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a b s t r a c t 

In this article, we present a multicenter aortic vessel tree 

database collection, containing 56 aortas and their branches. 

The datasets have been acquired with computed tomogra- 

phy angiography (CTA) scans and each scan covers the as- 

cending aorta, the aortic arch and its branches into the 

head/neck area, the thoracic aorta, the abdominal aorta and 

the lower abdominal aorta with the iliac arteries branch- 

ing into the legs. For each scan, the collection provides a 

semi-automatically generated segmentation mask of the aor- 

tic vessel tree (ground truth). The scans come from three dif- 

ferent collections and various hospitals, having various res- 

olutions, which enables studying the geometry/shape vari- 

abilities of human aortas and its branches from different ge- 

ographic locations. Furthermore, creating a robust statisti- 

cal model of the shape of human aortic vessel trees, which 

can be used for various tasks such as the development 

of fully-automatic segmentation algorithms for new, unseen 

aortic vessel tree cases, e.g. by training deep learning-based 
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approaches. Hence, the collection can serve as an evaluation 

set for automatic aortic vessel tree segmentation algorithms. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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Subject Information 

Specific subject area Computer Vision and Pattern Recognition 

Type of data Image 

How data were acquired The aortas are segmented from full body (neck to legs) computed 

tomography angiography (CTA) scans using semi-automatic 

segmentation techniques. 

Data format Raw 

Parameters for data collection The selection of files from the dataset collections was based on the 

image quality (e.g., slice thickness, contrast agent, scanning protocol), 

and that they include the whole aortic vessel tree. 

Description of data collection The datasets include 56 CTA scans from aortas, covering the aortic arch 

and its branches and the abdominal aortas with the iliac arteries. 

Furthermore, we include segmentations of the aortas and its branches 

(aortic vessel trees) as binary mask images. 

Data source location KiTS [1,2] , RIDER [3] , Dongyang Hospital 

Data accessibility The datasets can be downloaded from FigShare [16] : 

https://doi.org/10.6084/m9.figshare.14806362 

Related research articles Yuan Jin, Antonio Pepe, Jianning Li, Christina Gsaxner, Jan Egger. title: 

Deep learning and particle filter-based aortic dissection vessel tree 

segmentation. SPIE Medical Imaging, Proceedings Volume 11600, 

Medical Imaging 2021: Biomedical Applications in Molecular, 

Structural, and Functional Imaging; 116001W (2021). DOI: 

https://doi.org/10.1117/12.2588220 . reference: [4] 

alue of the Data 

• The healthy aortas from the collection and its branches can be used to create an atlas or a

statistical shape model (SSM) [5] of the aortic vessel tree, to study the geometry variability

of human aortic vessel trees, etc. 

• The aortic vessel trees together with the corresponding semi-automatically generated seg-

mentations can serve as an evaluation set for automatic aortic vessel tree segmentation al-

gorithms [4,6] . 

• Researchers can use the scans and corresponding segmentations in order to train deep learn-

ing algorithms [7] . 

• Researchers can use the collection as basis for data augmentation [8] to increase the collec-

tion. 

• The aortic vessel tree masks can easily be converted to .stl files, which are then 3D printable

and can be used for educational purposes. 

. Data Description 

In Fig. 1 , we see the structure of the AVT dataset. The dataset includes 56 files, with a res-

lution of 512 × { 512 , 6 6 6 } × Z , where Z denotes the number of axial slices. For each case, we

rovide the volume and the corresponding segmentation. Note that segmentations are saved us-

ng the composite .seg.nrrd file extension. This saves additional metadata and ensures 3D Slicer

9] recognizes these files as segmentations. We also use this file extension to distinguish vol-

mes, which have the file extension .nrrd and segmentations. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.14806362
https://doi.org/10.1117/12.2588220
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Fig. 1. Folder structure of the AVT dataset collection. 

 

 

 

 

 

 

 

 

 

All cases include the ascending aorta, the aortic arch, the brachiocephalic, the left common

carotid, the left subclavian artery, the thoracic aorta, the abdominal aorta and the iliac arteries.

Due to the variance of quality in the dataset, other branches such as the celiac trunk or the

superior mesenteric artery are only visible in cases with a larger amount of axial slices. In Fig. 2 ,

we see some example segementations from our dataset. If the number of axial slices was low,

some branches were not visible in the CT scan. Therefore, for some cases, not all branches are

present in the segmentations. In Fig. 3 , we show a segmentation embedded in the surrounding

anatomy. Our segmentation exhibits different pathologies, such as aortic dissections (AD) [10] or

abdominal aortic aneurysms (AAA) [11] . In the RIDER folder, we have one case with AAA and

five cases with ADs, whose directories are marked. 
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Fig. 2. Screenshots of several healthy aorta segmentation masks of our collection from various views. 

Fig. 3. (a) Screenshot of a CTA scan of the collection. (b) Corresponding vessel tree segmentation mask. (c) Superimposed 

visualization of the original CTA scan and the segmentation mask. 
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. Experimental Design, Materials and Methods 

The AVT dataset was constructed based on full-body CTA scans, which were taken from the

iTS19 Grand Challenge [1,2] , the Rider Lung CT dataset [3] and cases from the Dongyang Hos-

ital. Originally, the files were in the Nearly Raw Raster Data ( nrrd ) format [12] . In Table 1 , we

rovide statistics for an overview of our dataset, such as resolution, number of axial slices, etc.

he total segmentation time for all 56 cases adds up to 58.33 hours. 
able 1 

mage information of the aortic vessel trees. Number of axial slices, segmentation times, slice thickness and vessel tree 

olume are given as: min/median/max . 

Image Information KiTS RIDER Dongyang 

x/y resolution 512 × 512 512 × 512 512 × 666 

Axial slices 94 / 146 / 1059 260 / 1008 / 1140 122 / 149 / 251 

Slice thickness 0 . 5 / 5 / 5 mm 0 . 625 / 0 . 625 / 2 . 5 mm 2 / 3 / 3 mm 

Pathologies None AD, AAA None 

Vessel Tree Volume 55 . 8 / 284 . 5 / 464 . 4 ml 176 . 6 / 354 . 1 / 614 . 0 ml 126 . 0 / 254 . 9 / 488 . 1 ml 

Segmentation Times 30 / 118 / 30 . 5 min. 27 / 422 / 80 min. 12 / 35 / 19 . 5 min. 

Number of Cases 20 18 18 
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Table 2 

Parameters for gradient anisotropic diffusion. Lower conductance will preserve edges better. 

Case Description Conductance Iterations Time Step 

Little Noise/High Resolution 0.85 1 0.0625 

Little Noise/Low Resolution 0.8 1 0.0625 

Aortic Dissection 0.7 1 0.0625 

Fig. 4. The aortic arch in the axial plane and the thoracic aorta in the sagittal plane were particularly well suited for 

masking in our collection. A light blue tone indicates regions to be part of the segmentation. 

Fig. 5. (a, b): Holes in the segmentation caused by a local threshold in 3D (a) and axial view (b). (c, d): Inclusion of the 

truncus pulmonalis in the segmentation in 3D (c) and axial view (d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Computer-aided aortic vessel tree segmentation masks generation 

The semi-automatic segmentations of the aortic vessel trees have been done using 3D Slicer

( https://www.slicer.org/ ) [9] . The overall workflow starts with selecting and loading an aortic

CTA (.nrrd file) into Slicer. Afterwards, we remove noise as a pre-processing step for the seg-

mentation. We choose gradient anisotropic diffusion, for its capabilities in edge-preservance and

selected the parameters as shown in Table 2 . 

Next, we performed local thresholding. Therefore, we manually specified a threshold range

via masking. It is important that structures that do not belong to the aorta are outside the spec-

ified threshold range. We used a minimum diameter of 3 . 00 mm and select GrowCut as our

segmentation algorithm. In Fig. 4 , we show examples for masking of the aorta. 

As we can see in Fig. 5 , local thresholding alone is not sufficient for an aorta segmenta-

tion. Due to threshold differences and noise in the data, artefacts remained that needed to be

corrected manually. Therefore, we used manual post-processing such as paint and erase. Using

these effects, we were able to remove unwanted segments or fill in missing voxels in the seg-

mentation. Morphological operations such as opening or closing are also of use for removing

extrusion and filling holes in the segmentations. However, these effects had to be used carefully,

as they might accidentally remove or connect vessels. 

The workflow specified above worked well for most cases, but same cases required a more

careful post-processing or even a complete manual segmentation. In the case of aortic dissec-

https://www.slicer.org/
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Fig. 6. (a): Due to the quality of the scan, local thresholding returned an unsatisfactory result, thus manual segmentation 

was the preferred method here. (b, c): For AD cases, we created multiple segments and later combine them into one 

aortic mask. 
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ions, it might be of use to generate several segmentations (e.g. one for the true and one for the

alse lumen) and combine them with logical operators. As we can see in Fig. 6 , some cases, like

nes exhibiting AD, need a specific segmentation strategy. 

AD cases can benefit, for example, from a divide and conquer approach by combining small

egments to a complete segmentation of the aorta. To ensure segmentations are not connected,

e can use hollow and logical operations. For cases with AD, we selected one of the two seg-

ents, as shown in Figs. 6 (b) and 6 (c), and created a new segmentation as a copy. Then, we

pplied the hollow operation to this copy, using the current segment as inside surface . A shell

hickness of 2 . 5 mm worked well for the AD cases in our dataset [13] . This ensures that i) multi-

le segments are not erroneously connected and, ii) the dissection flap is not labelled as luminal

olume [14] . 

For some cases, such as the one in Fig. 6 (a), we performed a pure manual segmentation. An

ption to reduce the manual work, at least for some areas of the aorta, is by segmenting only

very third axial slice manually, and then using the closing operation to get the segmentation of

he missing slices (in between). This worked fine for the thoracic and abdominal aorta as well

s the iliac arteries. However, the aortic arch required more manual post-processing using this

pproach. In addition, paint and erase are needed to refine the aorta after using closing. 

The segmentation process ends by exporting the segmented aortic vessel tree as 3D mask

.seg.nrrd) file. 
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