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Interval breast cancers (those diagnosed between recommended mammography screens) generally have poorer outcomes and

are more common among women with dense breasts. We aimed to develop a risk model for interval breast cancer. We

conducted a nested case–control study within the Melbourne Collaborative Cohort Study involving 168 interval breast cancer

patients and 498 matched control subjects. We measured breast density using the CUMULUS software. We recorded first-

degree family history by questionnaire, measured body mass index (BMI) and calculated age-adjusted breast tissue aging, a

novel measure of exposure to estrogen and progesterone based on the Pike model. We fitted conditional logistic regression to

estimate odds ratio (OR) or odds ratio per adjusted standard deviation (OPERA) and calculated the area under the receiver

operating characteristic curve (AUC). The stronger risk associations were for unadjusted percent breast density (OPERA = 1.99;

AUC = 0.66), more so after adjusting for age and BMI (OPERA = 2.26; AUC = 0.70), and for family history (OR = 2.70;

AUC = 0.56). When the latter two factors and their multiplicative interactions with age-adjusted breast tissue aging (p = 0.01

and 0.02, respectively) were fitted, the AUC was 0.73 (95% CI 0.69–0.77), equivalent to a ninefold interquartile risk ratio. In

summary, compared with using dense breasts alone, risk discrimination for interval breast cancers could be doubled by

instead using breast density, BMI, family history and hormonal exposure. This would also give women with dense breasts, and

their physicians, more information about the major consequence of having dense breasts—an increased risk of developing an

interval breast cancer.
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Introduction
Interval breast cancers are diagnosed after a negative screen but
before the next recommended screen. Interval cancers are
important for many reasons, not the least because women diag-
nosed with interval cancers have poor outcomes.1 Compared
with screen-detected breast cancers, interval breast cancers are
generally larger and have a more aggressive phenotype.2 Inter-
val cancers have an incidence of 10–20 per 10,000 women
attending two-yearly mammographic screening3 and represent
20–30% of all breast cancers diagnosed in those women.4

A risk model for interval cancers would be important for
breast cancer control. Women could be triaged according to their
risk for tailored screening,5 a concept being tested by the Women
Informed to Screen Depending On Measures of risk (WISDOM)
trial.6 Triaging could address the on-going need to improve the
cost-effectiveness of screening, minimize harms7 and help miti-
gate the problem of dense breasts masking tumors,8–10 an issue
made prominent by the late Nancy Cappello.11

Dense breasts have become an important issue in the US
with most states passing laws that require women with dense
breasts to be notified and encouraged to discuss supplemental
screening and concerns with their health care provider. More
than 25 million US women aged 40–74 years (43%) have
dense breasts defined by the Breast Imaging Reporting and
Data System’s (BI-RADS) categories c and d.12,13 Breast den-
sity notification within the US typically depends solely on BI-
RADS classifications, with no consideration of other risk
factors or demographics.14 Kerlikowske et al.4 showed that
better prediction of interval breast cancer risk can be achieved
by including other information, although in doing so, they
assumed that the risk factors for breast cancer, in general,
apply to interval cancers with the same risk gradient.

In this article, we define breast density as the proportion of
the breast image that is mammographically dense, defined by
the light or bright areas on a mammogram. Women with
greater breast density are more likely to be diagnosed with
interval cancers,15,16 likely due to the reduced ability of radiol-
ogists to detect tumors in dense regions (masking).15,17 Breast
density, once adjusted for age and body mass index (BMI)
due to negative confounding, is implicated in risk of breast
cancer overall.18

The association of breast density with interval cancers could
be due to, or amplified by, a combination of factors related to
risk and masking. For example, having a mother or sister with
breast cancer has perhaps an even stronger risk association with

interval breast cancers than it does with screen-detected
cancers.2,15

To better inform women of the consequences of their
breast density, we aimed to develop a risk model for interval
breast cancer based on breast density and other breast cancer
risk factors by conducting a matched case–control study
nested within a prospective cohort. We also introduced a
novel measure of hormonal exposure, age-adjusted breast tis-
sue aging. Pike et al.19 modeled age-specific breast cancer inci-
dence as a function of breast tissue aging, which summarized
the effects of exposure to estrogen and progesterone on inci-
dence by a single measure based on reproductive and hor-
monally related factors. Rosner et al.20 confirmed the model
and extended it to take into account having one or more full-
term births (see Table 2 and fig. 4 of Rosner et al.21). We also
studied these putative risk factors, individually and combined,
and fitted interactions to address whether their risk associa-
tions are modified by breast density.21

Materials and Methods
Sample
We used the Melbourne Collaborative Cohort Study of adult
residents of Melbourne, Australia aged 40–69 years when rec-
ruited between 1990 and 1994.22–24 We conducted a nested
case–control study within the cohort of 20,444 women who
were unaffected when they completed their baseline question-
naire and who, from data linkage in 2009, were found to have
attended BreastScreen Victoria (BSV) at least once. BSV is
part of Australia’s national breast cancer screening program,
established in 1992 to offer free mammographic screening to
women over 40 years of age. The target group for the screen-
ing program is women aged 50–69 years, who are invited for
screening every 2 years. Incident breast cancers were defined
as those diagnosed within 2 years of a negative screening at
BSV16 and identified by BSV or by linkage with the
population-complete Victorian Cancer Registry or the
Australian Cancer Database. Incident breast cancers diagnosed
less than 2 years after a negative mammogram taken at BSV
were classified as interval cancers. Case patients were women
diagnosed with incident interval breast cancers. Control sub-
jects were matched to case patients on the year of birth, year
of baseline interview and country of birth.16,24 Control sub-
jects were randomly selected from women who had not been
diagnosed with breast cancer at the age of diagnosis of the
case patient. The study sample was 168 interval breast cancer

What’s new?
Breast cancers that are detected between regular screening intervals are more aggressive and have poorer outcomes than

screen-detected tumors but no valid risk model exists to predict “interval” breast cancers. Here the authors combined breast

density with other breast cancer risk factors such as body mass index, family history and a novel measure of age-adjusted

hormonal exposure. Applying this to more than 150 women with interval breast cancer, they find that risk discrimination can

be doubled with the combination of factors as compared with just using breast density alone, thus improving risk predictions

and clinical recommendations for breast screening procedures.
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patients (148 with invasive cancer) and 498 matched control
subjects (we had aimed for four control subjects per case
patient but this was not always possible). The study was
approved by the human research ethics committees of the
University of Melbourne and Cancer Council Victoria and
consent was obtained from study participants at the time of
recruitment.

Measurement of breast density
All mammograms were screen-film and were digitized using an
Array 2905 Laser Film Digitizer at 12-bit depth. Breast density was
measured from the mammograms taken closest to baseline. For
interval breast cancer patients, mammograms of the unaffected
(contralateral) breast taken at or before diagnosis were used.

We used the CUMULUS computer-assisted thresholding
method to measure conventionally defined breast density.25

Five operators (TLN, YKA, SL, CFE and HNT) independently
measured breast density blinded to the case–control status.
Measurements were completed in sets of 100 mammograms.
For the average of operators, the within-set repeatability was
0.95 (95% confidence interval [CI] 0.94–0.96) and the
between-set repeatability was 0.95 (95% CI 0.93–0.97).

Measurement of other risk factors
Subjects completed interviewer-administered questionnaires at
baseline that asked about age at menarche, number of full-
term live births, age at each birth, breastfeeding, menopausal

status, age at menopause, hormonal replacement therapy use,
oral contraceptive use and alcohol consumption. Height and
weight were measured using standard protocols and used to
calculate BMI = weight (kg)/height (m)2. Family history of
breast cancer was defined as having at least one first-degree
blood relative with breast cancer based on a questionnaire
filled out by women at their time of screening by BSV.

Breast tissue aging
After Pike et al.19 and Rosner et al.,20 starting at puberty, the
rate of breast tissue aging is assumed to be a constant (which,
without loss of generality, is taken to be 1) up until first full-
term livebirth, when it decreases. Breast tissue aging decreases
with subsequent live births and after menopause. The model
parameters were estimated so that the area under the breast
tissue aging curve to age t, taken to the power of 4.5, fits the
age-specific incidence curve for breast cancer. We therefore
defined breast tissue aging to be the area under the breast tis-
sue age curve up to the woman’s age at baseline questionnaire;
see Supplementary Material.

Statistical methods
For both breast density and breast tissue aging, a cube-root
function gave the optimal Box–Cox power transformation to
normality. Transformed breast density was adjusted for age
and BMI, and transformed breast tissue aging was adjusted
for age, using linear regression. The standardized adjusted

Table 1. Study participant characteristics by family history

No family history Family history

Cases Controls Cases Controls
(n = 132) (n = 450) (n = 36) (n = 48)
Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p

Age at mammogram (years) 53.9 (7.5) 53.8 (7.2) 0.96 54.5 (7.3) 53.8 (9.0) 0.7

Age at menarche (years) 13.2 (1.6) 13.1 (1.6) 0.4 12.6 (1.4) 13.2 (1.4) 0.03

Age at menopausal (years, post, n = 401) 48.7 (5.0) 47.3 (6.3) 0.07 48.9 (6.0) 46.8 (6.4) 0.3

Body mass index (kg/m2) 26.6 (5.1) 26.5 (4.9) 0.7 26.8 (5.9) 26.6 (5.1) 0.8

Number of live births (n = 564) 2.6 (0.9) 2.7 (0.9) 0.4 2.8 (0.9) 2.9 (0.9) 0.9

Age at first live birth (n = 564) 26.2 (5.0) 25.5 (4.3) 0.2 25.8 (3.5) 24.3 (4.9) 0.2

Age at last live birth (n = 522) 31.4 (4.7) 31.0 (4.7) 0.5 31.5 (3.6) 30.9 (5.4) 0.6

Breast tissue aging 37.9 (4.8) 37.6 (4.8) 0.6 38.8 (4.7) 37.0 (5.7) 0.1

Nulliparous (n = 102) 36.4 (6.5) 37.4 (6.5) 0.6 36.2 (5.4) 36.8 (7.7) 0.9

Parous (n = 564) 38.1 (4.5) 37.7 (4.5) 0.3 39.7 (4.2) 37.1 (4.8) 0.03

Breast density (%) 21.1 (10.9) 14.8 (9.1) <0.0001 19.1 (9.2) 15.1 (9.6) 0.06

n (%) n (%) p n (%) n (%) p

Parous (yes) 112 (85) 390 (87) 0.6 27 (75) 35 (73) 0.8

Postmenopausal (yes) 80 (61) 273 (61) 0.99 21 (58) 27 (56) 0.8

Breast fed (ever) 102 (77) 355 (79) 0.7 25 (69) 33 (69) 0.9

Alcohol consumption (ever) 89 (67) 285 (63) 0.4 30 (83) 33 (69) 0.1

Hormonal therapy use (ever) 36 (45) 104 (38) 0.3 5 (24) 8 (30) 0.7

Oral contraceptive use (ever) 81 (61) 296 (66) 0.4 21 (58) 30 (63) 0.7
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breast density and standardized adjusted breast tissue aging
were calculated by estimating the mean of the transformed
measures for the controls (only) to establish the population
norms. We then used these population norms to derive the
residuals, for both the controls and the cases, and then divided
these control-based residuals by their respective standard
deviations for the controls.

We used conditional logistic regression to estimate the odds
ratio (OR) for a binary factor and, for each continuous variable,
the change in odds per standard deviation of that variable after
it had been adjusted, as above (OPERA).26 Statistical inference
was based on asymptotic likelihood theory. We used the likeli-
hood ratio test and the Bayesian information criterion (ΔBIC)
to compare model fits. Strength of evidence between two
models was interpreted as nonexistent if ΔBIC<2, positive if
2–6, strong if 6–10 and very strong if ≥10.27

Risk discrimination was assessed from considering log
(OPERA), the risk gradient on the log-odds scale, which is the
difference between case patients and control subjects in the
means of their standardized and normalized risk factor
adjusted for covariates. The equivalent interquartile risk ratio
is approximately OPERA2.5.26 Risk discrimination was also
assessed by the AUC; under normality and multiplicative risk
assumptions, AUC = Φ[log(OPERA)/√2], where Φ is the
cumulative distribution function of the standard normal dis-
tribution28(Supplementary Material). All statistical analyses
were conducted using the software Stata 14.0.29

Data availability
The datasets used for the current study are available upon rea-
sonable request from the corresponding author.

Results
Table 1 shows that case patients differed from control subjects
in breast density for women with and without a family history
(p = 0.06 and p < 0.0001, respectively). Having at least one
first-degree relative with breast cancer was more common for
case patients than control subjects (p = 0.00006).

Figure 1 shows that, for unadjusted breast density, the AUCs
were 0.62 and 0.66 (standard errors ~0.02) when dichotomized
about the median and when used as a continuum, respectively.
(For BI-RADS as four categories, the AUC was 0.65 with
χ2 = 43.10). There was very strong evidence that the latter gave
an improved fit compared with the two other measures (both
ΔBIC≥15). The OR for the upper versus lower 50% was 3.2 (95%
CI 2.1–4.8). Compared with the lowest quartile, the ORs for the
second, third and fourth quartiles were 1.9 (95% CI 1.0–3.8), 3.4
(95% CI 1.8–6.5) and 5.9 (95% CI 3.1–11.2), respectively.

Table 2 shows that the OPERA for transformed and stan-
dardized breast density unadjusted for age and BMI was 1.99
(95% CI 1.61–2.46; p < 0.0001), and there were no associations
with either age at mammogram (a matching variable) or BMI
(both p > 0.2; analyses not shown). Table 2 also shows that,
after adjustment for age and BMI, the OPERA for adjusted
breast density was 2.26 (95% CI 1.81–2.81; p < 0.0001), and
there was very strong evidence (2ΔLL = 16) that this gave a
better fit than unadjusted breast density.

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00

1−Specificity

Breast density (binary): 0.62

Breast density (continuous): 0.66

Reference

0.
00

0.
25

0.
50

0.
75

1.
00

S
en

si
tiv

ity

0.00 0.25 0.50 0.75 1.00

1−Specificity

Breast density (binary): 0.62

Breast density (continuous): 0.66

Reference

Figure 1. Receiver operating characteristic curves for predicting
interval breast cancer using breast density as a binary variable
based on the median for controls and using breast density as a
continuous variable unadjusted for any covariates.

Table 2. Univariable associations with risk of interval breast cancer

OPERA (95% CI) AUC (95% CI) χ2 LL

Breast density1 1.99 (1.61–2.46) 0.66 (0.62–0.71) 48.36 −201.90
Age at mammogram 0.66 (0.36–1.19) 0.51 (0.46–0.56) 1.98 −225.09
Body mass index 1.02 (0.85–1.22) 0.50 (0.45–0.55) 0.05 −226.05
Adjusted breast density2 2.26 (1.81–2.81) 0.70 (0.65–0.74) 66.93 −192.62

1Breast density is defined as percent mammographic density.
2Adjusted for age and body mass index.
Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; OPERA, odds per adjusted standard deviation; χ2 is
the likelihood ratio test statistic.
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Table 3 shows that, when fitted together, the association of
adjusted breast density with interval breast cancer was
unchanged after adjustment for the other factors. The associa-
tion with family history was also virtually unchanged after
adjustment for adjusted breast density.

Table 4 shows that there was marginal or strong evidence
that the adjusted breast tissue aging association differed by
family history and breast density (p = 0.04, 0.07 and 0.003,
respectively; see Models 1 and 2).

Table 4 also shows evidence for interactions between
adjusted breast tissue aging and both adjusted breast density
and family history when all three factors were fitted together
(see Model 3). Fitting the two interaction terms improved the
fit (p < 0.001) and both interaction terms were significant
(p = 0.001 and 0.007, respectively).

Figure 2 shows that the AUC from fitting adjusted breast den-
sity, family history and their interactions with adjusted breast tissue
aging was 0.73 (95% CI 0.69–0.77), equivalent to OPERA = 2.34
and a ninefold interquartile risk ratio. This AUC was greater than
0.70 (95% CI 0.65–0.74) when using adjusted breast density alone
(p = 0.003) and greater than 0.66 (95% CI 0.62–0.71) when using
unadjusted breast density as a continuum (p = 0.0001).

Table 3. Univariable and multivariable associations with risk of interval breast cancer

Univariable Multivariable

Adjusted breast
density1

2.26 (1.81–2.81) – – – 2.24 (1.79–2.81) 2.24 (1.79–2.81)

Family history – 2.70 (1.66–4.39) – – 2.65 (1.57–4.49) 2.65 (1.56–4.48)

Body mass index – – 1.01 (0.97–1.04) – – 1.00 (0.97–1.04)

Adjusted breast
tissue ageing2

– – – 1.17 (0.97–1.40) 1.07 (0.87–1.30) 1.07 (0.87–1.31)

AUC 0.70 (0.65–0.74) 0.56 (0.53–0.59) 0.50 (0.45–0.55) 0.54 (0.49–0.59) 0.72 (0.67–0.76) 0.72 (0.67–0.76)

χ2 66.93 15.46 0.10 2.79 80.35 80.39

Log likelihood −192.62 −218.35 −226.03 −224.68 −185.91 −185.89

Note: For binary risk factors the association is an odds ratio (OR) whereas for continuous risk factors, the association is the change in odds ratio per stan-
dard deviation of the adjusted risk factor (OPERA). AUC, area under the receiver operating characteristic curve; χ2 is the likelihood ratio test statistic.
1Adjusted for age and body mass index.
2Adjusted for age.

Table 4. Multivariable associations (95% confidence intervals in parentheses) with risk of interval breast cancer, allowing for interactions
between adjusted breast density or family history and adjusted breast tissue aging

Model 1 Model 2 Model 3

Adjusted breast density 2.27 (1.81–2.85) – 2.36 (1.85–3.00)

Family history – 2.63 (1.58–4.38) 2.56 (1.47–4.45)

Adjusted breast tissue aging 0.90 (0.72–1.13) 1.09 (0.88–1.33) 0.79 (0.61–1.02)

Interactions

Adjusted breast tissue aging × adjusted breast
density

1.34 (1.10–1.63) – 1.38 (1.12–1.70)

Adjusted breast tissue aging × family history – 1.72 (1.00–2.96) 2.10 (1.17–3.79)

AUC 0.71 (0.66–0.75) 0.58 (0.53–0.63) 0.73 (0.69–0.77)

χ2 75.59 22.93 95.01

Log likelihood −188.29 −214.61 −178.57

Abbreviations: AUC, area under the receiver operating characteristic curve; χ2 is the likelihood ratio test statistic.
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Figure 2. Receiver operating characteristic curves for predicting interval
breast cancer using breast density as a continuous variable unadjusted
for any covariates, using breast density adjusted for age and body mass
index and using the best fitting model that included interactions.
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The AUCs of 0.73, 0.70 and 0.66 above correspond to
log(OPERA)s of 0.86, 0.73 and 0.60, respectively, which are
equivalent to IQRRs of 9.0, 6.2 and 4.5. Therefore, compared
with using only unadjusted breast density, on the log(OPERA)
scale the risk gradient increased by 43% from using adjusted
breast density as a continuum, including family history, and all-
owing for interactions between age-adjusted breast tissue aging
and both adjusted breast density and family history. In terms of
AUC compared to 0.5, the corresponding increase was from
0.66 to 0.73 (44%). The increase from considering dense breast
as a binary construct was from 0.62 to 0.73 (190%).

Discussion
We found that the ability to predict interval breast cancers
might be almost doubled by considering more than unadjusted
breast density dichotomized about its median, similar to how
dense breasts are defined using BI-RADS. Interval cancers are
either (i) potentially detectable at screening but missed (about
20–25% of all interval cancers) or (ii) nonexistent, too small, or
otherwise not detected at screening but grew rapidly thereafter.
Possibility (i) is more likely the greater the proportion of the
breast covered by light or bright areas.16 Possibility (ii) is more
likely the greater a woman’s underlying risk of breast cancer
risk, especially that of more aggressive disease.2,30 Either way,
women more likely to develop breast cancer overall are more
likely to develop interval cancers.

First, unadjusted breast density was a better predictor of
interval cancer than breast density dichotomized by the
median for controls, analogous to the current BI-RADS classi-
fication. Second, breast density was a better predictor of inter-
val cancer when adjusted for age and BMI. Third, having a
family history of breast cancer was an important predictor of
interval cancers.

Fourth, the risk associations of breast density adjusted for
age and BMI and family history combine multiplicatively.
This implies that, in terms of absolute risk of interval cancer,
family history is more important the greater a woman’s breast
density. This observation is of relevance to cancer family
genetic services, and the role of breast density in predicting
interval cancers for women already at increased (familial) risk
deserves attention.

Fifth, a novel breast cancer risk factor which combines
absolute risk information from age, age at puberty, number
and timing of any live births and age at menopause
(if achieved) to represent the relative risk due to exposure to
estrogen and progesterone for women of the same age,19 inter-
acted with breast density and family history. This suggests
that, for women of the same age, their hormonal exposure is
more important the greater their risk of having a tumor
masked and the greater their familial risk. Including informa-
tion on reproductive and familial risk factors could improve
risk prediction, but not necessarily in the same way or to the
same degree as it would if it was assumed it had the same risk
association with breast cancer overall. In practice, whether or

not to include asking women about their reproductive history
could depend on whether they had high breast density or a
family history.

Our finding of a more than multiplicative combination of
breast tissue aging with breast density and family history, is not
the only example of such interactions for interval cancers. Li
et al.31 recently found evidence for interactions between breast
density and a measure of genetic risk whereby, for women with
interval cancer, those with low breast density had a greater chance
of carrying a high-risk breast cancer susceptibility mutation.

Figure 1 shows that moving from dense breasts as a binary
variable to breast density as a continuous variable improved
sensitivity (true positivity) with little loss in specificity when
specificity was high. Figure 2 shows that adding risk factor
information improved specificity (true negativity) with little
loss in sensitivity when sensitivity was high.

The BI-RADS classification of dense breast based on a–b vs.
c–d is similar to our classification based on the median for con-
trols. The increased risk associated with having dense breasts,
defined as being in the upper half of the breast density distribu-
tion, was about threefold. Given that the incidence of interval
breast cancers is about 1–2 per 1,000 women undergoing
2 yearly screening,3 the incidence of interval breast cancer for
women with dense breasts is about 1–2 per 1,000 higher than it
is for women without dense breasts. If a woman has 10 (2 yearly)
screens in her lifetime and is always categorized as having
dense breasts, her risk of ever having an interval breast cancer
will be about 1–2% more than for a woman without dense
breasts. Given that >25 million women in the US aged
40–74 years have dense breasts,13 dense breasts are implicated
in about 25–50,000 interval cancers among these women.

Our model almost doubled the risk gradient and could be
used to derive more optimal cut-offs for management strate-
gies based on risk stratification. This empirical information
could be useful for screening programs to conduct economic
modeling and cost–benefit analyses. Decisions about how to
use the model to inform future screening and use of other
screening modalities should be based on absolute risk, not
only on relative risk, so a model for the age-specific incidence
of interval cancer needs to be created specifically for the popu-
lation being screened.

Strengths of our study include the use of a novel risk mea-
sure based on Pike’s model of breast tissue aging and fitting
interactions. We did not presume the same risk factors, with
same risk gradients, applied to interval cancers as they do to
breast cancer overall and found evidence that contradicted
this assumption.

Weaknesses include the relatively small sample size so our
risk discrimination is likely to be overestimated and there is a
need for independent replication. Our findings were based on
film mammograms and might not apply to digital mammo-
grams. They were also based on only one mammogram; con-
sidering a woman’s breast density history could improve risk
prediction. We based our model on information collected at
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or around the baseline, on average 5–6 years prior to
diagnosis,35 so it is likely that the risk gradients could be even
greater if predictions were over a 2-year interval after a nega-
tive screen. Finally, we only had information for family history
as a binary construct and no information on genetic risk.

Risk prediction could also be substantially improved. We
recently created Cirrus, a novel automated measure of breast
cancer risk based on features of a mammogram, which has an
OPERA of 1.7.28 A similar OPERA applies to a polygenic risk
score based on approximately 3,000 single nucleotide poly-
morphic markers.32 We have also found that defining breast
density at higher pixel brightness thresholds can give stronger
risk prediction,33–36 and that familial risk could be stronger if
based on a continuous measure using multigenerational pedi-
gree data.37 It remains to be seen how much addition of these
breast cancer risk factors might improve risk stratification.

In summary, our findings illustrate the potential for
improving mammography screening. Women at increased risk
of serious breast cancers that occur within regular screening
intervals could be more accurately identified than by using BI-
RADS alone. Information routinely collected by some mam-
mography services could be used to better classify women in
terms of risk. Triaging women for breast screening might be
substantially improved by considering breast density as a con-
tinuum, adjusting it for BMI and using other measures related
to risk. This would also give women with dense breasts, and

their physicians, more information about the consequences of
having dense breasts—an increased risk of developing an
interval breast cancer, a critically important outcome for
screening programs and women.
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