histone 3 lysine 4 [101,102]. Mono-methylation and
tri-methylation of histone 3 lysine 4 (H3K4me1 and H3K4me3) are known marks for gene activation at
distal and proximal regulatory regions, respectively [76,103]. LSD1 inhibitors affect a specific subset
of enhancers controlling differentiation in acute myeloid leukemia by disrupting their interaction
with the SNAG-domain transcription repressor GFI1 [104]. LSD1 has also been shown to influence
enhancer activity in a number of other systems including embryonic stem cell differentiation [105],
androgen receptor function in prostate cancer [106,107], and ERα activity in breast cancer [108].
Altogether, epigenetic modulators provide a variety of targets which can be manipulated to modulate
the cancer-specific enhancer landscape and affect transcriptional programs. While current research is
largely focused on BET inhibitors and their role in affecting enhancers, many other epigenetic inhibitors
may potentially also be used in the context of enhancer activity manipulation as further mechanisms
and contexts are better defined.

3.2.2. Cyclin-Dependent Kinase Inhibitors

The recruitment of RNA Polymerase II (RNA Pol II) to the proximal promoter enables the initiation
of transcription, which is signified by the phosphorylation of serine 5 within the heptapeptide repeats
of the carboxy-terminal domain (CTD) and the subsequent capping of nascent RNA [109,110]. Pol II is
frequently temporarily paused by the Negative Elongation Factor (NELF) and DRB-sensitivity Inducing
Factor (DSIF) within the first 100 nucleotides after the transcription start site (TSS) [109,111,112]. Thereby,
this promoter proximal pausing has been regarded as a crucial rate-limiting step for gene transcription
in metazoans [113]. To proceed to productive elongation, the Positive Transcription Elongation Factor-b
(P-TEFb) phosphorylates Pol II at serine 2 of the CTD as well as components of both the NELF and
DSIF complexes [114,115] via its catalytic subunit Cyclin-Dependent Kinase-9 (CDK9) bound to the
cognate cyclin T1 [116]. These phosphorylation events release Pol II from promoter proximal pausing
and allow transcription elongation until polyadenylation sequences are transcribed, which leads to
the cleavage and subsequent polyadenylation of mRNAs [117]. Notably, inhibition of CDK9 not
only attenuates transcription elongation of the pre-mRNA, but also decreases eRNA production at
enhancer regions [118]. Consistent with complementary functions in controlling enhancer function,
the combination of CDK9 inhibition along with BET inhibitors has shown enhanced effects in both
AML [119] and malignant rhabdoid tumor cells [120]. As a monotherapy, CDK9 inhibitors were
observed to highly inhibit the expression of genes associated with super enhancers, such as MYC [121].
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In chordoma, a highly aggressive tumor of the bone, inhibition of CDK9 and CDK7 has been reported
to be highly effective [122].

As part of the TFIIH complex, CDK7 plays an important role in gene transcription via
phosphorylation of the Pol II CTD at Ser5 [123,124]. It was reported that phosphorylation of the CTD
by CDK7 leads to the dissociation of the CTD with DNA and the initiation of transcription [125].
CDK7 also plays a dual role in controlling cell cycle progression by phosphorylating and activating
CDK1 and CDK2 [126]. Inhibition of CDK7 by the covalent inhibitor, THZ1, was found to be
highly toxic to cancer cells, presumably by specific inactivation of super enhancers [127]. Indeed,
super enhancers controlling the MYCN proto-oncogene were selectively inactivated by THZ1 in
neuroblastoma [128]. Interestingly, several reports followed observing a selective perturbation of
super enhancer programs by inhibition of CDK7 in small cell lung cancer [129], triple-negative
breast cancer [130], ovarian cancer [131], esophageal carcinoma [132], melanoma [133], gliobastoma
multiforme [134], and pancreatic cancer [135]. However, inhibition of CDK7 was reported to increase
characteristics associated with metastasis in colorectal cancer cells [136]. THZ1 was found to attenuate
the normal transition of the various stages of transcription starting from initiation into elongation [137].
Conversely, while THZ1 appears to preferentially affect super enhancer-associated genes, this effect
does not appear to be due to altered RNA Pol II activity directly at the enhancers themselves [138].
Moreover, a more recent report suggests that the effects of THZ1 on super enhancer-associated genes
may, in fact, be due to the off-target inhibition of CDK12 and CDK13, rather than CDK7 [139]. Thus,
further studies to understand the exact mechanism of selective attenuation of super enhancer activation
are necessary before the use of CDK7 (or CDK12/13) inhibitors can be precisely tested in the clinical
setting on a mechanistic basis. Currently, two early-phase clinical studies are ongoing to investigate the
use of CDK7 inhibitors in patients with advanced solid malignancies (NCT03363893, NCT03134638).

In addition to the previously mentioned regulators, the Mediator complex plays a crucial role in
transcriptional regulation [140,141]. Mediator is a large multi-subunit complex that plays a crucial role
in the assembly and activation of the pre-initiation complex (PIC) by forming a bridge between various
sequence-specific transcription factors and components of the PIC [142]. In addition to its important
role at gene promoters, Mediator is reported to connect initiating promoters with active distal enhancers
through chromatin loop formation [143]. The first evidence of chromatin loop formation where a distal
region affected the transcription of a target gene promoter was reported in 1984 by Dunn et al. [144] in
bacteria. Approximately 20 years later, cohesin, which also plays a central role in sister-chromatid
adhesion, was revealed to orchestrate the formation of DNA loops with the help of the insulator,
CCTC-Binding Factor (CTCF), and the cohesin loader, Nipped-B-Like (NIPBL) [145–147]. Mediator was
found to bind cohesin and NIPBL to bring active enhancers and promoters into close proximity [143].
As Mediator is composed of approximately 30 subunits, it can have different conformations [148]. One
conformation includes the kinase module containing cyclin-dependent kinase 8 (CDK8), which does
not appear to directly phosphorylate the RNA Pol II CTD, but was shown to have more preference
toward affecting active enhancers [149]. In contrast to BET and CDK7 inhibition, CDK8 inhibitors have
been reported to have an activating effect on super enhancers in leukemic cells [150]. Interestingly,
given the proposed dose-dependent function of these enhancers, leukemic cells were still impaired in
their growth following treatment with a CDK8 inhibitor. Additionally, CDK8 inhibitors were reported
to be crucial in mediating the transcriptional effects of HIF1A [151] as well as beta-catenin in colorectal
cancer [152]. Accordingly, CDK8 inhibition can lead to changes in the enhancer landscape by various
mechanisms. A number of the described targets which modulate enhancer activity are illustrated and
summarized in Figure 2.
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Figure 2. Schematic representation of putative targets to reprogram the enhancer landscape in cancer.
(A) modulators of transcription factors, (B) HAT inhibitors, (C) HDAC inhibitors, (D) BET inhibitors,
(E) CDK7/9 inhibitors. HAT: Histone acetyltransferase; HDAC: Histone deacetylase; BET: Bromodomain
and extraterminal; CDK: Cyclin-dependent kinases.

4. Challenges Facing the Utility of Enhancer Modulators in the Clinical Setting

While targeting transcriptional enhancers is still under investigation, compensatory resistance
mechanisms upon inhibition of active enhancers have already been described. For example,
the BET inhibitor JQ1 was reported to induce resistance mediated by transcriptional activation
in bromodomain-independent pathways in castration-resistant prostate cancer [153]. Interestingly,
this resistance uncovered an alternative dependency on CDK9-mediated activation of androgen receptor
signaling. In pancreatic cancer, upregulation of the GLI Family Zinc Finger 2 (GLI2) was found to enable
resistance to BET inhibition [154]. In leukemia, resistance to BET inhibition was partly caused by an
increase in Wnt-signaling pathway activity [155,156]. Interestingly, while MAPK/ERK kinase inhibition
(MEKi) sensitized colorectal cancer cells to BET inhibition, BET inhibitors sensitized MEKi-resistant
cells in breast cancer [71,157]. Similarly, inhibitors of the Nuclear Factor Kappa-light-chain-enhancer
of activated B cells (NFKB) pathway led to sensitization to BET inhibitors in uveal melanoma [158].
Coupling the inhibition of BET-dependent enhancers with targeting of other transcriptome regulating
axes such as E2F-dependent promoters was suggested as an effective approach to target gene
transcription in multiple myeloma [159]. Consequently, it is not unlikely that using enhancer
modulators will reveal various challenges for their use in the clinical setting. These will include the
development of resistance in addition to the difficulty in predicting responsiveness.

Notably, while the context-specific properties of enhancers can be leveraged in precise targeting
of particular enhancer programs, it will also lead to inconsistent performances in various cancer
entities. Accordingly, it is not surprising that enhancer modulators may show highly promising
effects in one cancer type and fail in another. For example, inhibition of EZH2 was reported to be
effective in lymphomas where aberrant histone methylation is caused by mutation in this particular
regulator [160]. On the other hand, the depletion of EZH2 activity caused by histone 3.3 (H3.3) mutations
in diffuse intrinsic pontine gliomas are major precipitants of the disease [161]. Additionally, malignant
peripheral nerve sheath tumor (MPNST) is largely caused by mutations in the Ras signaling suppressor
neurofibromin 1 (NF1) leading to activation of Ras signaling and usually accompanied by mutations in
p53 and the PRC2 complex members, SUZ12 and EED, which lead to a loss of H3K27me3 [162–164].
Thus, treatment with EZH2 inhibitors in certain contexts (such as neurofibromatosis type 1) may
actually exacerbate or precipitate tumorigenesis or tumor progression. This apparent discrepancy is
very likely due to the importance of a balanced level of histone modifications to ensure homeostasis,
as well as the signaling, genetic, and epigenetic context-dependency. Another example includes the
use of HDAC inhibitors in various types of cancer. Multiple HDAC inhibitors have been approved
by the United States Food and Drug Administration (FDA) for use in indications such as relapsed
and refractory cutaneous T-cell lymphoma, peripheral T cell lymphoma, and multiple myeloma [165].
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Conversely, clinical trials showed limited effects of HDAC inhibitors in other cancer types, such as head
and neck [166], breast [167], ovarian [168], and pancreatic cancer [169]. However, better effects were
observed in some cases when HDAC inhibitors were used in combination with other therapies such as
BET inhibitors [73], chemoradiation [170], and VEGF inhibitors [171]. These observations underscore
the complexity of the clinical use of enhancer modulators and the major challenges facing these agents.
They also support the need for a deeper understanding of aberrant enhancer programming in different
malignancies and how this relates to the effectiveness of enhancer-targeting therapies.

As described above, a major challenge in the clinical utilization of enhancer-targeting approaches
to cancer therapy is the identification of potentially responsive patients for proper stratification.
A breakthrough in this may be the use of so-called “eRNAs” (enhancer ribonucleic acids) as clinical
pathologic indicators of active enhancer programs in tumor cells. Although distal intergenic enhancer
regions were not previously thought to be transcribed, it has since been shown that transcription occurs
at these regions in contradiction to the general trends of energy conservation inside the cell [172].
The functions and mechanisms of the resulting eRNA products are still not fully elucidated [173].
However, eRNAs appear to provide excellent markers of enhancer activity that likely outperform
information on the occupancy of transcription activators or histone marks [42]. Functionally, eRNAs
were reported to augment gene transcription as their knockdown led to decreased target gene
transcription [174,175]. Furthermore, chromatin loop formation and eRNA production were reported
to precede transcription of the mRNA [176] and, more recently, eRNAs were reported to promote the
formation of phase-separated nuclear interchromatin granules associated with actively transcribed
genes [39]. Irrespective of their function, we suggest that these products may provide particularly useful
clinical markers for predicting and monitoring therapeutic responsiveness and resistance (Figure 3).

This is of particular interest as eRNAs were reported to be highly enriched at tissue-specific
enhancers [177]. Indeed, the eRNA CCAT1 was proposed as a therapeutic biomarker that can predict
responsiveness to BET inhibition [178]. Interestingly, an enhancer identified in prostate cancer, which is
associated with the gene encoding prostate-specific antigen (PSA) and the resulting eRNA, was shown
to play a central role in controlling gene transcription in prostate cancer cells [179]. Additionally,
Kaczkowski et al. [180] identified 90 eRNAs that are generally upregulated in cancer cells upon
screening over 200 cell lines and approximately 300 primary samples. Identification of eRNAs has been
made feasible due to the development of techniques such as global run-on sequencing (GRO-seq) [181],
transient transcriptome sequencing (TT-seq) [182], precision nuclear run-on sequencing (PRO-seq) [183],
and, more recently, chromatin run-on and sequencing (ChRO-seq) [184]. Notably, length-extension
ChRO-seq enables the detection of nascent RNA from tissue samples that were stored for longer
periods of up to 30 years. Thus, current technologies allow us to more easily identify eRNAs from
patient samples irrespective of sample quality, further enabling a potential utilization of eRNAs as
enhancer biomarkers. Importantly, manipulation of these shortly-lived transcripts by cell-permeable
synthetic antisense oligonucleotides (ASOs) [185] can also affect target gene transcription and may be
an effective mechanism of perturbing enhancer activity [186].

Notably, other technical challenges face the elucidation of the mechanisms of enhancer functions
and their targeting. Enhancers are usually identified using highly complex bioinformatic analyses
that are not always accessible to clinicians and scientists alike. Identification of important enhancers
has also been accompanied by the emergence of different subclasses of enhancers. Since the recent
identification of super enhancers in 2013 [6,75], approximately 300 scientific papers discussing this
subclass have been published. Another class of enhancers called “stretch enhancers” are sometimes
used interchangeably with super enhancers [187,188]. This comparison is, however, somewhat
inaccurate as studies indicate that stretch enhancers only meet the requirement of spanning long
stretches of DNA but, unlike super enhancers, are not necessarily rich with transcription factors
or cell-specific [189]. An additional subclass includes “shadow enhancers”, which are a group of
“secondary” enhancers that are superfluous and redundant to an active enhancer, thereby ensuring
the precision of gene transcriptional regulation [190]. Such a concept, which was first identified in
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Drosophila, has also been reported in mammals [191]. This led to the sometimes imprecise use of the
term “shadow enhancers” to describe typical enhancers, which are not necessarily supportive of other
enhancers and may play decisive roles in tissue- and cancer-specific gene regulation in their own right.
A clearer definition of these new classifications will significantly help in a better and more precise
understanding of enhancer activity and its modulation.
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Figure 3. Enhancer RNAs (eRNAs) are putative biomarkers for responsiveness and resistance in
perturbation of enhancer activity. (a) In a responsive context, inhibiting an enhancer leads to a decrease
in the activity of oncogenic target genes. In this case, high levels of eRNA can predict responsiveness
to a specific inhibitor by providing a direct readout of enhancer activity. (b) In case of resistance,
compensating mechanisms such as the activation of a different enhancer program can occur. Thereby,
high levels of different eRNAs can predict resistance to a certain therapy. (c) To re-sensitize cells,
compensatory mechanisms should also be targeted to ensure therapeutic success.

Another crucial hurdle facing the investigation of the role of enhancers in transcriptional activation
is the complexity of defining the target genes of each enhancer. In the cell, targets of enhancers are not
necessarily in close linear (genomic) proximity and can be separated by many unaffected genes [192].
As previously reported, interactions between enhancers and their target genes are variable in different
systems and can show more tissue specificity than differential activation of enhancers themselves [66].
Chromatin conformation capture assays to detect interactions between cis-regulatory elements were
first established in 2002 and have been followed by many techniques that extended our knowledge
about the interactions between enhancers and their target promoters [193–196]. As these techniques
are difficult to perform in patient samples and are generally not very cost-effective, identification of
target genes in a concise manner in patient samples remains challenging.

5. Conclusions and Future Directions

Aberrant transcriptional regulation is one of the characteristics of malignancy which can be most
efficiently and specifically manipulated through enhancer elements. A greater breadth of knowledge
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about activated enhancers or super enhancers, interconnected with dependencies and biomarkers,
may play a significant role in the optimization of therapy for patients suffering from cancer and other
diseases. In conclusion, enhancers exhibit many attributes of an ideal transcriptional target and are
highly promising to be leveraged in cancer therapy and management. This is due to the fact that
they are targetable, specific, and indispensable. They also frequently produce products (eRNA) that
may potentially be utilized as predicative biomarkers and/or for monitoring therapeutic effectiveness.
However, the targeting of compensatory mechanisms in response to their modulation should be
considered as well. Given the clear significance of targeting enhancers in cancer, more studies are
needed to further expand the currently available agents modulating the activity of these extremely
important transcription targets.

As newer technologies to modulate targets become available in the future, our abilities to
manipulate gene expression programs in cancer would be exponentially expanded. Our group
and others [14,15] uncovered a role of the transcription factor deltaNp63 as a major driver of
a more aggressive subtype of pancreatic cancer (squamous subtype) by activating a squamous
enhancer/super enhancer program. The fact that deltaNp63 overexpression was sufficient to activate
the squamous program suggests that this transcription factor may be an Achilles heel in this particular
subtype [14]. DeltaNp63 was reported to be highly expressed in cancers and molecular subtypes of
cancer that are squamous or basal in their nature, such as breast, head and neck, lung, and esophageal
carcinoma [197–200]. We suggest that these findings may serve as a basis and rationale for the next
step in precision oncology and the design of future basket trials where the effect of targeting deltaNp63
and its downstream activated enhancers can be investigated in malignancies that are divergent in
origin but similar in the enhancer programs that drive their identity and aggressiveness.
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